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Abstract 
In contradiction with the flow accuracy requirement of the classical 
LCA model, most LCA data cannot be represented by an accurate 
value because they loose realism in the process. It is particularly true 
with building products' data. Intervals are introduced to model such 
data, thus allowing LCA calculations to get rid off flow accuracy. 
Thus, interval calculation techniques for LCA are developed and the 
benefits from a replacement of classical LCA algorithms with these 
techniques are analyzed. 
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1 Introduction 

A 1977 Environmental Protection Agency (EPA) study of 
the American plaster industry [131 gives data on wallboard 
products  manufactur ing.  These da ta  are now outdated 
(1974) and should not be used in real case LCA today. The 
product  tree is drawn on Fig. 1 and numerical data are 
listed in Table 1. 
The upper  par t  of Table  1 is the inventory matr ix  
(matrix A), which gives the amount  of products (first col- 
umn) flowing from process to process (first row). The bot- 
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tom part  is the environmental  matr ix (matrix B) which 
gives the amount of every flow taken from, or sent to, the 
environment (first column) by every process (first row of 
upper Table 1). Some flows, like electricity for instance, are 
assumed to be coming from the environment because of 
various allocations performed by the authors of the EPA 
study. 
Since no global functional unit is defined at this stage, 
processes are not scaled one with the other. By convention, 
input flows are counted negatively and output flows posi- 
tively. Thus Extraction of 1 ton gypsum consumes between 
10 and 15kWh electricity. 

1.1 The True nature of LCA data 

Those data  were representat ive of a whole industrial 
branch and hence took into account the fact that most val- 
ues could not realistically be known with accuracy because 
an LCA of a whole industrial branch has to deal with dif- 
ferent plants, various manufacturing techniques, etc.. Most  
of the manufacturing process flows, though, are given very 
accurate values, obviously in an attempt not to give away 
too much proprietary information. It thus appears in that 
particular case that realism is ruined by accuracy. 
Data the realism of which decreases as their accuracy in- 
creases are called fuzzy [4]. Fuzzy data are a fundamentally 
different type of data when compared to physical measure- 
ments, for instance. For the latter, realism is reached 
through accuracy. 
Building products LCA data fall into the fuzzy category. 
Wal lboard  offcuts generated during installation, for in- 
stance, can differ greatly as a function of the building's 
geometry and the worker's skill. Also, greenhouse gas emis- 
sions from a house heating system are very sensitive to its 
settings and also to the inhabitants response to changes in 
the local climate. In both cases, flow values can change by 
more than one order of magnitude and cannot be modeled 
with realism by an accurate value. 
In the classical LCA model, however, data accuracy is as- 
sumed [10] and forced by using mean values, thus deterio- 
rating realism on the data.  Any further calculation per- 
formed on this kind of data gives results in which precision 
hides ignorance. 
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Table l: Numerical data on wallboard ~roducts manufacturing ] 131 

Extraction Grinding Burning 

3ypsum [kg] 1000 -[1030; 1070] 0 

3ypsum powder [kg] 0 1000 -[1000; 1030] 

-lemihydrate [kg] 0 0 1000 

Wallboard [m 2] 0 0 0 

Plaster [kg] 0 0 0 

3aCI 2 [kg] 0 -[1 ; 2] 0 

[0; 3] [o: 5] Dust [kg] [o; 5] 

-[lO; 15] -[2: 5] Electricity [kWh] -[2; 5] 

Fuel [kWh] -[50; 100] 0 0 

Glass Fibre [kg] 0 0 0 

-[1100; 1200] 0 0 

Manufacturing Pulverization 

-5 0 

0 0 

0 -1000 

10 0 

-850 1000 

0 0 

0.5 

-[10; 20] 

[o; o.6] 

-[10; 20] 

0 0 

-2 0 

0 0 Gypsum ore [kg] 

