Benzo[c]phenanthridine Alkaloids from Corydalis incisa

Dae-Keun Kim, Jae-Soon Eun, Tae-Yong Shin, Dong-Ok Eom, and Jong-Pil Lim

College of Pharmacy, Woosuk University, Samrye 565-701, Korea

(Received September 14, 2000)

Six benzo[c]phenanthridine alkaloids, corynoline (1), acetylcorynoline (2), corynoloxine (3), luguine (4), 6-oxocorynoline (5), and 12-hydroxycorynoloxine (6) were isolated from the aerial parts of *Corydalis incisa*, and 6 was isolated for the first time from nature. The structure was elucidated by NMR techniques.

Key words: *Corydalis incisa*, Benzo[c]phenanthridine alkaloids, 12-Hydroxycorynoloxine, Luguine, 6-Oxocorynoline

INTRODUCTION

Corydalis incisa Pers. (Fumariaceae) which is widely distributed in Korea has been used as a folk Medicine in China for its antipyretic, analgesic and diuretic properties, (Lee, 1989).

Earlier investigations on the chemical constituents of *C. incisa* afforded isoquinoline alkaloids such as corynoline, acetylcorynoline, corycavine, protopine (Nonaka *et al.*, 1973a), corydalic acid methyl ester (Nonaka *et al.*, 1973b), corydalispirone, corydalisol (Nonaka *et al.*, 1975a), 12-hydroxycorynoline, and 11-epicorynoline (Nonaka *et al.*, 1975b). For the isolation of isoquinoline alkaloids, MeOH extract of *C. incisa* was examined. Investigation on the extract afforded a new alkaloid, 12-hydroxycorynoloxine together with corynoline, acetylcorynoline, corynoloxine, luguine, and 6-oxocorynoline (Fig. 1). This paper reports their isolation and structure elucidation.

MATERIALS AND METHODS

¹H- and ¹³C-NMR spectra were determined on a JEOL JMN-EX 400 spectrometer. El/MS(70 eV) and HRMS were determined on a VG-VSEQ mass spectrometer (VG Analytical, UK). IR spectra were obtained on a JASCO FT/IR 410 spectrometer and UV spectra were recorded on Shimadzu UV-1601 UV-Visible spectrophotometer. TLC was carried out on Merck aluminium plates precoated with silica gel F_{254} and silica gel for column chromatography was Kiesel gel 60 (230-400 mesh, Merck). LPLC was carried out on Yamazen 540 pump with Merck

Correspondence to: Dae-Keun Kim, College of Pharmacy, Woosuk University, Samrye 565-701 E-mail: dkkim@core.woosuk.ac.kr Lichroprep Si 60 (Lobar A, 240-10 mm, 0.2 ml/min). All other chemicals and solvents were analyticlal grade and used without further purification.

Plant materials

The aerial parts of *C. incisa* were collected in May 1998 at Moak mountain, Chonbuk, Korea. A voucher specimen (WSU-98-003) is deposited in the herbarium of College of Pharmacy, Woosuk University.

Extraction and isolation

The air-dried plant material (1.8 Kg) was finely ground and extracted at room temp. with MeOH. The resultant MeOH extract (350 g) was subjected to successive solvent

parition to give *n*-hexane (45 g), CH_2Cl_2 (20 g), *n*-BuOH (85 g), and H_2O soluble fractions. The CH_2Cl_2 soluble fraction was chromatographed over silica gel column using a solvent system of *n*-hexane-CHCl₃-MeOH (23:10:1) as an eluent to give five subfractions (MC I-MC V). Subfraction MC I (6.0 g) was rechromatographed on silica gel column (CHCl₃-EtOAc, 60:1) and purified by Sephadex LH-20 (Pharmacia, 25-100 µm, MeOH-CHCl₃, 8:2) to yield 1 (20 mg). Subfraction MC II (3.5 g) was rechromatographed on silica gel column with CHCl₃-EtOAc (50:1) to give two fractions (MC II a, MC II b). Fraction MC II a was recrystallized with MeOH to yield 2 (12 mg). Fraction MC II b was applied over silica gel column chromatography (nhexane-CHCl₃-MeOH, 8:10:1) to yield 3 (10 mg). Subfraction MC III (2.0 g) was rechromatographed on silica gel column (CH₂Cl₂-acetone-EtOAc, 1:5:1) and purified by Lobar A column (n-hexane-CHCl₃-MeOH, 8:10:1) to give 4 (12 mg). Subfraction MC IV (2.8 g) was rechromatographed on silica gel column (CHCl₃-MeOH-H₂O, 40:10:1) and purified by Lobar A column (CH₂Cl₂-MeOH-H₂O, 10:10:1) to give 5 (10 mg). BuOH soluble fraction was applied over silica gel column using a solvent system of CHCl₃-MeOH- H_2O (5:5:1) as an eluent to give four subfractions (B-B), subfraction B III (2.5 g) was rechromatographed on silica gel column with CHCl₃-MeOH-H₂O (25:10:1) and purified by prep-TLC to yield 6 (9 mg).

