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Abstract 

1 Background. The U.S. Government has encouraged shifting from 
internal combustion engine vehicles (ICEVs) to alternatively fueled 
vehicles such as electric vehicles (EVs) for three primary reasons: 
reducing oil dependence, reducing greenhouse gas emissions, and 
reducing Clean Air Act criteria pollutant emissions. In comparing 
these vehicles, there is uncertainty and variability in emission fac- 
tors and performance variables, which cause wide variation in 
reported outputs. 
2 Objectives. A model was developed to demonstrate the use of 
Monte Carlo simulation to predict life cycle emissions and en- 
ergy consumption differences between the ICEV versus the EV 
on a per kilometer (km) traveled basis. Three EV technologies 
are considered: lead-acid, nickel-cadmium, and nickel metal 
hydride batteries. 
3 Methods. Variables were identified to build life cycle invento- 
ries between the EVs and ICEV. Distributions were selected for 
each of the variables and input to Monte Carlo Simulation soft- 
ware called Crystal Ball 2000@. 
4 Results and Discussion. All three EV options reduce U.S. oil 
dependence by shifting to domestic coal. The life cycle energy 
consumption per kilometer (km) driven for the EVs is compara- 
ble to the ICEV; however, there is wide variation in predicted 
energy values. The model predicts that all three EV technolo- 
gies will likely increase oxides of sulfur and nitrogen as well as 
particulate matter emissions on a per km driven basis. The model 
shows a high probability that volatile organic compounds and 
carbon monoxide emissions are reduced with the use of EVs. 
Lead emissions are also predicted to increase for lead-acid bat- 
tery EVs. The EV will not reduce greenhouse gas emissions sub- 
stantially and may even increase them based on the current U.S. 
reliance on coal for electricity generation. The EV may benefit 
public health by relocating air pollutants from urban centers, 
where traffic is concentrated, to rural areas where electricity 
generation and mining generally occur. The use of Monte Carlo 
simulation in life cycle analysis is demonstrated to be an effec- 
tive tool to provide further insight on the likelihood of emission 
outputs and energy consumption. 

Ke~ords: Battery; Clean Air Act Amendments (CAAA); crite- 
ria pollutants; electric vehicle; energy; life cycle assessment 
(LCA); life cycle inventory (LCI); lifecycle; Monte Carlo, 
probabilistic 

1 Background 

Exhaust emissions from internal combustion engine vehi- 
cles (ICEVs) contribute to air pollution resulting in deleteri- 
ous impacts to the environment and human health. Addi- 
tionally, they rely on refined crude oil making the U.S. dependent 
on foreign oil imports, which now account for the majority 
of total U.S. oil consumption. Net imports accounted for 
53% of U.S. consumption in 2000 [1]. In response to these 
issues, the U.S. Federal Government has passed legislation 
(Energy Policy Act of 1992) and issued several Executive 
Orders [2--4] with the following goals: 

1. Reduce foreign oil dependence 
2. Reduce carbon dioxide (CO2) emissions 
3. Reduce the six Clean Air Act criteria pollutant air emis- 

sions 

One approach to accomplishing these goals is to encourage 
the use of alternatively fueled vehicles that would reduce air 
emissions and consume less oil. One type of alternatively 
fueled vehicle is the grid-dependent electric vehicle (EV). 
During use, the electrical power grid provides the energy 
needed to recharge the grid-dependent EV. Many renewable 
energy sources such as wind, solar, hydroelectric, geothermal 
power and nuclear power convert other forms of energy to 
electricity. While electricity can be used to produce other 
energy sources (i.e. hydrogen), the most direct use of elec- 
tricity in the transportation sector is to recharge EV batteries. 
There are several drawbacks with the use of EVs, such as lim- 
ited range and lack of infrastructure. Other alternatively fueled 
vehicle technologies, such as fuel cell or hybrid engine sys- 
tems, may enjoy broader acceptance but all powered vehicles 
will require some form of stored energy and EVs may have 
practical applications for many short-range driving needs. 
Many variables necessary to perform a life cycle inventory 
(LCI) to compare EVs and ICEVs have a great deal of uncer- 
tainty and variability, which results in a wide range of reported 
outputs using traditional LCI techniques. 

