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Abs t rac t  A special case of the bottleneck Steiner tree problem in the Euclidean plane was considered in this 
paper. The problem has applications in the design of wireless communication networks, multifacility location, 
VLSI routing and network routing. For the special case which requires that there should be no edge connecting 
any two Steiner points in the optimal solution, a 3-restricted Steiner tree can be found indicating the existence of 
the performance ratio x/22. In this paper, the special case of the problem is proved to be NP-hard and cannot be 
approximated within ratio v~. First a simple polynomial time approximation algorithm with performance ratio 
v/3 is presented. Then based on this algorithm and the existence of the 3-restricted Steiner tree, a polynomial 
time approximation algorithm with performance ratio--x/2 + c is proposed, for any e > 0. 
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1 I n t r o d u c t i o n  

In recent years, the Steiner tree problem at- 
tracts considerable attention from theoretical point 
of view and due to its applicability. It occupies a 
central place in the emerging theory of approxima- 
tion algorithms. 

Given a weighted graph G = (V, E, W) and a 
subset S C V of required vertices, the classical 
Steiner tree problem asks for a shortest tree span- 
ning S. The tree may use additional points (called 
Steiner points) in V - S. We call such a tree a 
Steiner tree. The problem is MAX-SNP hard even 
when the edge weights are only 1 or 2 [1]. 

In this paper, we consider a related variation 
of the classical Steiner tree problem, the bottleneck 
Steiner tree problem, which is defined as follows: 
given a set P = {Pl,P2, .-- ,P~} of n terminals and 
a positive integer k, we want to find a Steiner tree 
with at most k Steiner points such that the length 
of the longest edge in the tree is minimized. 

The problem has applications in the design of 
wireless communication networks, multifacility lo- 
cation, VLSI routing and network routing. For ex- 
ample, in the design of wireless communication net- 
works, due to budget limit, suppose we could put 
totally n + k stations in the plane, n of which must 
be located at given points, then we would like to 
choose locations for the other k stations intercon- 
necting the n fixed locations such that the distance 

* N o t e  

between stations is as small as possible. 
The problem is NP-hard. In [2], it is shown 

that unless P = NP, the problem cannot be ap- 
proximated in polynomial time within performance 
ratios 2 and v~  in the rectilinear plane and the Eu- 
clidean plane, respectively. Moreover, they gave an 
approximation algorithm with performance ratio 2 
for both the rectilinear plane and the Euclidean 
plane. For the rectilinear plane, the performance 
ratio is the best possible, that  is, the performance 
ratio is tight. For the Euclidean plane, however, 
the gap between the lower bound ~ and the up- 
per bound 2 is still big. Based on the existence of 
a 3-restricted Steiner tree, we presented a random- 
ized approximation algorithm with performance ra- 
tio 1.866 + e for the Euclidean plane [a]. Later Du, 
Xu and Wang improved the performance ratio to 
V ~  -~ e [41 . 

In this paper, we consider a special case of the 
bottleneck Steiner tree problem in the Euclidean 
plane, which requires that there should be no edge 
connecting any two Steiner points in the optimal 
solution. We denote the problem as special-BSTfor 
short. In Section 2, we show the special-BST prob- 
lem is NP-hard and cannot be approximated within 
ratio v/2 in the Euclidean plane unless P = NP,  
and we also give a simple polynomial time v/-3 - 
approximation algorithm for the problem. In Sec- 
tion 3, for any e > 0, an approximation algorithm 
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with performance ratio V~ + e is presented. 
concluding remarks appear in Section 4. 

The 

2 R a t i o - v / 3  A p p r o x i m a t i o n  A l g o r i t h m  

In this section, we first show the hardness re- 
sult for the special-BST problem, then we propose 
a r a t io -v~  polynomial t ime approximation algo- 
rithm. 

Directly following the proof of Theorem I in [2], 
w e  h a v e :  

T h e o r e m  1. The special-BST problem in the 
Euclidean plane cannot be approximated within x/~ 
in polynomial time unless P = NP. 

Now we design a polynomial time approxima- 
tion algorithm with performance ratio v ~  for the 
problem. The basic idea of the algorithm is from 
[2]. First we construct a minimum spanning tree 
for the set of n terminals P,  then we add i Steiner 
point to each of the k largest edges in the mini- 
mum spanning tree. We cali the resulting tree a 
Steinerized spannin 9 tree. 

The following two lemmas (Lemma 1 and 
Lemma 2) show that  the length of the longest edge 
in an optimal Steinerized spanning tree is at most 
v ~  times of the opt imum, and the optimal Steiner- 
ized spanning tree can be found among the Steiner- 
ized minimum spanning trees. 

Usually, every leaf in a Steiner tree is a termi- 
nal. However, a terminal may not be a leaf. A 
Steiner tree is full if all terminals are leaves. Thus, 
if a Steiner tree is not full, there must exist a ter- 
minal which is not a leaf. So, we can decompose 
the tree at this terminal  into several small trees. 
In this way we can decompose any Steiner tree into 
the union of several small trees, in each of which a 
vertex is a leaf if and only if it is a terminal. These 
small trees are called full Steiner components. 

