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1. INTRODUCTION

The existence, number and localization of limit cycles is one of the most
important problems in the qualitative theory of planar differential equa-
tions, and the more usual tool for studying them is the Poincaré map. In
the particular case of planar piecewise linear differential systems of the
form

ẋ = Ax+ ϕ
(
kTx

)
b+ a, (1)

where A is a 2 × 2 real matrix, x, a,b,k ∈ R2, and ϕ is a continuous
piecewise linear function, the Poincaré map is defined by the flow of the
system when we take as transversal sections the boundaries of the regions
where the system is linear.
For the piecewise linear differential systems having continuous charac-

teristic functions ϕ formed by two–pieces of linear functions or by three–
symmetric–pieces of linear functions, this problem has been completely
solved, see [5] and [12]. But this technique becomes difficult to handle if
we add more pieces or if we avoid the symmetry of ϕ. Even in these special
cases, since the Poincaré map of system (1) depends on the real canonical
form of the matrices A and B = A+bkT , the number of different Poincaré
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maps that appear in the study of system (1) force that the proofs of the
results must be divided in cases and subcases, which is tedious and not
elegant.
This paper is divided in two different parts. In the first one, from Section

2 to Section 4, we provide an alternative way to the Poincaré map for
analysing the limit cycles of planar piecewise linear differential systems.
Using the Darboux theory of integrability and the election of an adequate
coordinate system we present the first integrals of different planar linear
differential systems in a unified way that we call first integrals related to a
point. By means of the closing equations we show how the notion of first
integral related to a point becomes very useful for studying the limit cycles
of piecewise linear differential systems, see Section 4.
There is the feeling that piecewise linear diferential systems can present

all the complex dynamics one can see in the nonlinear differential systems.
Following this line of thought, at the second part of the paper, in Section
5, we apply the technique developed at the first part, to characterize the
bifurcation diagram of the following two–parameters family of piecewise
linear systems

ẋ = y − ϕ (x) , ẏ = −ε (x+ α) , (2)

where α ∈ R, ε ≥ 0 small, and

ϕ (σ) =

⎧⎨
⎩
cσ + 1 + c if σ < −1,
−σ if − 1 ≤ σ ≤ 0,
cσ if 0 < σ,

(3)

where c is a fixed constant greater than 1, but close to 1.
System (2) is a piecewise linear differential version of the differential

system studied by Dumortier and Roussarie in [4]. In that work the authors,
taking as characteristic function ϕ (σ) = σ2/2 + σ3/3, characterize the
“canard phenomenon” via the shape of the limit periodic sets of system
(2), when ε decreases to zero, and they prove that there are “canard limit
cycles” for these systems.
In Section 5, for ε > 0 we prove that if α �∈ (0, 1), then system (2) has no

limit cycles; and if α ∈ (0, 1) then system (2) has exactly one limit cycle,
Γε,α, which is hyperbolic and stable. For a fixed ε > 1/4 the limit cycle is
created and destroyed at a Hopf bifurcation at the values of the parameter
α = 0 and α = 1, respectively. For a fixed ε ≤ 1/4 the limit cycle is
created and destroyed at a bifurcation of a homoclinic loop at the values
of the parameter α = 0 and at α = 1, respectively. For sufficiently small ε,
the limit cycle Γε,α has the shape of the usual relaxation oscillation of the
Van der Pol equation. Thus, we conclude that there are no “canard limit
cycles” for systems (2).
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2. DARBOUX THEORY OF INTEGRABILITY

The aim of this section is to introduce the terminology and some of the
most relevant results of the Darboux theory of integrability for real planar
polynomial differential systems. In fact the natural background for this
theory are the complex polynomial differential systems. For a detailed
discussion of this theory we refer the reader to [3, 2, 8].
A real planar polynomial differential system or simply a polynomial sys-

tem will be a differential system of the form

dx

ds
= ẋ = P (x, y) ,

dy

ds
= ẏ = Q (x, y) , (4)

where x and y are real variables, the independent one (the time) s is real,
and P and Q are polynomials in the variables x and y with real coefficients.
The degree of polynomial system (4) is defined as m = max {degP, degQ}.
The vector field X associated to system (4) is defined by

X = P
∂

∂x
+Q

∂

∂y
.

