

http://apr.psk.or.kr

Flavonoids from Spatholobus suberectus

Jeong Seon Yoon, Sang Hyun Sung¹, Jong Hee Park², and Young Choong Kim

College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, San 56-1 Shillim-Dong, Kwanak-Gu, Seoul 151-742, Korea, ¹Institute for Life Science, Elcom Science Co. Ltd., 235 Guro-Dong, Guro-Ku, Seoul 152-848, Korea, and ²College of Pharmacy, Pusan National University, 30 Jangjeon-dong, Geumjeong-Gu, Busan 609-735, Korea

(Received March 19, 2004)

Two pterocarpans [(6aR,11aR)-maackiain, (6aR,11aR)-medicarpin], one flavanone [(2S)-7hydroxy-6-methoxy-flavanone], one isoflavan (sativan) and two isoflavones (pseudobaptigenin, genistein) were isolated from the Spatholobus suberectus (Leguminosae). Their chemical structures were determined by comparison of their spectroscopic parameters of CD, EIMS, 1D-NMR and 2D-NMR with those reported in the literatures. All of these compounds are reported for the first time from this plant through the present study.

Key words: Spatholobus suberectus, Leguminosae, Pterocarpan, (6aR,11aR)-Maackiain, (6aR, 11aR)-Medicarpin, (2S)-7-Hydroxy-6-methoxy-flavanone

INTRODUCTION

The vine stem of Spatholobus suberectus Dunn (Leguminosae) has been used for the improvement of blood circulation and treatment for dysmenorrhea, anemia, paralysis and arthralgia in Korean folk medicine (Kim and Cho, 1995). Even though several flavonoids, sterols and triterpenes have been reported from S. suberectus (Zhu 1988; Lin et al., 1989; Cui et al., 2002), no systematical studies on chemical constituents have been performed. Thus, we started to study the constitutents of S. suberectus. Two pterocarpans [(6aR,11aR)-maackiain, (6aR,11aR)medicarpin], one flavanone [(2S)-7-hydroxy-6-methoxyflavanone], one isoflavan (sativan) and two isoflavones (pseudobaptigenin, genistein) were isolated. Their chemical structures were determined by comparison of their spectroscopic parameters of CD, EIMS, 1D-NMR and 2D-NMR with those reported in the literatures. All of these compounds have not been previously found in the plant.

MATERIALS AND METHODS

Optical rotation was measured using a JASCO DIP-

E-mail: youngkim@plaza.snu.ac.kr

1000 polarimeter and CD data were recorded in MeOH on a JASCO-J715 spectrometer. FT-IR spectra were recorded on a Perkin Elmer 1710 spectrometer, and UV spectra were recorded on a Shimadzu UV-201 spectrometer. EIMS spectra were measured with a VG Trio II spectrometer. The ¹H-NMR and ¹³C-NMR spectra were run on a JEOL GSX 400 spectrometer at 400 MHz and 100 MHz, respectively, with TMS as an internal standard. TLC and column chromatography were carried out on precoated silica gel F₂₅₄ plates (Merck, art. 5715), RP-18 F₂₅₄ plates (Merck, art. 15423), silica gel 60 (230-400 mesh, Merck) and LiChroprep RP-18 (40-63 µm, Merck).

Plant materials

The stems of S. suberectus were purchased from Kyoungdong Oriental Herbal Market, Seoul, Korea in 2000 and identified by the late Dr. D.S. Han, an emeritus professor of the College of Pharmacy, Seoul National University. A voucher specimen (SNU-0031) has been deposited in the Herbarium of the Medicinal Plant Garden, College of Pharmacy, Seoul National University.