Heat [kWh] 0 -[290.5; 406.7] 0 -348.6 0 

K2So 4 [kg I 0 0 0 -0 .5 -  0 

Lignin [kg] 0 0 0 -1 0 

Paper Pulp [kg] 0 0 0 -6 0 

Perlite [kg] 0 0 0 -5 0 

0 0 0 -6 0 Sawdust [kg] 

Soap [kg] 0 0 0 

Starch [kg] 0 0 0 

-1 0 

-5 0 

Waste [kg] [100; 200] 0 0 0 0 

Water [kg] 0 0 0 -0,6 0 

Table 2: Comparison of total environmental flows computed from average and interval values 

(1) Total flows (2) Total flows 
from average values from interval values a 

CaCI 2 [kg] 
Dust [kg] 
Electricity [kWhl 
Fuel [kWh] 
Glass fibre [kg] 
Gypsum ore [kg] 
Heat [kWh] 
K2SO 4 [kg] 
Lignin [kg] 
Paper pulp [kg] 
Perlite [kg] 
Sawdust [kg] 
Soap [kg] 
Starch [kg] 
Waste [kg] 
Water [kg] 

-12.9 
64 

-451 
-683 
-20 

-10475 
-6493 

-5 
-10 
-60 
-50 
-60 
-10 
-50 
1366 
-6 

-[8.5; 17] 
[5; 126] 

-[307; 697] 
-[440; 942] 

-20 
-[9685; 11301] 
-[5955; 7047] 

-5 
-10 
-60 
-50 
-60 
-10 
-50 

[880; 1884] 
-6 

a The calculation here was performed using techniques detailed later in this paper 

As an example, the total environmental input and output 
�9 2 flows generated when manufacturing 100 m of wallboard 

are calculated (1) using the average of every flow and (2) 
using interval values. Results are given in Table 2. 
As can been seen in case (2), some flows have more than 
doubled because of initial data variations in matrix A and 
B. Waste, for instance, varies from 0.8 ton to 1.9 ton for 
100 m 2 of wallboard only. Also, while a consumption of 
11 tons of  ore should  not  be regarded as equivalent  to 

9.7 tons because gypsum is a non renewable resource, this 
variation cannot be derived from the averaged data in 
(1). 

1.2 Two tracks to realism 

Decreasing realism by averaging data for the sake of accuracy 
yields an unrealistic output. Realistic results should be strived 
for, though, and can be obtained in two different ways: 
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1. Realism can be "restored" afterwards by computing er- 
ror bounds on results, as done by HEIJUNGS [6, 71. But 
then assumptions are made that the actual data inaccu- 
racy is not too important,  so as to allow for the use of 
low order differential calculus. One can  verify that er- 
ror bounds calculated according to [7] yield inaccurate 
results for the wallboard example, since initial data are 
too  inaccurate. 
It must be noted that in most publicly available LCA 
databases,  realism is not restored. Finally, it is ques- 
tionable whether valuable information can reasonably 
be derived from highly unrealistic values. 

2. Another approach would be to model data fuzziness so 
as to keep as much realism as possible from the very be- 
ginning, and then start computations. This second ap- 
proach allows the practitioner to make a real use of all 
information at hand. 

In other words, data accuracy is not a valid assumption for 
LCA, and should not be strived for. Since track two is ob- 
viously more appropriate,  we will now consider how fuzzi- 
ness in LCA data can be modeled. 

2 I l l -Def ined  D a t a  M o d e l i n g  for  L C A  

Fuzzy sets are not the only model available for fuzzy data. 
Other techniques exist, like intervals and probability distri- 
butions. 

2.1 Intervals 

An interval [1, 5, 11] can be denoted I by x = [_x, xl- It can 
uniformly model accurate data (x = x), data with an error 
(x = [x 0 - 8x, x 0 + 0x]), or even very inaccurate data (x = 
[x 0 - Ax, x 0 + Ax]). It is also the simplest model for ill-de- 
fined data since it requires very little additional informa- 
tion compared to a single value (two values). It is also a 
very familiar concept. Thus, wallboard offcuts can amount 
to [5; 12] %, for instance. 
Calculations with intervals are possible. Note that unreal- 
ism is not explicitly modeled but still compatible with the 
interval model. 