2 Objectives 

The primary intent of this research is to demonstrate the use 
of Monte Carlo simulation within a LCI framework. This 
research will compare the differences in life cycle criteria 
pollutant emissions, greenhouse gas emissions and energy 
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usage between ICEVs and three EV technologies to quantify 
the impact of EV use with respect to achieving the afore- 
mentioned goals. The three EV types selected for evaluation 
in this research are the lead-acid battery EV, the nickel-cad- 
mium (Ni-Cd) battery EV, and the nickel metal hydride 
(NiMH) battery EV, which are currently the most available 
forms of rechargeable battery technologies [5]. 

3 Methods 

LCI quantifies the energy and materials used and wastes 
released to the environment during all phases of the life of a 
product. Product life cycle is divided into raw material ex- 
traction, material preparation, manufacture, use, and final 
disposal [6]. LCI is comprehensive because all phases of a 
product life cycle are considered. Often, vehicle emission 
estimates focus on the use phase (i.e. driving) and neglect to 
consider the energy use and emissions during the other life 
cycle phases (i.e. raw material extraction). For example, re- 
placing steel automobile components with lighter aluminum 
lowers vehicle weight and reduces energy during the vehicle 
use phase. However, primary aluminum production is more 
energy intensive than primary steel production. Though recy- 
cled aluminum would reduce energy consumed for aluminum 
to some degree, the additional energy needed for raw materi- 
als could offset the reduction in energy during the vehicle use 
phase [7]. When the life cycle perspective is applied, all activi- 
ties necessary to propel a vehicle a given distance are repre- 
sented. The life cycle perspective is a closer reflection of the 
broad environmental impact of a vehicle design. 

LCI is appropriate for complex comparisons. ICEVs require 
gasoline which uses energy in drilling, extraction, transport, 
refining, etc. and EVs require electricity, which is predomi- 
nantly fueled by coal in the U.S. An Energy Information 
Administration (EIA) report indicates that natural gas will 
be the fastest growing fuel source in electricity production 
but coal is still expected to produce 44 percent of the U.S. 
electricity in 2020 (from 51% in 1999) [1]. One reason that 
coal is likely to remain a major source for electricity in the 
U.S. is because the U.S. has the worlds largest supply of 
ultimately recoverable coal lasting over 200 years [1]. The 
energy mix used to produce electricity may shift in the fu- 
ture, but like ICEVs, EVs consume energy and result in emis- 
sions emitting pollutants and greenhouse gases, though the 
magnitude and location of the emissions may change with 
EVs versus ICEVs. 

3.1 Monte Carlo Simulation 

Most emission models in widespread use, such as EPA's mo- 
bile source emissions model, MOBILE, rely on deterministic 
methods to characterize emissions [8]. In other words, a sin- 
gle value is assigned to each input variable and a single value 
is computed for each output. The deterministic method pro- 
duces an output that does not address the variability or uncer- 
tainty inherent in each of the input variables. These determin- 
istic estimates fail to place point estimates in the context of 
the uncertainty in which they were developed [9]. 

One way of accounting for the variability and uncertainty 
of emissions and energy inputs for the EV and the ICEV is 
to use probabilistic methods such as Monte Carlo simula- 
tion. Monte Carlo simulation is a technique of simulating 
real world behavior with variable distributions instead of 
point values [10]. A large degree of natural variability is 
inherent in vehicle emissions due to factors like engine de- 
sign, maintenance and vehicle age. For example, when an 
ICEV ages, its emission control systems, primarily the cata- 
lytic converter, become less effective causing some ICEVs to 
become 'high emitters'. A study by Bishop et al. concluded 
that the dirtiest 10% of vehicles at a Phoenix exit ramp were 
responsible for 78%, 79% and 49% of the carbon monox- 
ide (CO), hydrocarbon (HC) and oxides of nitrogen (NOx) 
emissions [11], respectively. A study of California vehicles 
reports that 7% of the automobiles account for 50% of the 
CO and hydrocarbons emitted [12]. By using Monte Carlo 
to specify a distribution for ICEV emissions, a range of prob- 
able estimates to include the high emitters will provide a 
better representation of reality. 