Compound 1 (Acetylcorynoline): mp 159-160°C, EIMS m/z (rel. int.) 409 (M⁺), 366, 349 (100), 334, 202, 190, ¹H-NMR (400MHz, CDCl₃) δ : 6.98 (1H, d, J=8.5, H-10), 6.87 (1H, s, H-4), 6.69 (1H, d, J=8.5Hz, H-9), 6.52 (1H, s, H-1), 5.93 (2H, s, -OCH₂O-), 5.92 (2H, s, -OCH₂O-), 5.21 (1H, dd, J=8.8, 6.4, H-11), 3.90 (1H, d, J=16.4, H-6), 3.53 (1H, d, /=16.4, H-6), 3.51 (1H, s, H-14), 2.96 (1H, dd, J=15.2, 8.4, H-12), 2.84 (1H, dd, J=15.2, 6.4, H-12), 2.48 (3H, s, N-CH₃), 1.87 (3H, s, COCH₃), 1.27 (3H, s, CH₃), ¹³C-NMR (100MHz, CDCl₃) δ 170.4 (COCH₃), 146.6 (C-2)*, 145.9 (C-3)*, 144.5 (C-8)*, 142.8 (C-7), 132.9 (C-10a), 129.9 (C-4a), 127.4 (C-1a), 120.3 (C-10), 117.5 (C-6a), 109.4 (C-9), 108.3 (C-4), 106.2 (C-1), 100.9 (-OCH₂ O-), 100.7 (-OCH₂O-), 75.4 (C-11), 70.2 (C-14), 49.5 (C-6), 43.7 (N-CH₃), 42.5 (C-13), 32.8 (C-12), 27.8 (CH_3) , 21.2 $(CO\underline{C}H_3)$. *Assignments may be reversed.

Compound 2 (Corynoline): mp 217-218°C, EIMS *m/z* (rel. int.) 367 (M⁺), 349 (100), 334, 202, 190, ¹H-NMR (400MHz, CDCl₃) δ : 6.93 (1H, d, *J*=8.5, H-10), 6.80 (1H, d, *J*=8.5Hz, H-9), 6.66 (1H, s, H-4), 6.64 (1H, s, H-1), 5.95 (2H, s, -OCH₂O-), 5.94 (2H, s, -OCH₂O-), 4.06 (1H, d, *J*=15.2, H-6), 3.96 (1H, m, H-11), 3.45 (1H, d, *J*=15.2, H-6), 3.31 (1H, s, H-14), 3.16 (1H, d, *J*=16.8, H-12), 3.08 (1H, dd, *J*=16.8, 4.4, H-12), 2.21 (3H, s, *N*-CH₃), 1.15 (3H, s, CO<u>CH₃</u>), 1.27 (3H, s, CH₃), ¹³C-NMR (100MHz, CDCl₃) δ 147.8 (C-2)*, 145.1 (C-3)*, 144.9 (C-8)*, 142.6 (C-7), 135.9 (C-10a), 127.7 (C-4a), 125.1 (C-

1a), 118.5 (C-10), 116.7 (C-6a), 112.6 (C-4), 109.3 (C-9), 107.6 (C-1), 101.2 (-OCH₂O-), 100.9 (-OCH₂O-), 76.1 (C-11), 69.7 (C-14), 54.3 (C-6), 43.2 (N-CH₃), 40.8 (C-13), 36.7 (C-12), 23.4 (CH₃). *Assignments may be reversed.

Compound 3 (Corynoloxine): mp 205-207°C, EIMS m/z (rel. int.) 365 (M⁺), 336, 306, 280, 189, 175, ¹H-NMR (400MHz, CDCl₃) δ : 6.82 (1H, d, *J*=8.5, H-10), 6.80 (1H, d, *J*=8.5Hz, H-9), 6.69 (1H, s, H-4), 6.61 (1H, s, H-1), 5.99 (2H, s, -OCH₂O-), 5.92 (2H, s, -OCH₂O-), 5.29 (1H, s, H-6), 3.64 (1H, m, H-11), 3.12 (1H, d, *J*=18.0, H-12), 2.94 (1H, dd, *J*=18.0, 3.2, H-12), 2.84 (1H, s, H-14), 2.15 (3H, s, *N*-CH₃), 1.28 (3H, s, CH₃), ¹³C-NMR (100MHz, CDCl₃) δ : 147.1 (C-8)*, 146.4 (C-3)*, 145.8 (C-2)*, 141.2 (C-7), 134.2 (C-10a), 130.6 (C-4a), 124.0 (C-1a), 118.4 (C-6a), 114.3 (C-10), 109.6 (C-9), 108.9 (C-4), 106.7 (C-1), 101.3 (-OCH₂O-), 100.7 (-OCH₂O-), 77.5 (C-6), 72.1 (C-11), 64.1 (C-14), 39.6 (*N*-CH₃), 36.6 (C-13), 32.3 (C-12), 15.6 (CH₃). *Assignments may be reversed.