2.2 Fuzzy sets 

Fuzzy sets are an extension of the interval concept [1, 4]. 
Considering that some sub-intervals are less probable (re- 
alistic) than others, fuzzy sets model the progressive shift 
from realism (the enclosing interval) to unrealism (a single 
value). Wallboard offcuts, for instance, can be modeled as 
in Fig. 2. 

Thus, it is false to pretend that the offcut is 10 % (unreal- 
ism = 1). In a more realistic way (unrealism = 0.5), one can 
say that it is [7.5; 11] %. In any case (unrealism = 0), one 
is sure to get [5; 12] % offcuts. 

Fuzzy sets clearly give more information on the data and 
consequently also require more information. A distribution 

l Interval bounds are often separated with a comma. However, when bounds are 
figures, they will be separated with a semi-colon so as to avoid confusion with 
the decimal coma used in some languages. 
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of intervals, called a possibility distribution [1, 4] can be 
derived. Calculation techniques with fuzzy sets are directly 
derived from their interval counterpart.  Building a fuzzy set 
for a given data requires some thinking from the user. 

2.3 Probability distributions 

Contrary to fuzzy sets and the corresponding possibility 
distributions, probability distributions can only model ac- 
curate data [1, 41. They also require far more information 
on the data than the other models. 

2.4 A model for LCA data 

The chosen model should be able to take into account both 
normal (accuracy = realism) and fuzzy data (accuracy = un- 
realism). It should be remembered that since LCA data is a 
scarce resource, a model should not ask for too much in- 
formation from the user. It should, however, make full use 
of every piece of information available, as is obviously not 
the case with the single accurate value model. 

In either case, probabi l i ty  dis tr ibut ions are not a good 
choice, although they are often automatically chosen [1]. 
Fuzzy sets on the contrary, perform very well as far as data 
fuzziness is concerned. But they are less familiar than in- 
tervals and require more information than is usually avail- 
able. 
Hence, we choose to model LCA data with intervals, to 
take advantage of their generality and ease of use. From 
now on we will talk about  "i l l -defined" rather than 
"fuzzy" data, since the fuzzy set model was not chosen. We 
will now consider how LCA calculations can be done using 
intervals. 

3 L C A  C a l c u l a t i o n s  w i t h  In te rva ls  

In order to avoid unnecessary complications, we have cho- 
sen to use HEIJUNGS' model for LCA calculations [6, 7]. 
Also, only life cycle inventory will be considered. Those as- 
sumptions should not limit the scope of the results pre- 
sented in this paper, however. 

3 .1  Inventory  aggregat ion  ca lcu lat ions  

The following is a very condensed introduction to HEI- 
JUNGS' inventory calculations model, which is described in 
detail in [6]. We will assume that every necessary allocation 
has been performed, hence according to [6], matrix A (see 
Table 1) should be square. 

92 Int. J. LCA 1 (2) 1996 



L C A  M e t h o d o l o g y  D a t a  Q u a l i t y  

Each row of matrix A is concerned with one product. Only 
one of those products will come out in the end (100 m 2 of 
wallboard, for instance). Thus, the total output must be 
zero for every product, except wallboard. Let ix be that to- 
tal product output. Knowing ix and every process' product 
input and output from matrix A, it is possible to compute 
how many times Pi process j has been used by solving the 
following matr ix equation A.p = Ix.The purpose of this 
equation is to balance inputs and outputs. 

Knowing p and every process' environmental input and 
output flows from matrix B, it becomes possible to calcu- 
late the total environmental flows for every process and the 
whole process tree leading to 100 m 2 of wallboard (13). This 
is simply done by computing 13 = B.p. 

Basically, two types of operations are involved : 

1. Basic operations (% - ,  +, x) to computc thc aggregate 
environmental vector 13 = B.p. 

2. Resolution of a square matrix equation A.p = Ix to cal- 
culate the occurrence p of each process. 

We will now consider how those calculations can be dune 
using intervals. 