There is also a great deal of uncertainty in vehicle emission 
factors and battery design parameters. The literature has 
many contradictory emission factors, and references to 'un- 
published information' [7]. For example, the EPA AP-42 
database is the most widely used air emission factor data- 
base available. However, it is widely recognized that some 
of these data are of 'average' quality [13]. Uncertainty in 
emission factors is further compounded because industries 
prefer discretion with respect to the pollution they emit [14]. 
Also, gathering data to develop accurate emission factors is 
often expensive and time consuming, sometimes taking years 
to compile [15]. The advantage with Monte Carlo simula- 
tion is that it allows the modeler to estimate the uncertainty 
in each input variable and predict the impact of that vari- 
able on the outputs. The Monte Carlo method provides the 
decision maker with a range of potential outcomes along 
with the predicted chance of their occurrence.[16] 

Input variables such as emission factors are often the cause 
of controversy because there are many vested interests at 
stake and uncertainty in the values. An article by Lave et 
al.[5] concluded that lead-acid EVs would emit 60 times 
more lead per km than a comparable car burning leaded 
gasoline. This article sparked a series of letters to the editor 
claiming that the lead emission factors of 4% for virgin lead 
production and 2% for recycled lead production were too 
high [17]. There will always be some controversy over the 
most appropriate input to use but Monte Carlo simulation 
provides a tool to estimate the uncertainty based on a broad 
range of viewpoints. Then, through sensitivity analysis, if a 
variable is shown to have little or no impact on the output 
of interest, further debate over the 'most accurate' value 
becomes moot. 

The software used in this study is Crystal Ball 2000 from 
Decisioneering Incorporated which is designed to work with 
Microsoft Excel [10]. The software randomly selects a value 
within the distributions assigned for each input variable and 
then computes the outputs. This process is repeated and the 
collective outputs from each iteration combine to form a 
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probability distribution function (PDF). This PDF expresses 
both central tendency and the variability in the output vari- 
able arising from the variation in the input variables. 

3.2 General assumptions 

This research focused on the difference between the EV and 
the ICEV. In order to compare similar vehicles, a mid-size 
sedan as presented by Sullivan et al. is assumed [18]. The 
emissions and energy consumed from common features such 
as tires, glass, and paint will not be evaluated. Resource ex- 
traction, material preparation, manufacture and use phases 
of a vehicle will be evaluated but the disposal phase of the 
vehicle will be ignored because there are many possible dis- 
posal options. The disposal phase is anticipated to have rela- 
tively few air emissions and little energy consumption, al- 
though the inappropriate disposal of lead-acid batteries could 
release substantial amounts of lead, which can be transported 
to water or soil [19]. Vehicle assembly is also ignored in this 
study. Assembly is required for both types of vehicles and 
even though the EV may require less assembly energy be- 
cause it is less complicated, the differences in assembly are 
anticipated to be relatively minor. 