Extraction and isolation

The dried sterms of S. suberectus (12 kg) were extracted three times for 3 h with 80% MeOH in an ultrasonic apparatus. Removal of solvent in vacuo yielded a methanolic extract (1.7 kg). The methanolic extract was suspended in H₂O and partitioned with CH₂Cl₂. The CH₂Cl₂ fraction was

Correspondence to: Young Choong Kim, Ph. D., College of Pharmacy, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul, 151-742, Korea Tel: 82-2-880-7842, Fax: 82-2-888-2933

then suspended in 90% MeOH and back-extracted with nhexane. The residual 90% MeOH fraction (36.5 g) was fractionated by extensive column chromatography over silica gel using n-hexane : EtOAc : MeOH gradient and yielded thirteen major fractions (fr.1~fr.13). Following silica gel column chromatography of fr.5 (7 g) with a solvent gradient of MeOH in CHCl₃ yielded five subfractions (fr.5-1~ fr.5-5). Among them, fr.5-3 (2g) was eluted on C₁₈ RP column chromatography with 100% H₂O to 100% MeOH as the eluent raising the ratio of MeOH and yielded seven subfractions (fr.5-3-1~fr.5-3-7). Among these subfractions, fr.5-3-3 (38 mg) yielded 1 (6.8 mg), 2 (21.3 mg), and 3 (5.1 mg) by additional purification step on C₁₈ RP HPLC (AcCN : MeOH = 45 : 55). Compound 4 was isolated by C_{18} RP HPLC (AcCN : MeOH : $H_2O = 45$: 10 : 45) from the fr. 5-3-4 (40 mg). Compounds 5 (4.5 mg) and 6 (13.5 mg) were purified by the additional purification step on C_{18} RP HPLC (AcCN : MeOH : H₂O = 35 : 10 : 55 (5) and 32 : 16 : 52 (6)) of fr. 6 and fr. 7, respectively.

(6aR,11aR)-Maackiain (1)

Pale yellowish powder, $[\alpha]_D$: -261.1 (*c* 0.1, MeOH); CD (MeOH): $\Delta\epsilon$ 288 (+2.59), 238 (-9.27) nm; UV λ_{max} (MeOH) (log ϵ) nm: 286 (3.22), 309 (3.31); IR ν_{max} (KBr) cm⁻¹: 3429, 1623, 1473, 932, 835; EIMS: *m*/*z* 284 [M]⁺, 283, 267, 175, 162, 151, 147, 134; ¹H-NMR (400 MHz, CD₃OD) and ¹³C-NMR (100 MHz, CD₃OD) see the Table I.

(6aR,11aR)-Medicarpin (2)

Table I. ¹ H- and ¹³ C-NMR	data of 1	and 2	(CD_3OD)
--	-----------	-------	------------

Yellowish powder, $[\alpha]_D$: -232.0 (*c* 0.1, MeOH); CD [MeOH, nm ($\Delta\epsilon$)] : 3.04 (+3.19), 240 (-10.9); UV λ_{max} (MeOH) (log ϵ) nm: 285 (3.18); IR ν_{max} (KBr) cm⁻¹ : 3424, 1621, 1496, 947, 837; EIMS: *m/z* 270 [M]⁺, 269, 255, 148, 135; ¹H-NMR (400 MHz, CD₃OD) and ¹³C-NMR (100 MHz, CD₃OD) see the Table I.

(2S)-7-Hydroxy-6-methoxy-flavanone (3)