System (4) is integrable on an open subset U of R2 if there exists a
nonconstant analytic function H : U → C, called a first integral of (4) on
U , which is constant on all orbits of system (4) contained on U .
Let C [x, y] be the ring of polynomials in the variables x and y with

coefficients in C, and let f ∈ C [x, y]. The algebraic curve f (x, y) = 0 is
an invariant algebraic curve of the real system (4) if for some polynomial
K ∈ C [x, y] we have

Xf = P
∂f

∂x
+Q

∂f

∂y
= Kf.

The polynomial K is called the cofactor of the invariant algebraic curve
f = 0. Since the polynomial system has degree m, then a cofactor has at
most degree m− 1.
In what follows we summarize the two results on Darboux theory of

integrability that we shall need in the next section.

Proposition 1. For a polynomial system (4), f = 0 is an invariant
algebraic curve with cofactor K if and only if f = 0 is an invariant algebraic
curve with cofactor K. Here, conjugation denotes only conjugation of the
coefficients of the polynomials.

Theorem 2. Suppose that a polynomial system (4) admits p invariant
algebraic curves fi = 0 with cofactors Ki for i = 1, 2, . . . , p. If there exist
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αi ∈ C not all zero such that
p∑

i=1

αiKi = 0, then the (multi–valued) function

fα1
1 · · · fαp

p is a first integral of system (4).

3. FIRST INTEGRALS RELATED TO A POINT

By definition a planar linear differential system or simply a linear system
is a differential system of the form

ẋ = Bx+ b, (5)

where B is a 2 × 2 real matrix, and x and b are in R2. When b = 0, the
linear system is called homogeneous.
In this paper we restrict our attention to linear systems with a singu-

lar point (not necessarily unique) denoted by e. If the linear system is
homogeneous, then we take e = 0.
Let p and q be two linearly independent vectors of R2. Since {p,q} is a

base of R2, for any orbit γ of system (5) there exist differentiable functions
u, v : R → R such that

γ = {e+ u (s)p+ v (s)q : s ∈ R} .

A non-constant differentiable function H : R2 \ {0} → C is a first integral
of system (5) related to the base {p,q} if H (u, v) is constant on all orbits
of (5). Notice that for a homogeneous linear system, the definition of first
integral related to the canonical base of R2, is equivalent to the standard
definition of first integral. Furthermore, if H is a first integral of system
(5) related to {p,q} , then for any h ∈ C the set

Ih := {e+ up+ vq : H (u, v) = h}

is empty or formed by orbits of system (5).
The following result shows that in other to find a first integral of system

(5) related to a base it is sufficient to consider the homogeneous system

ẋ = Bx. (6)

Lemma 3. A function H is a first integral of system (5) related to {p,q}
if and only if H is a first integral of system (6) related to {p,q}.
Proof : The translation y = x − e transforms system (5) into sys-
tem (6), and any orbit {e+ u (s)p+ v (s)q : s ∈ R} of (5) in an orbit
{u (s)p+ v (s)q : s ∈ R} of (6). Thus H remains constant on the orbits.
The converse implication follows in a similar way.
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If p ∈ R2 is not an eigenvector of the matrix B, then p and Bp are two
linearly independent vectors. A function H is a first integral of system (5)
related to a point p if H is a first integral of system (5) related to the base
{p, Bp}.
LetM be a regular 2×2 real matrix. The change of coordinates y =Mx

transforms system (6) into system

ẏ = B∗y, (7)

where B∗ = MBM−1. The following result proves that first integrals
related to a point are invariant by linear transformations.

Lemma 4. If H is a first integral of system (6) related to p and M is a
regular matrix, then H is a first integral of system (7) related to Mp.

Proof : Since B∗ = MBM−1, then MBp = B∗Mp, and the lemma
follows.

Theorem 5. Let B be a 2× 2 real matrix, λ1 and λ2 the eigenvalues of
B, λ1 �= λ2, and p ∈ R2 not an eigenvector of B.

(a)The function H (u, v) = (u+ λ1v)
λ2 (u+ λ2v)

−λ1 is a first integral of
system (5) related to p.