3.3 Raw material assumptions 

In order to compute the energy and emissions required to 
manufacture and maintain the vehicle, the mass of each raw 
material in the EV relative to the ICEV is determined. Sev- 
eral factors influence manufacturers' material selection in- 
cluding material weight, cost, manufacturing techniques, and 
government requirements [20]. ICEV material composition 
is relatively well known as the ICEV vehicle design has been 
optimized over many years [18]. Current recycling rates were 
considered for each material when developing emission fac- 
tor distributions. For example, it was assumed that 70-90 % 
of wrought aluminum in a vehicle is from recycled aluminum, 
which is less energy intensive to process per unit mass of 
aluminum [7]. EV battery mass for initial manufacture and 
replacement is dependent on vehicle performance assump- 
tions, including range and battery energy density, which dif- 
fers for each of the three battery technologies. To determine 
battery composition, the Monte Carlo simulation model 
determines the total battery mass based on selected values 
for vehicle range and battery energy density. Once these vari- 
ables are determined, the battery mass required to achieve 
the selected range is computed in the model using eq 1. 

Battery mass (kg) Energy requirement (kWh/~km) �9 Vehicle Range (km) (1) 
Energy density (kW/~kg) 

Once the battery mass is determined, the material composi- 
tion of the batteries is used to calculate the mass of each 
material. The emission factors for each material are then 
multiplied by the material mass as shown in eq 2. 

Material (kg) * Emission Factor (g/kg material) = Emission (g) (2) 

The energy required for each material is computed in a similar 
manner. The energy inputs and emissions from each mate- 
rial are then summed to compute the energy and emissions 

per battery. The number of battery replacements needed over 
the life of the vehicle is determined based on vehicle life and 
battery life. This process is repeated using a new set of ran- 
domly selected variables for each iteration of the Monte 
Carlo simulation. 

3.4 Vehicle use phase 

In general, the EVs will require replacement batteries and 
electricity while the ICEV will require engine part replace- 
ments, oil and gasoline. For EVs, the energy and emissions 
needed to produce a given quantity of electricity in the U.S. 
along with transmission line losses and battery charging 
efficiencies are all considered. The emissions and energy used 
to produce electricity is based on a life cycle inventory done 
by the EPA on the entire U.S. electrical energy grid for 1997 
[13]. Some adjustments were made to the assigned distribu- 
tions for this model to account for future emission trends. 
For the !CEV, the energy and emissions to make gasoline 
available such as crude oil production, oil refining, ship- 
ment and distribution are considered in the model as well. 
Several emission factors were calculated from the Economic 
Input-Output Life Cycle Assessment (EIO-LCA) model de- 
veloped at Carnegie Mellon University [21]. 

The distance a vehicle travels in its lifetime is used as the 
baseline unit of activity because the primary role of a mid- 
size sedan is to move people (or perhaps cargo) a certain 
distance. Empirical evidence demonstrates that a younger 
vehicle is driven more per year than an older one. Erlbaum's 
study finds that, on average, a one year old vehicle is driven 
nearly 13,000 miles while a 12 year old vehicle is driven 
only 8,000 miles [22]. Another study was used to determine 
the distribution of the vehicle-scrapping rate or vehicle age at 
disposal [23]. The Monte Carlo simulation selects the age of 
the vehicle and then sums all the annual miles driven up to the 
vehicle age to arrive at the total life cycle driving distance PDE 
All vehicles were assumed to survive until the end of year 1 
and the maximum life was truncated at 34 years. 

Because older vehicles tend to become high emitters, [12] a 
gamma distribution was assigned to some of the ICEV in-use 
emissions as recommended by Zhang et al [24]. The param- 
eters of the gamma distributions assumed in the model were 
developed from real-world samples of over 20,000 vehicles 
reported by Bishop [25]. 

4 Results and Discussion 

Outputs are presented as box-and-whiskers plots that de- 
pict the PDF of the output variables. For example, Fig. 1 
represents the difference in energy consumption for each of 
the three EV technologies referenced to the ICEV. Note that 
the box and whiskers are plotted with respect to a life cycle 
ICEV baseline value. Because elements common to all vehi- 
cles were excluded from this study, this Monte Carlo simu- 
lation computes the life cycle difference between each EV 
and the ICEV values from the model. 
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Fig. 1 : EV life cycle energy difference with ICEV baseline 