Yellow powder, $[\alpha]_D$: -55.0 (*c* 0.1, MeOH); CD [MeOH, nm ($\Delta \epsilon$)]: 348 (+2.29), 312 (-6.08), 242 (+7.06); UV λ_{max} (MeOH) (log ϵ) nm: 238 (4.23), 277 (4.04), 338 (*sh*) (2.38); IR v_{max} (KBr) cm⁻¹: 3431, 1576, 1470; EIMS: *m/z* 270 [M]⁺, 166, 151, 121, 69; ¹H-NMR (400 MHz, CD₃OD): δ 7.52 (2H, br d, *J* = 7.2 Hz, H-2', H-6'), 7.43 (2H, t, *J* = 7.2 Hz, H-3', H-5'), 7.38 (1H, br d, *J* = 7.2 Hz, H-4'), 7.30 (1H, s, H-5), 6.45 (1H, s, H-8), 5.48 (1H, dd, *J* = 13.0, 3.0 Hz, H-2), 3.87 (3H, s, OC<u>H₃</u>), 3.03 (1H, dd, *J* = 17.0, 13.0 Hz, H-3ax), 2.77 (1H, dd, *J* = 17.0, 3.0 Hz, H-3eq); ¹³C-NMR (100 MHz, CD₃OD): δ 193.7 (C-4), 161.0 (C-7), 158.5 (C-9), 146.3 (C-6), 141.6 (C-1'), 130.4 (C-3', C-5'), 130.2 (C-4'), 128.1 (C-2', C-6'), 114.2 (C-10), 108.7 (C-5), 105.5 (C-8), 81.9 (C-2), 57.3 (O<u>C</u>H₃), 45.8 (C-3).

Sativan (4)

		1		2	
Carbon	¹³ C	١H	¹³ C	۱H	
1	133.8	7.28 (1H, d, 8.4)	133.6	7.30 (1H, d, 8.4)	
2	111.5	6.50 (1H, dd, 8.4, 2.4)	111.2	6.51 (1H, dd, 8.4, 2.4)	
3	160.9		160.6		
4	104.8	6.32 (1H, d, 2.4)	104.5	6.32 (1H, d, 2.4)	
4a	158.8		158.5		
6	68.2	4.23 (1H, dd, 10.7, 4.7, H-6eq) 3.57 (1H, dd, 10.7, 10.6, H-6ax)	68.0	4.22 (1H, dd, 10.4, 3.0, H-6eq) 3.54 (1H, t, 10.4, H-6ax)	
6a	42.3	3.48 (1H, m)	41.3	3.51 (1H, m)	
6b	120.6		121.3		
7	106.7	6.28 (1H, s)	126.4	7.17 (1H,d, 8.2)	
8	143.9		107.7	6.46 (1H, dd, 8.2, 2.2)	
9	150.2		163.0		
10	95.0	6.39 (1H, s)	98.0	6.39 (1H, d, 2.2)	
10a	156.3		162.5		
11a	80.8	5.46 (1H, d, 6.9)	80.5	5.47 (1H, d, 6.4)	
11b	113.6		113.3		
-OCH₂O-	103.3	5.88 (2H, dd, 13.1, 1.1)			
-OCH₃		• •	56.3	3.75 (3H, s)	

J = 2.4 Hz, H-8), 4.16 (1H, br d, *J* = 10.1 Hz, H-2ax), 3.59 (1H, t, *J* = 10.1 Hz, H-2eq), 3.80 (3H, s, OC<u>H₃</u>), 3.75 (3H, s, OC<u>H₃</u>), 3.42 (1H, m, H-3), 2.88 (1H, dd, *J* = 15.5, 10.8 Hz, H-4ax), 2.74 (1H, dd, *J* = 15.5, 3.9 Hz, H-4eq); ¹³C-NMR (100 MHz, CD₃OD) δ : 162.0 (C-4'), 160.3 (C-2'), 158.3 (C-7), 157.1 (C-9), 131.9 (C-5), 129.3 (C-6'), 123.7 (C-1'), 115.5 (C-10), 109.8 (C-6), 106.3 (C-5'), 104.5 (C-8), 100.2 (C-3'), 71.9 (C-4), 56.6 (OCH₃), 56.5 (OCH₃), 33.7 (C-3), 32.2 (C-2).