Compound 4 (Luguine): mp 280-282°C, EIMS (*m/z*): 335 (M⁺), 317, 290, 275, 82, ¹H-NMR (400MHz, CD₃OD) δ : 9.62 (1H, s, H-6), 7.89 (1H, d, *J*=9.0Hz, H-10), 7.79 (1H, d, *J*=9.0Hz, H-9), 7.23 (1H, s, H-4), 6.92 (1H, s, H-1), 6.37 (2H, s, -OCH₂O-), 6.01 (2H, s, -OCH₂O-), 5.98 (1H, m, H-11), 3.06 (2H, m, H-12).

Compound 5 (6-Oxocorynoline): EIMS (*m*/*z*): 381 (M⁺), 363, 348, 332, 190, ¹H-NMR (400MHz, DMSOd₆) δ : 7.54 (1H, d, *J*=8.4Hz, H-9), 6.87 (1H, d, *J*=8.4Hz, H-10), 6.51 (1H, s, H-4), 6.49 (1H, s, H-1), 5.89 (2H, s, -OCH₂O-), 5.87 (2H, s, -OCH₂O-), 4.32 (1H, m, H-11), 4.00 (1H, s, H-14), 3.31 (3H, s, *N*-CH₃), 1.34 (3H, s, CH₃), ¹³C-NMR (100MHz, DMSO-d₆) 160.6 (C-6), 146.7 (C-8)^{*}, 146.5 (C-3)^{*}, 146.1 (C-2)^{*}, 145.8 (C-7)^{*}, 135.8 (C-10a), 130.1 (C-4a), 127.1 (C-1a), 118.7 (C-10), 112.6 (C-6a), 110.3 (C-9), 108.0 (C-4), 105.3 (C-1), 101.3 (-OCH₂O-), 100.8 (-OCH₂O-), 71.9 (C-11), 67.1 (C-14), 43.1 (*N*-CH₃), 37.6 (C-13), 35.2 (C-12), 24.7 (CH₃). *Assignments may be reversed.

Compound 6 (12-Hydroxycorynoloxine): mp 216-218 °C, $[\alpha]_D^{20}$ 0.0° (c=0.3, MeOH), HRMS *m/z*: 381.3867 (M⁺, calcd for C₂₁H₁₉NO₆, 381.3863), EIMS *m/z* (rel. int.) 381 (M⁺, 35), 366 (25), 350 (23), 202 (100), 189 (38), IR v_{max}^{KBr} cm⁻¹ 3250, ¹H-NMR (400MHz, CD₃OD) δ : 6.90 (1H, s, H-4), 6.85 (1H, d, *J*=8.0Hz, H-10), 6.79 (1H, d, *J*=8.0Hz, H-9), 6.59 (1H, s, H-1), 5.91 (2H, s, -OCH₂O-), 5.86 (2H, s, -OCH₂O-), 5.14 (1H, s, H-6), 4.70 (1H, d, *J*=1.9, H-12), 3.37 (1H, d, *J*=1.9, H-11), 2.76 (1H, s, H-14), 1.94 (3H, s, N-CH₃), 1.30 (3H, s, CH₃), ¹³C-NMR (100MHz, CD₃OD) δ 149.0 (C-8)*, 148.4 (C-3)*, 148.1 (C-2)*, 142.9 (C-7), 141.1 (C-10a), 135.4 (C-4a), 132.3 (C-1a), 128.5 (C-6a), 116.2 (C-10), 110.9 (C-9), 109.4

(C-4), 108.4 (C-1), 103.0 (-OCH₂O-), 102.3 (-OCH₂O-), 80.3 (C-6), 78.5 (C-12), 71.1 (C-11), 65.8 (C-14), 40.0 (N-CH₃), 36.9 (C-13), 16.9 (CH₃). Assignments may be reversed.

RESULTS AND DISCUSSION

In the course of phytochemical study of the MeOH extract from C. *incisa*, six benzo[c]phenanthridine alkaloids, corynoline (1), acetylcorynoline (2), corynoloxine (3), luguine (4), 6-oxocorynoline (5), and 12-hydroxycorynoloxine (6) were isolated from the CH_2Cl_2 and *n*-BuOH soluble fractions.