To provide a sense of scale, a deterministic study published 
by Sullivan et.al, was used as the ICEV baseline, which is 
the total life cycle emissions and energy used for an ICEV 
assuming a 120,000 mile (192,000 km) vehicle lifetime [15]. 
The box and whiskers therefore can be viewed as represent- 
ing the EV against a baseline representing the ICEV. The 
dash within each box is the 50th percentile difference. The 
ends of the box represent the 25th and 75th percentile. The 
endpoints are the 2.5th and 97.5th percentile differences. 
The generic equation for the data represented in the box 
and whisker plots is shown in eq 3. 

heration i = ]CEVsuliivan + (EVsi m - ICEVsim) i (3) 

Where: 
Iteration i = one model iteration to compute box and whiskers 

ICEVsullivan = baseline point value for ICEV reported by 
Sullivan et al. [15] 

EVsi m = value for one iteration of the Monte Carlo simula- 
tion for EV 
ICEVsi m = value for one iteration of the Monte Carlo simu- 
lation for ICEV 

Fig. 1 shows the median life cycle energy consumed per km 
traveled was generally lower for all EV technologies than for 
the ICEV. The median value for the lead-acid battery EV is 
just over 4,200 kJ/km while the baseline ICEV is just over 
5,070 kJ/km. However, note that the upper edge of the box, 
the 75th percentile, is roughly equal to the ICEV baseline. 
This shows that with all the input distributions, 25% of the 
10,000 randomly simulated combinations resulted in a higher 
energy demand per km for the lead-acid battery EV than for 
the ICEV. This demonstrates a strength of Monte Carlo 
analysis. If someone reported that the lead-acid battery EV 
consumes more energy per km than an ICEV, there is a 25% 
chance that they are correct according to this model. How- 
ever, Fig. 1 shows that there is a greater chance, 75%, that 
the lead-acid battery EV will use less energy per km than the 
ICEV. Also, 95% of the possible outcomes for the lead-acid 
battery EV have a range from about 2,000 kJ/km (2.5th%) 
to 7,000 kJ/km (97.5th%), a 5,000 kJ/km range. This wide 
range of possible energy consumption values demonstrates 
the inherent uncertainty in the LCI variables. 

4.1 Life cycle energy 
An interesting output variable to examine is the life cycle 
energy by source for the ICEV versus the EVs. Fig. 2 illus- 
trates that all three EV technologies would accomplish the 
goal of reducing oil imports (though there is a substantial 
increase in the use of coal due to increased electricity needs). 
This assessment assumes the current U.S. energy inputs for 
electricity production. An increase in the use of renewable 
energy or natural gas sources to make electricity would re- 
duce the demand for coal-derived electricity. However, ac- 
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Fig. 2: Vehicle lifecycle energy differences by source 
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Fig. 3:Median energy consumption by life cycle phase 

cording to a recent government report, 'renewables are pro- 
jected to make up a smaller share of U.S. electricity genera- 
tion, declining from 10.5 percent in 1999 to 8.5 percent in 
2020'[1]. Renewable energy sources also need to be evalu- 
ated using a life cycle approach to fully evaluate their envi- 
ronmental impacts. It takes energy to acquire the materials 
to manufacture solar cells or wind mills. Note that this re- 
search is focused on the differences between the ICEV ver- 
sus the three EVs so Fig. 2 is not the total consumption of 
energy consumed per km but the difference. The missing 
portion of life cycle energy consumed is likely to be similar 
in quantity and composition across all four vehicle types. 

Fig. 3, shows the energy consumption differences broken 
out by life cycle phase. The median values from the Monte 
Carlo simulation were used to construct Fig. 3. The mainte- 
nance energy for the lead-acid and Ni-Cd EVs are higher 
than the ICEV due the need for battery replacements. 