Pseudobaptigenin (5)

White amorphous powder, UV λ_{max} (MeOH) nm : 241 (*sh*), 249, 260 (*sh*), 296; EIMS: *m/z* 282 [M]⁺, 146, 132, 84, 66; ¹H-NMR (400 MHz, DMSO-*d*₆) : δ 8.32 (1H, s, H-2), 7.93 (1H, d, *J* = 8.8 Hz, H-5), 7.13 (1H, d, *J* = 1.6 Hz, H-2'), 7.04 (1H, dd, *J* = 8.0, 1.6 Hz, H-6'), 6.96 (1H, d, *J* = 8.0 Hz, H-5'), 6.90 (1H, dd, *J* = 8.8, 2.1 Hz, H-6), 6.81 (1H, d, *J* = 2.1 Hz, H-8), 6.04 (2H, s, -OC<u>H</u>₂O-); ¹³C-NMR (100 MHz, DMSO-*d*₆) : δ 174.8 (C-4), 160.9 (C-7), 157.9 (C-9), 153.7 (C-2), 147.3 (C-3'), 147.2 (C-4'), 127.5 (C-1'), 126.2 (C-5), 123.4 (C-3), 122.7 (C-6'), 116.0 (C-10), 113.9 (C-6), 109.8 (C-2'), 108.4 (C-5'), 102.4 (C-8), 101.4 (-OCH₂O-).

Genistein (6)

Yellow amorphous powder, UV λ_{max} (MeOH) (log ε) nm: 264 (4.45); EIMS: *m*/*z* 270 [M]⁺, 153; ¹H-NMR (300 MHz, DMSO-*d*₆) : δ 12.93 (1H, s, 5-OH), 8.29 (1H, s, H-2), 7.35 (2H, d, *J* = 8.5 Hz, H-2', H-6'), 6.80 (2H, d, *J* = 8.5 Hz, H-3', H-5'), 6.34 (1H, d, *J* = 2.1 Hz, H-8), 6.18 (1H, d, *J* = 2.1 Hz, H-6); ¹³C-NMR (75 MHz, DMSO-*d*₆) : δ 180.0 (C-4), 164.8 (C-7), 161.9 (C-5), 157.6 (C-4'), 157.3 (C-9), 153.8 (C-2), 130.1 (C-2', 6'), 122.2 (C-3), 121.2 (C-1'), 115.0 (C-3', 5'), 104.2 (C-10), 99.0 (C-6), 93.7 (C-8).

RESULTS AND DISCUSSION

Compound 1 was isolated as yellowish powder, $[\alpha]_{D}$ -261.1°. Its molecular formula was deduced as C₁₆H₁₄O₅ from EIMS and carbon counts in ¹³C-NMR spectrum. The ¹H-NMR spectrum of **1** showed a characteristic pattern corresponding to a pterocarpan skeleton; the signals at δ 5.46 (d, J=6.9 Hz), 4.23 (dd, J=10.7, 4.7 Hz), 3.57 (dd, J=10.7, 10.6 Hz) and 3.48 (m) were assigned to H-11a, H-6_{eq}, H-6_{ax} and H-6a, respectively (Kinoshita et al., 1990). And the ¹H- and ¹³C- NMR showed the presence of 1,2,4,5-tetrasubstituted and 1,3,4-trisubstituted aromatic rings and a methylenedioxy group. Complete assignments of these spectra were made with ¹H-¹H COSY, HMQC and HMBC techniques. The absolute stereochemistry of 1 was shown to be 6aR and 11aR (Garcez et al., 1988; Tokes et al., 1999), as these showed positive and negative cotton effects at 288 and 238 nm, respectively in its circular dichroism (CD) spectrum (Fig. 2). From these data, 1 was identified as (6a*R*,11a*R*)-maackiain (Ingham, 1981; Ingham, 1982; Maximo and Lourenco, 1998) (Fig. 1).

Compounds **2** was isolated as yellowish powder, ($[\alpha]_D$ -232°). Its molecular formula was deduced as C₁₆H₁₂O₄ from EIMS and carbon counts in ¹³C-NMR. The ¹H- and ¹³C-NMR spectra of **2** were almost identical to those of **1** except for signals of the some aromatic ring. Its spectra showed the presence of a methoxyl group (δ 3.75) and 1,4-disubstitued aromatic ring. Complete assignments of these spectra were made with ¹H-¹H COSY, HMQC and HMBC techniques. The absolute stereochemistry of **2** was shown to be 6a*R* and 11a*R* (Garcez *et al.*, 1988; Tokes *et al.*, 1999), as these showed positive and negative cotton effects at 304 and 240 nm, respectively in its circular dichroism (CD) spectrum (Fig. 2). From these data, **2** was elucidated as (6a*R*,11a*R*)-medicarpin (Ingham, 1981; Ingham, 1982; Hearth *et al.*, 1998) (Fig. 1).