3.2 Calculating with intervals 

Interval calculations have been studied since the 1960s and 
have been used for various problems pertaining to eco- 
nomic modeling [11 and process command [121, for in- 
stance. Detailed information on the mathematical issues of 
the interval arithmetic (IA) domain can be found in I 111, as 
well as a large bibliography. 

There is a new definition of arithmetic operators at the very 
base of IA" 

La, al+ [b,b]= ra + 6,a + b] 

L~,a]- D,g] = L~- b,a-_b] 

[a, a] x Lb_, b] = [min(ab, ab, a_b, ab), max(ab, ab, ab, ab)] ( 1 ) 

[a,a] + [b,b] = [_a,a] x [1/[hl /b,  if0~[b,b] 

The basic properties of these new operators are globally 
weaker than their real counterpart since commutativity, as- 
sociativity and neutral element properties hold, but distrib- 
utivity does not. Instead, one has subdistributivity : 

a(b + c) __. ab+bc 

The main practical consequence is a possible enlargement 
of results intervals. Interval enlargement can also happen 
when a given variable appears more than once in an ex- 
pression. Calculating y = 1-x+x 2 with x = [0;2], for in- 
stance, yields y = 1-[0;2]+[0;2]x[0;2] = 1-[0;2]+[0;4] = [- 
1;1]-[0;4] = [-1;5] instead of the expected y = [3/4;3]. 

Previously defined type I calculations can be performed in 
LCA without extra precautions using the basic definitions 
(1), because every variable only appears once. Interval lin- 
ear systems resolution on the other hand, calls for addi- 
tional developments since the algorithms used for their real 
counterparts rely too much on distributivity and multiple 
variable occurrence. 

3.3 Hull of an interval equation solution 

The problem is to solve a set of equations defined by the in- 
terval matrix A and right member ix. A and ix's coefficients 
are intervals. Thus one has: 

A~=6 (A ~A,6 ~c~) (2) 

The solution of (2) is denoted by 5". (A, ix). It is not exactly 
what could be expected from the extrapolation of the real 
case, as will be shown on the following example [5]: 

[2,3]p I + [0,1]p 2 = [0,120] (3) [1,2]p I + [2,3]p 2 = [60,240] 

In the first quadrant, one has Pl > 0 and P2 ~ 0. Hence, 
every p must be so that: 

[2p1,3pl + p2]n [0,120] 

and [Pl +2p2,2p! +3p2]~[60,240] are not empty. 

Hence, Pl and P2 must verify the following inequations: 

2pl <120 
pl + 2p2 < 240 
3Pl +P2 >0 (4) 

2p~ +3p2 >60 

Thus in the first quadrant, solutions are enclosed in a do- 
main whose vertex are (30,0), (60,0), (60,90), (0,120) et 
(0,20). The same operation must be performed for every 
other quadrant in order to get the equation's complete so- 
lution (--4 Fig. 3). 

P2 

~ 0  

...... Limits of actual sulution Limits of solution's hull 
Fig. 3: Sokltion and hull of equatkm (3) 

Contrary to real matrix equations where the solution set is 
a real vector, the solution of an interval matrix equation is 
not an interval vector. As can be seen in Fig. 3, it is a com- 
plex non-convex structure. A more manageable character- 
istic is the hull of this structure, defined from the extreme 
bounds of each Pi" The hull is denoted by ElY(A, ix). The 
bull of equation (3) is 

[-120, 901 
[-60, 240] ) .  

It is drawn in Fig. 3 with a bold line. The output of inter- 
val systems solving methods is always the hull of the solu- 
tion, which will also be called ,,solution- in the rest of this 
paper. 

3.4 Solving interval linear systems 

Interval linear systems can be solved using an interval ver- 
sion of the Gauss-Seidel iteration, for instance [11]. How- 
ever, depending on the initial system, the resulting solution 
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may be too large to be useful. One of the main factors in- 
fluencing the accuracy of the solution is the width of the 
system's coefficients. As a rule of thumb, the wider the co- 
efficients, the less accurate (i.e. the larger) the solution will 
be. While some preliminary manipulations can limit this 
expansion [5], it cannot be completely canceled in that 
way. 
Other techniques like Monte-Carlo sampling of the equa- 
tions set can be used [12], but since every system in the 
sample has to be solved, they are very time consuming and 
precision can only be gained through a bigger sample. 