(b)If λ1, λ2 �∈ R, D = λ1λ2 and T = λ1 + λ2, then

H (u, v) =
(
u2 + Tuv +Dv2

)
e

− 2T√
4D − T 2

arctan

(
v
√
4D − T 2

2u+ vT

)

is a real first integral of system (5) related to p. Moreover, if γ = {e+u (s)p
+v (s) ṗ : s ∈ R} is an orbit of system (5), then

arctan

(
v (s)

√
4D − T 2

2u (s) + Tv (s)

)
− arctan

(
v (0)

√
4D − T 2

2u (0) + Tv (0)

)
= s

√
4D − T 2

2
.

Proof: From Lemma 3 it is sufficient to prove the theorem for the
homogeneous linear system ẋ = Bx.
(a) Let γ = {u (s)p+ v (s)Bp : s ∈ R} be an orbit of the linear system

ẋ = Bx. If D = det (B), T = trace (B) and Id is the identity matrix,
by the Cayley–Hamilton Theorem, we have B2 − TB + DId = 0. Hence,
BBp = −Dp + TBp. Thus, the expression of the linear map defined by
B in the base {p, Bp} is (

0 −D
1 T

)
,
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and the functions u (s), v (s) satisfy the following linear system

u̇ = −Dv,
v̇ = u+ Tv.

(8)

Let f1 = u+λ1v and f2 = u+λ2v. Then, it is easy to check that f1 = 0
and f2 = 0 are invariant algebraic curves of system (8), with cofactors λ1

and λ2, respectively. From Theorem 2, we obtain that

H (u, v) = (u+ λ1v)
λ2 (u+ λ2v)

−λ1

is a first integral of system (8). Therefore, H is a first integral of system
(5) related to p.
(b) Let f = u+λ1v. Since f = 0 is an invariant algebraic curve of system

(8) with cofactor λ1, from Proposition 1, f̄ = u + λ2v = 0 is an invariant
algebraic curve of (8) with cofactor λ̄1 = λ2.
Let α = Im (λ1) + Re (λ1) i. Then αλ1 + αλ2 = 0, and from Theorem 2

we obtain that fαf
α
is a first integral of system (8). Since

fαf
α
=

[
||f ||2 exp

(
−2Im (α)

Re (α)
arctan

(
Im (f)
Re (f)

))]Re(α)

,

then the function

H (u, v) = ||f ||2 exp
(
−2Im (α)

Re (α)
arctan

(
Im (f)
Re (f)

))

=
(
u2 + Tuv +Dv2

)
exp

(
−2Re (λ1)

Im (λ1)
arctan

(
Im (λ1) v

u+Re (λ1) v

))
,

is a real first integral of system (8). Therefore, H is a first integral of
system (5) related to p. From

λ1 =
T

2
+
√
4D − T 2

2
i,

we obtain the expression of H given in (b).
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The last statement follows noting that

arctan

(
v (s)

√
4D − T 2

2u (s) + Tv (s)

)
− arctan

(
v (0)

√
4D − T 2

2u (0) + Tv (0)

)

=
∫ s

0

d

dr
arctan

(
v (r)

√
4D − T 2

2u (r) + Tv (r)

)

=
√
4D − T 2

2

∫ s

0

dv

dr
u (r)− du

dr
v (r)

u (r)2 + u (r) v (r) T + v (r)2D
dr,

where (u (s) , v (s)) is a solution of the differential system (8).

Remark 6. If λ1, λ2 �∈ R and B is in the Jordan canonical form, then
Im (λ1) is the angular velocity of a solution of system (5). From Theorem
5(b), we have that

arctan

(
v (s)

√
4D − T 2

2u (s) + Tv (s)

)
− arctan

(
v (0)

√
4D − T 2

2u (0) + Tv (0)

)
(9)

provides the angle θ (s) run by the solution between the points u (0)p +
v (0)Bp and u (s)p+ v (s)Bp.
When the matrix B is not in the Jordan canonical form, then (9) is not

exactly the angle θ (s), but in this case it is easy to check that

arctan

(
v (s)

√
4D − T 2

2u (s) + Tv (s)

)
− arctan

(
v (0)

√
4D − T 2

2u (0) + Tv (0)

)
∈ (kπ, (k + 1)π)

for some k ∈ Z if and only if θ (s) ∈ (kπ, (k + 1)π).