Compounds **1-6** have similar patterns in their NMR spectra. Compounds **1-3** and **5** were readily elucidated as corynoline, acetylcorynoline, corynoloxine, 6-oxocorynoline, respectively, by comparison of reported spectroscopic data (Nonaka *et al.*, 1973a, Takao *et al.*, 1978, Kametani *et al.*, 1971, and Nonaka *et al.*, 1973b).

The EI-MS of **4** gave a molecular ion at m/z 335 [M⁺]. In the NMR spectrum of **4**, the signals of a proton at oxygenbearing carbon (1H, δ 5.98, m, H-11), the methylenedioxide group (δ 6.37, 6.01), and five aromatic protons at C-6, -10, -9, -4 and -1 (each 1H, δ 9.62, 7.89, 7,79, 7.23 and 6.92) were observed. A pair of doublets (J=9.0Hz) at δ 7.89 and 7.79 was assigned to the 10- and 9-protons, respectively. With the above evidences and by the direct comparison of its spectral data with those of the literature, the structure of **4** was identified as luguine, which has been previously isolated from *Glaucium flavum* var. *vestitum* (Castedo *et al.*, 1978).

Compound **6** was assigned the molecular formula $C_{21}H_{19}NO_6$ (*m*/*z*, 381.3867, [M⁺]) by its EI- and HR-mass spectrometry. IR spectrum of **6** revealed the presence of hydroxyl group (3250 cm⁻¹). Its ¹H-NMR spectrum showed the presence of a methyl group (δ 1.30), an *N*-methyl group (δ 1.94), two methylenedioxy groups (δ 5.91, 5.86) and four aromatic protons (δ 6.90-6.59). These spectral data suggested that **6** had a benzo[c]phenanthridine skeleton (Nonaka *et al.*, 1975b). The ¹H- and ¹³C-NMR data of **6** were very similar to that of **3**, except for the proton and carbon chemical shifts of C-12 position. The downfield shift of C-12 (δ 78.5) suggested that C-12 was carrying a hydroxyl group. In the ¹H-NMR spectrum of **6**, H-12 proton appeared more downfield at δ 4.70 (1H) while that of **3** showed at δ 3.11 and 2.94 (2H), indicat-

ing that the C-12 bears a hydroxyl group, and the proton signal at δ 4.70 (1H, d, *J*=1.9, H-12) showed correlation with the signal at 3.37 (1H, d, *J*=1.9, H-11). Therefore, the structure of **6** was characterized as 12-hydroxycorynoloxine. Finally, the structure and stereochemistry of compound **6** was identified by comparison with the spectral data of the synthesized compounds. (Nonaka *et al.*, 1975b).

ACKNOWLEDGEMENTS

This work was supported by the research grant from Woosuk University.

REFERENCES

- Castedo, L., Dominguez, D., Saá, J. M. and Suau, R., Luguine, a new benzophenanthridine alkaloid from *Glaucium flavum* Cr. Var. vestitum. Tetrahedron Lett., 2923-2924 (1978).
- Kametani, T., Ihara, M. and Honda, T., Morphinandienone alkaloids from *Corydalis incisa*. *Phytochemistry*, 10, 1881-1883 (1971).
- Lee, T. B., Illustrated Flora of Korea. Hanygmoonsa, Seoul, p. 385 (1989).
- Nonaka, G. and Nishioka, I., Alkaloids of *Corydalis incisa* Pers. V. The structure of corydalispirone and corydalisol. *Chem. Pharm. Bull.*, 23, 294-298 (1975a).
- Nonaka, G. and Nishioka, I., Alkaloids of *Corydalis incisa* Pers. VI. The structure of benzo[c]phenanthridine-type alkaloids, 12-hydroxycorynoline and 11-epicorynoline. *Chem. Pharm. Bull.*, 23, 521-526 (1975b).
- Nonaka, G., Okabe, H., Nishioka, I. and Takao, N., Alkaloids of *Corydalis incisa* Pers. I. On the nonphenolic tertiary bases. *Yakugaku Zasshi*, 93, 87-93 (1973a).
- Nonaka, G., Kodera, Y. and Nishioka, I., Alkaloids of *Corydalis incisa Pers*. II. The structure of corydalic acid methyl ester. *Chem. Pharm. Bull.*, 21, 1020-1026 (1973b).
- Takao, G., Untersuchung über die alkaloide der papaveraceen. XIII. Die alkaloide von Corydalis incisa. (8). Über die struktur des corynoloxins. Chem. Pharm. Bull., 19, 247-251 (1971).
- Takao, G., Iwasa, K., Kamigauchi, M. and Sugura, M., Studies on the alkaloids of papaveraceous plants. XXX. Conformational analysis of some hydrobenzo[c]phenanthridine-type alkaloids. *Chem. Pharm. Bull.*, 26, 1880-1889 (1978).