COPE has shown that the hull of an equation like (2) could 
be calculated exactly using linear programming. This tech- 
nique is discussed now. 

3.5 Solving interval equations using linear programming 

Linear programming's purpose is to maximize (or mini- 
mize) a function within a domain defined by constraints 
13]. These constraints can be equalities or inequalities (see 
appendix). Both function and constraints must be linear. 
This is of interest to us because our equation is linear too. 

What we need is the upper bound (maximum) and lower 
bound (minimum) of every interval p, in vector p to get the 
hull of the equation's solution. Also, as can be seen from 
problem (3), an interval equation can be converted into a 
system of inequalities which is nothing but a list of con- 
straints. 
Many al~gorithms have been devised to solve this kind of 
problem-. They won't  be discussed here but the following 
linear program will be solved graphically as an introduc- 
tion. 

max z= pl+P2 
2Pl _< 120 

] Pl +2P2 -< 240 (5) 
3p]+p2->0 

2pl + 3P2 > 60 
I Pl >0, p2 >0 

The constraints of (5) delineate a domain in which every 
point is a solution (bold line). In order to maximize z in 
that domain, one draws z = Pl + P2 (thin) lines for increas- 
ing values of z (maximizing) until the limit of the con- 
strained domain is reached. As can be seen in Fig. 4, one 
then reaches z = 150. Hence the optimum solution is p = 
(60,90). 
Now, replacing function z in (5) with z = max(p 0 and solv- 
ing this new linear program, where constraints have been 
chosen equal to those in (4), one gets ~-l in the constrained 
domain (i.e. 60). The same operation can be reproduced 
with z = rain(p1) to get Pl (i.e. 0). 

The exact solution of the equation's solution can be com- 
puted in this way, regardless of the coefficient's width. For 
each p = [~; p],  it can be shown from [2] that both hounds ! I 5-3 
can be calculated from linear programs (6a) and (6b). Both 
expressions are established in the appendix. Note that the 
constraints are the same in both programs. 

z A good  introduct ion to linear p rogram solving, as well as a compute r  code,  
can be found in Numerical Recipies, from Cambridge University Press. 

Fig. 4: 
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Graphical resolution of linear program (5) 

p.if= max(-pj) ~:= max(p j) 
n _ _  n - -  

Zaijpj < a. i ZaijPj < ot i 
j=~ - -  j=1 - -  
n rl 

E q P j  > ai  (6a) E q P j  > c?Ai 
j=l j=l 
pj>0, i,j~[l..n] pj->0, i,j~[l..n] 

(6b) 

This technique is always applicable, but when A is an M- 
matrix, getting the hull can be much simpler. These matri- 
ces are of interest to us since the inventory matrixes can 
sometimes exhibit the same pattern. This point is discussed 
n o w .  

3.6 Inventory M-matrix 

An M-matrix is a special type of inverse positive matrix. A 
necessary condition for being an M-matrix is to be diago- 
nal positive and negative, or zero everywhere else. A strict 
definition is given in the appendix. 
When A is an interval M-matrix, the exact solution can be 
calculated regardless of the coefficients' width, by solving 
two real equations only. Taking advantage of the constant- 
sign nature of LCA flows (see appendix), one has [111, 

p = [A-Ict, A-1~] (7) 

The columns of matrix A can be ordered so that each pos- 
itive coefficient is on the matrix' diagonal without chang- 
ing the problem. One can then expect to get an M-matrix, 
and thus solve the equation by using theorem (7). This 
should always be the case providing that there are no loops 
and no multiple-output processes in the product tree. How- 
ever if manufacturing scraps are recycled in the manufac- 
turing process, for instance, A will not be an M-matrix. 