4.2 Air  emissions 

Fig. 4 shows the expected C O  2 and CO 2 equivalents (C02E - 
other greenhouse gases converted to CO 2 equivalents based 
on global warming potential) emissions for the EVs with re- 
spect to the ICEV baseline. For lead-acid battery EV, the ma- 
jority of potential C02E emissions is greater than ICEV and 

the opposite is true for NiMH battery EVs. However, the range 
of possibilities is so wide that CO2E emissions could either 
increase or decrease. In short, EVs do not have a high prob- 
ability of reducing greenhouse gas emissions and their use may 
even increase CO2E. This may seem counterintuitive because 
Fig. i shows a slight decrease in total energy use per distance 
traveled with EV use. This disparity is partly explained by the 
fact that coal emits more CO 2 per unit energy generated than 
gasoline. Coal has a wide range of chemical compositions but 
generally contains less hydrogen per unit mass than gasoline 
and emits approximately 24g of carbon per MJ energy in con- 
trast to gasoline, which emits approximately 19g of carbon 
per MJ energy [25]. 

An important point to be made with regard to greenhouse 
gas emissions is that even though the EVs themselves do not 
emit CO2E , the life cycle perspective illustrates that the ac- 
tivity of driving an EV does emit a comparable amount of 
CO2E per unit distance traveled. Because greenhouse gas 
emissions are a global concern, it is irrelevant which part of 
the life cycle emits the CO2E. The increased use of coal, the 
energy losses in the conversion of coal to electricity, the losses 
in the power transmission system, the battery charger and 
battery efficiencies along with the EV energy requirements 
all contribute to CO2E emissions from an EV. 

Fig. 5 illustrates the EV emissions of SO 2 and CO in relation 
to the ICEV SO 2 baseline emission of 0.69 g/kin and the 
ICEV CO baseline emission of 9.5 g/km [15]. Fig. 5 indi- 
cates that it is virtually certain that SO 2 emissions per km 
will increase with any EV compared to the ICEV. The sulfur 
dioxide (SO2) emission from electricity production of 3.64 
g/KWh was based on a life cycle inventory done by the EPA 
on the U.S. electrical energy grid [13]. However, this life 
cycle inventory on the electric grid pre-dates the Phase II 
SO 2 reductions required by the 1990 Clean Air Act Amend- 
ments (CAAA) for all coal-fired power plants in the year 
2000. There is also some debate over further reducing SO 2 
emissions to 80% below 1997 levels [26]. Therefore, a uni- 
form distribution from 2.2 to 4.0 g/KWh (-40% to + 10%) 
is assumed for SO 2 emissions. A 40% reduction in SO 2 emis- 
sions per KWh of electricity reflects an 80% reduction in 
sulfur emissions from coal consumption because coal com- 

Fig. 4: EV life cycle CO 2 equivalent (C02E) emissions with ICEV baseline. 
(Values do not include common elements such as tires, glass or paint) 

Fig. 5: EV life cycle sulfur dioxide (SOa) and carbon monoxide (CO) with 
ICEV baseline 
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prises roughly half the electricity production in the U.S. For 
CO, the very long tails that extend into negative values is 
caused by the fact that a gamma distribution was assumed 
for the ICEV CO emission factor to account for the prob- 
ability of a high emitting ICEV. The baseline ICEV value 
was deterministically calculated and does not assume an 
emission factor for high emitters. When an ICEV has a very 
high CO emission, the difference between the EVgco/k m - 
ICEVgco/k m is a large negative value. The 2.Sth percentile 
difference is -31.5 gCO/km but the baseline ICEV CO emis- 
sion is only 9.5 gCO/km resulting in the unrealistic predic- 
tion of the EV emitting -22 gCO/km. This aberration is 
caused by the comparison with a deterministic estimate that 
does not allow for high emitters. This helps illustrate how 
deterministic methods can mask important information. 