4. CLOSING EQUATIONS FOR PIECEWISE LINEAR
SYSTEMS

In this section we obtain the closing equations, see [10], whose zeros
determine the number of limit cycles that appear in a piecewise linear
differential system of the form

ẋ = Ax+ ϕ
(
kTx

)
b+ a, (10)



36 J.LLIBRE, E. NUÑEZ AND A. E. TERUEL

where A is a 2 × 2 real matrix, x = (x, y)T , k and b are in R
2 \ {0}, a is

in R2, and

ϕ (σ) =
{
1 if σ ≥ 1,
σ if σ < 1.

Since the characteristic function ϕ is continuous and Lipschitz in R2, but
is no differentiable in R

2, then the same holds for the vector field defined
by (10). The characteristic function ϕ splits the phase space into two open
half–planes S+ =

{
x ∈ R2 : kT x > 1

}
and S− =

{
x ∈ R2 : kT x <1

}
with

a common boundary Γ =
{
x ∈ R2 : kT x = 1

}
. Using this notation, system

(10) can be rewritten as follows

ẋ =
{
Bx+ a if x ∈ S− ∪ Γ,
Ax+ c if x ∈ Γ ∪ S+,

(11)

where B = A+ bkT and c = b+ a.
Let e− and e+ be the solutions of the equations Bx+a = 0 and Ax+c =

0, respectively. Recall that in this paper we suppose that any linear system
has singular points. If e− ∈ S− ∪ Γ (respectively, e+ ∈ Γ ∪ S+) then e−
(respectively, e+) is a singular point. On the contrary we said that e−
(respectively, e+) is a virtual singular point. In the rest of this section we
assume that system (11) has no singular points on the straight line Γ. In
particular e− and e+ do not belong to Γ.
A point p ∈ Γ is called a contact point of the flow defined by (11) with

the straight line Γ if the vector ṗ = Ap+ c = Bp+ a is parallel to Γ, that
is, kT ṗ = 0. To simplify notation we denote by q̇ the value of the vector
field at the point q.
Let γ be a limit cycle of system (11). Since linear systems have no

limit cycles, then γ intersect the half–planes Γ ∪ S+ and S− ∪ Γ. Let
γA = γ∩(Γ ∪ S+) and γB = γ∩(S− ∪ Γ), see Figure 1. Hence, by continuity
there exists a contact point p of the flow defined by (11) with the straight
line Γ.
Under the assumption that there are no singular points on Γ, the vector

p− = p− e− is not an eigenvector of B and p+ = p− e+ is not an eigen-
vector of A. Since Bp− = ṗ and Ap+ = ṗ, then γB = {e− + up− + vṗ}
and γA = {e+ + up+ + vṗ}. Let HA (u, v) be a first integral of the linear
system ẋ = Ax + c related to p+, and let HB (u, v) be a first integral of
the linear system ẋ = Bx+a related to p−. Then the closing equations of
system (11) are

HA (1, v) = HA (1,−w) ,
HB (1, v) = HB (1,−w) , (12)
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_x = Ax+ c

_x = Bx+ a

¡

p
_p

e+

°A

°B

(1; v)

(1;¡w)

S¡ p+

e¡

S+

p¡

FIG. 1. The contact point p associated to a limit cycle γ.

where, v > 0 and w > 0. Therefore, any solution (v0, w0) of (12) corre-
sponds to a periodic orbit of (11), which intersect with the straight line Γ
at points p+ v0ṗ and p− w0ṗ.
By the Implicit Function Theorem, each equation in (12) defines a dif-

ferentiable function vA(w) and vB(w), respectively, in such a way that
π = vA ◦ vB is the Poincaré map of system (11) when we take as transver-
sal section the straight line Γ.
As the semi–orbit γA only depends on the linear system ẋ = Ax + c

then the Poincaré map vA(w) only depends on matrix A. Similarly, the
Poincaré map vB(w) only depends on matrix B.
Qualitative and quantitative information about Poincaré maps for any

linear systems can be found in [12].