Let a and b be two points in the plane, we de- 
note ab an edge and lab[ the length of ab. With- 
out loss of generality, we assume the length of the 
longest edge in the opt imal  Steiner tree is 1. 

L e m m a  1. Let P be a set of n terminals in the 
Euclidean plane. There exists a Steinerized span- 
ning tree T for P containing k Steiner points such 
that the length of the longest edges in T is at most 

Proof. Let T rain be an optimal Steiner tree with 
k Steiner points for the special-BST problem. For 
there is no edge connecting every two Steiner points 
in the optimal  Steiner tree, T rain can be decom- 
posed into its full components,  each of which is 
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either a star  with a Steiner point as the center or 
just an edge connecting two terminals. 

For a star with at least 3 terminals, we can al- 
ways decrease the degree of the Steiner point step 
by step to 2 and the length of the longest edges in 
the modified tree is at most v~ .  The procedure is 
as follows. 

Suppose the Steiner point is labeled as v, then 
there must exist two terminals a and b satisfying 
Zavb <~ 120 ~ By directly connecting a and b and 
removing the longer edge of va and vb, the degree 
of v is decreased by 1, and it is easily seen that  
labl <<. v~. Repeat  the procedure until the degree 
of v becomes 2. Fig.1 gives an example. 

a ....................... b a~ ....................... b 

Fig.1. T r a n s f o r m a t i o n  of  T~. 

Thus we transform the s tar  T~ into a Steiner 
subtree in which the length of the longest edge is 
at most v~.  The proof completes by combining all 
such Steiner subtrees. D 

L e m m a  2 [2]. Let el, e 2 , . . . ,  e,~-i be all edges in 
a spanning tree T and e~, e~ , . . . ,  e,*~_ 1 be all edges 
in a minimum spanning tree T* for the same ter- 
minal set P.  Suppose c(ei) < c(ei+l) and c(e*) < 
c(e~+l) for all 1 <. i < n - 1, where c(e) denotes 
the length of edge e. Then, c(e~) <~ c(ei) for all 
l ~ i ~ n - 1 .  

Lemma 2 indicates that  an opt imal  Steinerized 
spanning tree can be found among Steinerized min- 
imum spanning trees. Since there is no edge con- 
necting any two Steiner points, we only have to add 
1 Steiner point to each of the first k longest edges 
in the minimum spanning tree. The  complete algo- 
r i thm is given in Fig.2. 

rat ic*-yr3 fo r  s p e c i a l - B S T  
Input :  A set  P of  n t e rmina l s  in the  Euc l idean  plane 

and  an integer  k. 
O u t p u t :  A Steiner  tree T wi th  a t  mos t  k Steiner  points .  
1. C o m p u t e  a m i n i m u m  s p a n n i n g  tree. 

Suppose  e l ,  e2, . .  �9 e n - 1  are all edges in it. 
2. Sort  the  edges in a non- increas ing  order  of  ]e I. 
3. Add  degree-2 Steiner  poin ts  to t he  first k longest  edges.  

Fig.2. v/-3-algorithm bot t l eneck  problem. 

T h e o r e m  2. The algorithm in Fig.2 is an 
O(n 2 log n) approximation algorithm with perfor- 
mance ratio v/3. 
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3 Ra t io -v /2  A p p r o x i m a t i o n  A l g o r i t h m  

A Steiner tree for n terminals is a k-restricted 
Steiner tree if each full component spans at most k 
terminals. In this section, we first show there ex- 
ists a 3-restricted Steiner tree containing the same 
number of Steiner points as in an optimal solution 
such that the length of the longest edge is at most 
v ~  times of the optimum. 

Without loss of generality, we assume that the 
length of the longest edge is 1 in an optimal Steiner 
tree. 

L e m m a  3. For the special-BST problem, there 
exists a 3-restricted Steiner tree of k Steiner points 
such that 1) the length of the longest edge in the tree 
directly connecting two terminals is at most v ~  and 
2) the length of edges connecting a terminal and a 
Steiner point is at most 1. 

Pro@ Similar to the proof of Lemma 1, each 
full component is either a star with a Steiner point 
as the center or just an edge connecting two termi- 
nals. 

For a star with at least 4 terminals, we can al- 
ways decrease the degree of the Steiner point step 
by step to 3 and the length of the longest edge in 
the modified tree is at most x/2. We can use the 
following method. 

Suppose the Steiner point is labeled as v, there 
must exist two terminals a and b satisfying Zavb <~ 
90 ~ By directly connecting a and b and remov- 
ing the longer edge of va and vb, the degree of v 
is decreased by 1. It is easily seen that lab[ <~ v~. 
Repeat the procedure until the degree of v becomes 
3. Thus we transform the star into a 3-restricted 
Steiner subtree in which the length of the longest 
edge is at most v/-2. By union of all the resulting 
Steiner subtrees, we obtain a 3-restricted Steiner 
tree satisfying (1) and (2). [] 

Now, we will transform the computation of an 
optimal 3-restricted Steiner tree into the minimum 
spanning tree problem for 3-hypergraphs. We need 
to introduce the following notions. 