In Fig. 6, NO x emissions are generally higher for the EVs 
(median -1.8 g/km) versus the ICEV at 1.3 g/km. The EPA 
life cycle inventory of the U.S. electric grid concludes that 
1.7 g of NOx are emitted per KWh of electricity produced 
in the U.S. [13]. However, there is also some debate to re- 
duce the NOx emissions from coal-fired power plants by up 
to 75 % of 1997 levels [26]. Therefore, a uniform distribution 
from 1.1 to 1.9 (-35% to +10%) is assumed for NOx emis- 
sions. As mentioned before, a 35% reduction (1.1 g/KWh) in 
NOx emissions per KWh of electricity reflects a 70% reduc- 
tion in sulfur emissions from coal consumption because coal 
comprises roughly half the electricity production in the U.S. 
As seen with CO emissions, the longer lower tails on the 
NOx and the VOCs are also because a few ICEVs can be- 
come high NO x or VOC emitters. PMl0 shown in Fig. 6 are 
almost certain to increase with the use of EVs. The increased 
emissions are largely due to coal combustion. 

The model also demonstrates that the lead-acid battery EV 
will increase lead emissions but the Ni-Cd and NiMH battery 

EVs will reduce lead emissions slightly because the lead-acid 
starter battery in the ICEV is eliminated. The ICEV life cycle 
emission for lead is only 0.0005 g/km [15]. The model pre- 
dicts the median increase in lead emissions for lead-acid bat- 
tery EVs is 0.15 g/km with a 2.Sth and 97.5th percentiles at 
0.01 and 0.56 g/km. There is a wide range because of the 
uncertainty in the appropriate emission factor to apply for 
lead manufacturing [19]. A wide uniform distribution for lead 
emissions was assumed, 0.01 to 20 g/kg of lead produced. 

Because the 2.5th percentile for lead emissions is positive, 
there is a 97.5% chance that lead emissions will increase. 
This model does not characterize the lead emission by me- 
dia (air, water, soil, etc.). This distinction was omitted be- 
cause lead is persistent in the environment and lead emis- 
sion in any media is assumed to be deleterious. The fate and 
transport of lead in the environment is complex. Even the 
lead emissions from leaded fuel went directly into the at- 
mosphere before depositing onto soils or surface water. One 
distinction, however, is that lead emissions for EVs are less 
likely to occur in populated urban centers because lead min- 
ing and smelting tend to occur in less populated areas. The 
lead emissions from leaded gasoline were concentrated near 
urban centers where traffic was heavy. The Monte Carlo 
simulation also does not account for improper battery dis- 
posal. Although the expense of a lead-acid battery will en- 
courage recycling, some improper disposal of lead-acid bat- 
teries is inevitable. It should also be noted that even though 
the majority of lead-acid batteries would be recycled, the 
initial start-up demand for virgin lead will be high if lead- 
acid battery EVs are used on a large scale. It is also impor- 
tant to point out that even though the other EV types do not 
increase lead emissions, the Ni-Cd battery EV will require 
comparable amounts of nickel and cadmium and the NiMH 
battery EV will require nickel and some other selected metal. 
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Fig. 6: EV life cycle emissions for NO X, VOCs and PMlo with ICEV baseline 
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A sensitivity analysis demonstrates that the EV energy re- 
quirement in Wh/km contributes the greatest degree of vari- 
ability for total energy consumed, COzE and SO 2 emissions 
for all three EVs. The EV energy requirement is dominant for 
several other emissions as well. The Eu energy requirement is 
equivalent to ICEV gas mileage and has a wide triangular dis- 
tribution with a minimum, peak and maximum value of 150, 
377 and 528 Wh/km, respectively [5,18,27,28]. 

This research demonstrates that Monte Carlo simulation used 
within a life cycle framework can enhance understanding of 
complex comparisons like EV versus ICEV. A great deal of 
effort is spent debating the 'most appropriate' value to select 
for a given input variable to include how long a vehicle or 
battery will last or what the air emission factor should be. All 
these variables have uncertainty and variability associated with 
them. Monte Carlo simulation is a tool well suited to under- 
stand the magnitude of the uncertainties and variability that 
are difficult to observe using deterministic methods. 
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