Interval total flows in Table 2 were calculated using the 
fact that matrix A in Table 1 is an M-matrix. We first cal- 
culated p from A.p = c~ with c~ = (0,0,100m2,0) using theo- 
rem (7), then 132 = B.p using IA arithmetic operations.Val- 
ues of p are given in Table 3. 

3.7 General calculation strategy 

To conclude on the topic of interval system resolution in 
LCA, we will adopt a twofold strategy using IA for M-ma- 
trix and linear programming in the general case. In any 
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Table 3: Vahles of p fl)r 100 m" of wallboard 

P 

Extraction [8.805; 9.418] 
Grinding [8.5; 8.755] 
Burning 8.5 
Manufacturing 10 
Pulverization 8.5 

case, an accurate solution is computed. These techniques 
are common features of most spreadsheets or could be pro- 
grammed easily using macros, for instance. 

4 C o n c l u s i o n  

"If ignorance is so wicked, and half its wickedness is our ignorance of 
it, then perhaps we should undertake to discover the full extent of our 
ignorance-to survey, catalog, and describc its range and variations, its 
human anatomy, if you will." [Patrick GUNKH. in ldeonomy] 

Most  LCA data cannot  be modeled realistically by accurate 
values. Intervals have been identified as the most appropri-  
ate alternative to model the true nature of these data. In- 
tervals are a very familiar concept for LCA practitioners 
and make full use of every piece of information available 
wi thou t  requir ing any addi t ional  informat ion  from the 
user. Intervals can also be useful to help compensate for the 
lack of data by replacing unavailable data with expert-de- 
fined intervals.  Building product  manufacturers ,  for in- 
stance, can have a clear idea of the approximate value of 
some flow, even though they it was not actually measured. 

Calculation techniques necessary to cope with intervals in- 
stead of crisp values have been discussed. As a side benefit, 
a thorough reliability analysis is automatically performed 
dur ing the aggregation process. Differential calculus ex- 
pressions used for bounding errors [6] are no longer re- 
quired because error bounds are given by the resulting in- 
tervals. Dominance  analysis [6, 7J is straightforward using 
IA. Impact assessment can also be done as usual and pro- 
vide interval stressors instead of real ones. 

Multicriteria analysis techniques that allow for the com- 
parison of alternative designs measured by interval criteria 
should now be used [14]. Also, improvement analysis, as 
defined by HEIJUNGS [7], will require that new expressions 
be established, since their current form relies on differential 
calculus. 

This approach,  while necessary for building products '  LCA 
data, should prove useful to improve data quality for any 
other product.  Hence, we recommend a complete replace- 
ment  of the "accurate" data model by the interval model as 
a very powerful means to enforce openness and usability of 
LCA data and results. 

A p p e n d i x  

The set of real intervals is denoted by IR. As previously 
ment ioned,  the following properties of R still hold : 

Commutat iv i ty  a + b = b + a 
a b = b a  

Associativity (a + b) • c = a + (b , c) 
(ab) c = a (bc) 

Neutral element a + 0 = 0 + a = a 
x a = a x l m a  

Apart from subdistributivity, the following weaker proper- 
ties hold for IA : 

x - x r  but x - x ~ 0  
x / x  ~, but x/x ~ 1 
x x x ;e x 2, but x x x ~ X 2 

Lastly, we define the following notions : 

magnitude of x [xl = rnax(Ixl, lx[) 
V - -  

center of x x:=(x+x)12 

A common representation of a linear program is max z = 
c.p.. z is the objective function to be maximized, p are the 
variables whose values must  be found, and c denotes the re- 
spective contr ibut ions  to z from an incrementat ion of a 
given variable Pi" c plays no role in our case, and will dis- 
appear from the expressions, z is subject to the following 
constraints: 

--b 

b' 
A"p< b" 

Col,ls 12] has shown that the hull of a nxn linear equation 
can be conlputed by solving for 2n linear programs whose 
constraints  and objective funct ions are drawn from the 
equation's coefficients. These constraints are : 

v V 

J J ~ ~ (8) 