Compound **3** was isolated as yellow powder with negative optical rotation ($[\alpha]_D$ -55°) and its molecular formula was deduced as C₁₆H₁₄O₄ from EIMS and carbon counts in ¹³C-NMR. The ¹H-NMR spectrum showed a characteristic pattern of flavanone at δ 5.48 (1H, dd, *J*=13.0, 3.0 Hz), 3.03 (1H, dd, *J*=17.0, 13.0 Hz) and 2.77 (1H, dd, *J*=17.0, 3.0 Hz) (Reddy *et al.*, 2003). Complete assignments of these spectra were made with ¹H-¹H COSY and HMQC techniques. From all these data and the HMBC correlations, **3** was deduced as 7-hydroxy-6-methoxy-flavanone. The absolute configuration at C-2 was shown to be S (Matsuda *et al.*, 2002), as it showed positive and negative cotton effects at 348 and 312 nm, respectively in its circular dichroism (CD) spectrum (Fig. 2). Above all, **3** was concluded as (2*S*)-7-hydroxy-6-methoxy-flavanone (Fig. 1).

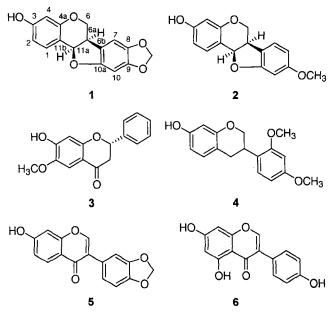


Fig. 1. Chemical structures of compounds 1-6

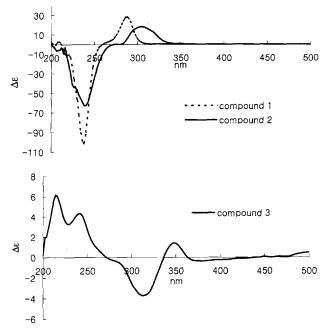


Fig. 2. Cricular dichroism spectra of 1, 2, and 3

Compound **4** was isolated as a yellow power and its molecular formula were deduced as $C_{17}H_{18}O_4$ from EIMS and carbon counts in ¹³C-NMR. The ¹H-NMR spectrum showed characteristic pattern of isoflavan at δ 4.16 (1H, br d, J = 10.1 Hz, H-2ax), 3.59 (1H, t, J = 10.1 Hz, H-2eq), 3.42 (1H, m, H-3), 2.88 (1H, dd, J = 15.5, 10.8 Hz, H-4ax), 2.74 (1H, dd, J = 15.5, 3.9 Hz, H-4eq) (Subarnas *et al.*, 1991). Compound **4** was identified as sativan by comparison with previously reported spectral data (Bonde *et al.*, 1973; Ingham, 1977) (Fig. 1).

Compound **5** and **6** were obtained as amorphous powders and their molecular formula were deduced as $C_{17}H_{18}O_4$ from EIMS and carbon counts in ¹³C-NMR respectively. Their ¹H- and ¹³C-NMR spectra showed characteristic pattern of isoflavone. (Harbone *et al.*, 1988). By comparison with previously reported spectral data, **5** and **6** were identified as psedobaptigenin and genistein, respectively (Ohashi *et al.*, 1976, Kinjo *et al.*, 1987) (Fig. 1).

ACKNOWLEDGEMENT

This work was supported by the Korea Research Foundation Grant (KRF-2003-0150E00216).