5. “CANARD PHENOMENON” FOR PIECEWISE LINEAR
SYSTEMS

In this section we consider the following two–parameters family of piece-
wise linear systems

Xε,α =
{
ẋ = y − ϕ (x) ,
ẏ = −ε (x+ α) , (13)

where α ∈ R, ε ≥ 0 but small, and

ϕ (σ) =

⎧⎨
⎩
cσ + 1 + c if σ < −1,
−σ if − 1 ≤ σ ≤ 0,
cσ if 0 < σ,

where c is a fixed constant greater than 1, but close to 1.



38 J.LLIBRE, E. NUÑEZ AND A. E. TERUEL

We can observe that system (13), for each ε, is invariant under the sym-
metry around the point x = −1/2, y = 1/2, α = 1/2 given by (x, y, α) →
(−x− 1,−y + 1,−α+ 1). So it is sufficient to study system (13) for values
α ≤ 1/2, and to complete the bifurcation diagram using the symmetry.
A simple computation shows that Xε,α can be written has follows.

ẋ =

⎧⎨
⎩
Ax− a if x < −1,
Bx− b if − 1 ≤ x ≤ 0,
Ax− b if 0 < x,

(14)

where

A =
( −c 1
−ε 0

)
, B =

(
1 1
−ε 0

)
, a =

(
1 + c
εα

)
and b =

(
0
εα

)
.

Proposition 7. For ε > 0, system Xε,α has a unique singular point
(−α, ϕ (−α)).

(a)Suppose α < 0.

(a.1)If ε > c2/4, then it is a hyperbolic stable focus.

(a.2)If ε ≤ c2/4, then it is a hyperbolic stable node.

(b)Suppose α = 0.

(b.1)If ε > 1/4, then it is stable.

(b.2)If ε ≤ 1/4, then a neighborhood of the origin is union of an elliptic
sector with a hyperbolic one.

(c)Suppose 0 < α ≤ 1/2.

(c.1)If ε > 1/4, then it is a hyperbolic unstable focus.

(c.2)If ε ≤ 1/4, then it is a hyperbolic unstable node.

Proof : We shall prove Statement (b.2), the other statements follows
easier using similar arguments. If α = 0, then the origin is a singular
point. In a neighborhood U of the origin, the system Xε,0 is ẋ = Bx−b if
x ≤ 0 and ẋ = Ax−b if x ≥ 0, where T = trace (B) = 1, D = det (B) = ε,
t = trace (A) = −c and d = det (A) = ε. Hence, the origin is repelling on
{(x, y) : x < 0} and attracting on {(x, y) : x > 0}.
Let γ = {(x (s) , y (s)) : s ∈ R} be the orbit of system Xε,0 which inter-

sects with the y–axis at (0, y0). Since dx/ds|(0,y0)
= y0, then dx/ds|(0,y0)

>

0 when y0 > 0 and dx/ds|(0,y0)
< 0 when y0 < 0.

Suppose that |y0| sufficiently small. If y0 > 0, then the α– and the ω–
limit set of γ is the origin. If y0 < 0, then the α– and the ω–limit set of
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γ is not contained in U . Therefore, U is union of an elliptic sector with a
hyperbolic one.

5.1. On the uniqueness of limit cycles in Xε,α

An extension to piecewise linear Lienard’s systems of the Cherkas–Zhilevich
criteria [1] for the uniqueness of limit cycles is proved in the next theorem.
The proof follows the steps of the smooth case with the adequate changes.

Theorem 8. Consider the system

dx

ds
= −ψ (y)− F (x) ,

dy

ds
= g (x) ,

(15)

where

F (x) =
∫ x

0

f (s) ds

and f (x) is a piecewise linear function (non necessarily continuous). As-
sume that the following conditions hold for x ∈ (a, b), a < 0, b > 0 and
y ∈ R:

(i)The origin is a singular point.
(ii)xg (x) > 0 for x �= 0 and yψ (y) > 0 for y �= 0.
(iii)Functions g (x) and ψ (y) are continuously differentiable, g′ (0) > 0,

ψ′ (0) > 0, ψ′ (y) ≥ 0 and f (0) < 0 (respectively, f (0) > 0).
(iv)There are real numbers u, v such that the function

f1 (x) = f (x) + g (x) [u+ vF (x)]

has simple zeros x1 < 0 and x2 > 0, and f1 (x) ≤ 0 (respectively, f1 (x) ≥
0) in (x1, x2) .