A hypergraph H = (V, F) is a generalization 
of a graph where the edge set F is an arbitrary 
family of subsets of vertex set V. A 3-hypergraph 
/-/3 = (V, F)  is a hypergraph, each of whose edges 
has a cardinality at most 3. An unweighted 3- 
hypergraph is a 3-hypergraph with each edge weight 
of 1. A minimum spanning tree for an unweighted 
3-hypergraph //3 = (V, F) is a subgraph T o f / / 3  
that is a tree containing every node in V with the 
least number of edges. In other words, a minimum 
spanning tree for an unweighted 3-hypergraph con- 
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tains as many as possible edges with cardinality 3. 

T h e o r e m  3 [51. There is a polynomial time al- 
gorithm to compute a minimum spanning tree for 
an unweighted 3-hypergraph if it exists. 

To construct an unweighted 3-hypergraph, we 
need to know B, the length of the longest edge in 
an optimal solution. It is hard to find tile exact 
value of B in an efficient way because of the hard- 
ness of the special-BST problem. However, we can 
guess the length of the longest edge in an optimal 
solution. The following procedure finds a value B t 
that is at most (1 + e)B for any e > 0. 

Step 1. Run the ratio-x/3 algorithm in Section 2 to 
get an upper bound X of B. 

Step 2. Try to use one of x/3' + ' 

~ 3 ( 1 §  X as B', where p is an integer such 

that -1 ~< c. 
P 

Thus, we can assume that B' = (1 + E)B is 
the approximation of the longest edge in an opti- 
mal solution. Now we can construct an unweighted 
3-hypergraph H3 = (V, F)  from the set P of termi- 
nals. The construction is as follows. 

1) Connect terminals with a distance at most 
x/2B t and treat each of the connected components 
as a supernode (a terminal may also become a su- 
pernode). The distance between two supernodes is 
the smallest distance between two terminals, one 
in each supernode. These supernodes form V. 

2) If there is a Steiner point v connecting 3 su- 
pernodes a,b and c such that Ira] <~ B', Ivb[ <~ B'  
and Ivcl <~ B', then we have the edge (a, b, c) in F.  

3) If the distance between two supernodes a and 
b is at most 2B% then we have the edge (a, b) in F.  

4) The weight of each edge in F is 1. In fact, the 
weight of an edge is the number of Steiner points 
that connect the endpoints of the edge. 

Obviously, the unweighted 3-hypergraph/ /3  = 
(V,F)  can be constructed in polynomial time. 
According to Theorem 3, we have a polynomial 
time algorithm to compute an optimal 3-restricted 
Steiner tree. The complete algorithm is shown in 
Fig.3. 

T h e o r e m  4. For any given e, there exists a 
polynomial time approximation algorithm for the 
speciaI-BST problem that computes a Steiner tree 
with n terminals and k Steiner points such that 
the length of the longest edge in the tree is at most 
v/2 + e times of the optimum. 



794 J, Comput.  Sci. & Technol., Nov. 2004, Vo1.19, No.6 

ratio-~/2 for s p e c i a l - B S T  
Input: A set P of n terminals in the Euclidean plane, 

an integer k and a positive number e. 
Output: A 3-restricted Steiner tree T with at most k 

Steiner points. 

1. Call the ratio-,f-3 approximation algorithm in Fig.2 
for the special-BST problem and obtain an up- 
per bound X o f B  (B is the length of the longest 
edge in an optimal solution). 

2. f o r B l =  ~ 'X  X v o  ~.~(1 + ~), (1 + 2~),..., 
v ~  

-~ l+('r l)ex [ ] do 

2.1 Construct an unweighted 3-hypergraph H3 = 
(V, F) as above description; 

2.2 Call the algorithm in [5] to compute a minimum 
spanning tree T for H3 = (V, F). 

3. Consider the solution T'  of the smallest B' such that  
w(T') ~ k. 

4. Restore T '  to a 3-restricted Steiner tree T according 
to the construction of the unweighted 3-hypergraph. 

5. Output the obtained tree. 

Fig.3. Algorithm for restricted bottleneck Steiner tree prob- 

lem. 

4 C o n c l u s i o n  

We mainly considered a special case of the 
bottleneck Steiner tree problem in the Euclidean 

plane. We first showed that  the special case is 
NP-hard and cannot be approximated with ratio 
x/2 unless P = NP, then we presented a simple 
O(n 2 log n) algorithm with performance ration v ~  
and based on this algorithm we finally give a v/2+e - 
approximation algorithm running in polynomial of 
n and e. The second algorithm almost closes the 
special case of bottleneck Steiner tree problem in 
the Euclidean plane. 
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