REFERENCES

- Bonde, M. R., Millar, R. L., and Ingham., Induction and identification of sativan and vestitol as two phytoalexins from *Lotus corniculatus. Phytochemistry*, 12, 2957-2959 (1973).
- Cui Y. J., Liu P., and Chen R. Y., Studies on the chemical constituents of *Spatholobus suberectus* Dunn. *Acta Pharmaceutica Sinia*, 37, 784-787 (2002).

- Garcez, F. R., Scramin, S., Nascimento, M. C. D., and Mors, W. B., Prenylated flavonoids as evolutionary indicators in the genus *Dahlstedtia*. *Phytochemistry*, 27, 1079-1083 (1988).
- Harborne, J. B., *The flavonoids : advances in research.* Chapman & Hall, London, pp. 137-147, (1994).
- Herath, H. M. T. B., Dassanayake, R. S., Priyadarshani, A. M. A., Silva, S. D., Wannigama, G. P., and Jamie, J., Isoflavonoids and a pterocarpan from *Gliricidia spedium*. *Phytochemistry*, 47, 117-119 (1998).
- Ingham, J. L., Isoflavonoid phytoalexins from leaves of *Trifolium* arvense. Z. Naturforsch., 320, 446-448 (1977).
- Ingham, J. L., Isolation and identification of *Cicer* isoflavonoids. *Biochem. Syst. Ecol.*, 9, 125-128 (1981).
- Ingham, J. L., Phytoalexin production by *Ononis* species. *Biochemcal Systematics and Ecology*, 10, 233-237 (1982).
- Kim, J. G., and Cho, B. G., *Traditional Drugs of The East.* Young Lim Sa, Seoul, pp. 150-151, (1995).
- Kinjo, J. E., Furusawa, J. I., Baba, J., Takwshita, T., Yasaki, Y., and Nohara, T., Studies on the constituents of *Pueraria lobata*.
 III. Isoflavonoids and related compounds in the roots and the voluble stems. *Chem. Pharm. Bull.*, 35, 4846-4850 (1987).
- Kinoshita, T., Ichinose, K., Takahsh, C., Ho, FC., Wu, JB., and Sakawa, U., Chemical studies on *Sophora tomentosa*: the isolation of a new class of isoflavonoid. *Chem. Pharm. Bull.*, 38, 2756-2759 (1990).
- Lin, M., Li. S., Ebizuka, Y., and Mikawa, U., Chemical constituents of stem of suberect spatholobus (Spatholobus suberectus). Zhongcaoyao, 20, 53-56 (1989).
- Matsuda, H., Morikawa, T., Toguchida, I., Harima, S. and Yoshikawa, M., Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of *Chrysanthemum indicum* L.: their inhibitory activities for rat lens aldose reductase. *Chem. Pharm. Bull.*, 50, 972-975 (2002).
- Maxzimo, P. and Lourenco, A., A pterocarpan from Ulex parviflorus. Phytochemistry, 48, 359-362 (1998).
- Ohashi, H., Goto, M., and Imamura, H., Flavonoids from the wood of *Cladrastis platycarpa*. *Phytochemistry*, 15, 354-355 (1976).
- Reddy, M. V. B., Reddy, M. K., Guvvuru, G., Caux, C., and Bodo, B., A flavanone and a dihydrodibenzoxepin from *Bauhinia variegata*. *Phytochemistry*, 64, 879-882 (2003).
- Subarnas, A., Oshima, Y., and Hikino, H., Isoflavans and pterocarpan from Astragalus mongholicus. Phytochemistry, 30, 2777-2780 (1991).
- Tokes, A. L., Litkei, G., Gulacsi, K., Antus, S., Baitz-Gacs, E., Szantay., and Darko, L. L., Absolute configuration and total synthesis of (-)-cabenegrin A-I. *Tetrahedron*, 55, 9283-9296 (1999).
- Zhu, Y. P., Chinese Materia Medica : Chemistry, pharmacology and applications. Harwood academic publishers, Netherland, pp. 468-470, (1988).