(v)Outside [x1, x2], the function f1 (x) /g (x) is nondecreasing (respec-
tively, nonincreasing).

(vi)Every limit cycle of the system is intersected by the straight lines
x = x∗, with x∗ ∈ [x1, x2].

Then, system (15) has at most one limit cycle in the strip {(x, y) : a < x < b}
and, when it exists, it is hyperbolic and stable (respectively, unstable).

Proof: We prove the theorem for f (0) < 0, the other case follows
similarly. In the strip {(x, y) : a < x < b} system (15) has a unique singular
point (0, 0), which is an unstable focus or node. Suppose that there are
more than one limit cycles surrounding the origin. Let γ1 be the closest
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limit cycle surrounding the origin, and let γ2 be the closest limit cycle
surrounding γ1.
Let γ1 = {(x (s) , y (s)) : s ∈ [0, T1]}, xl = min {x (s) : s ∈ [0, T1]}, xr =

max{x (s) : s ∈ [0, T1]}, yv = min{y (s) : s ∈ [0, T1]} and yu = max{y (s) :
s ∈ [0, T1]}. Since γ1 surrounds the origin, then xl < 0 < xr and yv < 0 <
yu, see Figure 2.

L

U = (0; yu)

V = (0; yv)

R

xr

yr

xl

yl
Ã (y) + F (x) = 0

°1

FIG. 2. Shape of the limit cycle γ1.

Since the function g (x) only vanishes at x = 0, the points U = (0, yu) and
V = (0, yv) are the unique ones on γ1 for which dy/ds = 0. Moreover, since
dy/ds = g (x) < 0 if x < 0, and dy/ds > 0 if x > 0, the cycle γ1 intersects
the graph of ψ (y) + F (x) = 0 in exactly the two points L = (xl, yl) and
R = (xr, yr), see Figure 2. The shape of the cycle γ2 is similar.
Let f (x) = akx + bk if x ∈ Ik = (ck, ck+1) for k = 1, 2, ..., n, and let

γk
p = γp ∩ Ik × R for k = 1, 2, ..., n and p = 1, 2. As it is proved in [7] also
for planar piecewise linear differential systems, the characteristic exponent
of γp is given by

cp = −
∮

γp

f (x) ds, for p = 1,2,

where we denote by
∮

γp

f (x) ds the value of
n∑

k=1

∫
γk

p

f (x) ds. Since, along

each limit cycle γp we have∮
γp

g (x) ds = 0,
∮

γp

g (x)ψ (y) ds = 0, and
∮

γp

g (x) [ψ (y) + F (x)] ds = 0,

then

cp = −
∮

γp

f1 (x) ds, for p = 1, 2.
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We shall prove that c2 < c1. To this end consider Figure 3. Application of
Green’s formula yields

∮
E1E

f1 (x) ds−
∮

DA

f1 (x) ds =
∮

E1EADE1

f1 (x)
g (x)

dy

=
∫ ∫

R1

d

dx

(
f1
g

)
dxdy ≥ 0,

∮
A1B1

f1 (x) ds−
∮

AB

f1 (x) ds = −
∮

A1B1BAA1

f1 (x)
ψ (y) + F (x)

dx

=
∫ ∫

R2

f1 (x)ψ′ (y)
(ψ (y) + F (x))2

dxdy > 0.

Similary, we obtain

∮
KK1

f1 (x) ds−
∮

BC

f1 (x) ds ≥ 0,

∮
C1D1

f1 (x) ds−
∮

CD

f1 (x) ds > 0.

We also have the inequalities

∮
B1K

f1 (x) ds ≥ 0,
∮

EA1

f1 (x) ds ≥ 0,

∮
K1C1

f1 (x) ds ≥ 0 and
∮

D1E1

f1 (x) ds ≥ 0.

Hence, c2 < c1.
Since the origin is unstable, γ1 is stable from the inside. So c1 ≤ 0.