ZAaijlpj[ + Abi >--Zaij.sgn(pj).lpj] + bi 
J J 

with sgn(pj) = I if pj >_ 0 and sgn(p i) = - otherwise. Also A 
= A• AA and b = b• Ab. The objective functions are: 

pj = max(-c].lpl) (9) 
= max(c~.lp l) 

Since we are only looking for positive values of p, one has 
sgn(Pi) = 1, [pi[ = Pi and cti = (0 . . . . .  1 . . . . .  0). Thus (8) and 
(9) can be simplified and reorganized to yield (6a) and (6b). 

A matrix A is an M-matr ix  if A.  <__ 0 for all i * j and Au>0 
for some positive vector u e I~ h. [12]. Checking the first 
condit ion is straightforward. The second condit ion can be 
checked by solving A.u = e (e is the unit  vector). If u is pos- 
itive, then the second condi t ion is met. 
Every flow in LCA will be either an input flow (negative, 
by convention [6]), or an output  flow (positive). This prop- 
erty holds when flows are modeled with intervals : Bounds 
are always both negative, or both positive. Thus flow signs 
are constant.  

In our software implementat ion of the interval flow model, 
matrix A is LU factorized so as to make the inversion re- 
quired by theorem (7) easier. The general case is solved us- 
ing the Bartels-Golub version of the revised simplex algo- 
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rithm [3, 81, since it can handle much more data than the 
tableau method with better numerical stability. 
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Abstract  

Life cycle inventory (LCI) is becoming an established environmen- 
tal management tool that quantifies all resource usage and waste 
generation associated with providing specific goods or services to 
society. LCIs are increasingly used by industry as well as policy 
makers to provide a holistic 'macro' overview of the environmental 
profile of a good or service. This information, effectively combined 
with relevant information obtained from other environmental man- 
agement tools, is very useful in guiding strategic environmental de- 
cision making. 

LCIs are very data intensive. There is a risk that they imply a level 
of accuracy that does not exist. This is especially true today, because 
the availability of accurate LCI data is limited. Also, it is not easy 
for LCI users, decision-makers and other interested parties to dif- 
ferentiate between 'good quality' and 'poor quality' LCI data. Sev- 
eral data quality requirements for 'good' LC! data can be defined 
only in relation to the specific study in which they are used. 

In this paper we show how and why the use of a common LCI data- 
base for some of the more commonly used LCI data, together with 
increased documentation and harmonisation of the data quality fea- 
tures of all LCI data, is key to the further development of LCI as a 
useful and pragmatic environmental management tool. Initiatives 
already underway to make this happen are also described. 

Key words: Data quality, LCA/LCI; LCA/LCI, data quality; LCI, 
data quality; environmental management, LCA/LCI; 
databases, LCI; LCI, databases; LCI, documentation 
of data quality features 

1 Introduction 

LCI attempts to determine the overall inputs (in terms of 
resources including energy) and outputs (in terms of 
wastes) over the whole life cycle of a product or service. A 
typical LCI can easily incorporate thousands of individual 
data points. The overall quality of a LCI depends largely on 
the quality of the input data that are used. Due to the com- 
plex interactions of today's industrial systems, LCIs often 
include data from many different countries. For example, 
in the production of surfactants, some feedstock raw mate- 
rials are produced in Malaysia or the Middle East and then 
further processed in Europe [1]. Additionally, data for dif- 
ferent unit operations, and even within a unit operation or 
module, are usually collected from diverse sources (indus- 
try, national statistics, literature) and frequently not gener- 
ated specifically for the LCI study. They may have been col- 
lected, for example, as part of an engineering study or as a 
regulatory parameter. 

Typically, input data quality depends on the quality of the 
data source, the analyst's degree of knowledge of the prod- 
uct or process being studied, the assumptions made and the 
calculation and validation procedures. These factors can be 
used to make judgments about the quality of the specific 
data. However, the extent to which this can be done for 
each entry data point depends on the effort allocated to the 
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