Collecting together the above inequalities we conclude that

c2 < c1 ≤ 0. (16)

We now prove that γ1 is stable from the outside. Assume that γ1 is
unstable from the outside. Then system (15) has a solution P1P2P3 as in
Figure 4.
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°1

°2

AB

C D

A1B1

K

K1

C1
D1

E1

E

R1

R2

y = f1 (x)

x = x1 x = x2

FIG. 3. The limit cycles γ1 and γ2.

°1

x = x2

P3
P 03

P1
Q1

Q03

Q2

P2

FIG. 4. Two orbits by the flows (15) and (17).

Consider the system

dx

ds
= −ψ (y)− F (x) ,

dy

ds
= g (x) ,

(17)
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where

F (x) =
{
F (x) if x ≤ x2,

F (x) +
∫ x

x2
r (s− x2)

2
g (s) ds if x > x2,

with r a positive real number. Notice that system (17) is like system (15)
and satisfies the six conditions of the theorem.
Comparing the vector fields (17) and (15) we get that, for sufficiently

small r, system (17) has the orbit arcs P1P2P
′
3 and Q1Q2Q

′
3. Hence, in the

region bounded by the curves P1P2P
′
3P1 and Q1Q2Q

′
3Q1, system (17) has a

limit cycle γ∗2 with characteristic exponent, c∗2 ≥ 0, and inside Q1Q2Q
′
3Q1

a limit cycle γ∗1 with c∗1 ≤ 0 (because the origen is unstable). Since γ∗2
surrounds γ∗1 and c∗2 ≥ c∗1, this contradicts inequality (16). Then, γ1 is
stable from the outside, and c1 ≤ 0. But two limit cycles γ1 and γ2 having
identical stability cannot be consecutive. Thus, system (15) has not two
limit cycles.

Corollary 9. If ε > 0, then Xε,α has at most one limit cycle which,
if it exists, is hyperbolic and unstable (respectively, stable) when α ≤ 0
(respectively, α ∈ (0, 1/2]).
Proof : The change of coordinates (x, y) → (x + a,−y + ϕ(−a)) trans-
forms system Xε,α into system

ẋ = −y − F (x) ,
ẏ = g (x) ,

where g (x) = εx and F (x) = ϕ (x− α)− ϕ (−α).
Suppose α ∈ (0, 1/2]. It is easy to check that

F (x) =

⎧⎨
⎩
cx+ (1− α) (1 + c) if x < α− 1,
−x if α− 1 ≤ x ≤ α,
cx− α (1 + c) if α < x,

F ′ (x) = f (x) =

⎧⎨
⎩
c if x < α− 1,
−1 if α− 1 ≤ x ≤ α,
c if α < x,

and

f1 (x) =

⎧⎨
⎩
c+ εx [u+ v (cx+ (1− α) (1 + c))] if x < α− 1,
−1 + εx (u− vx) if α− 1 ≤ x ≤ α,
c+ εx [u+ v (cx− α (1 + c))] if α < x,

satisfy the hypotheses of Theorem 8 with f (0) < 0. Hence, system Xε,α

has at most one limit cycle and, when it exists, it is hyperbolic and stable.
For α ≤ 0 the proof follows similarly.



44 J.LLIBRE, E. NUÑEZ AND A. E. TERUEL

Proposition 10. Consider ε > 0.

(a)If α ≤ 0, then Xε,α has no limit cycles.
(b)If 0 < α ≤ 1/2, then Xε,α has a unique limit cycle, Γε,α, and it is

hyperbolic and stable.

Proof: The system Xε,α can be written as ẋ = Ax−Φ (x) , where

A =
( −c 1
−ε 0

)
and Φ (x) =

⎧⎪⎨
⎪⎩
(c+ 1, α)T if x < −1,
(−x (c+ 1) , α)T if − 1 ≤ x ≤ 0,
(0, α)T if 0 < x.

Thus, if x (s) is a solution of Xε,α, then

x (s) = esAx (0) +
∫ s

0

e(s−r)AΦ (x (r)) dr.

Since the eigenvalues of A are negative, there exist positive constants
M,m such that

∣∣∣∣esA
∣∣∣∣ ≤Me−ms, for every s ∈ R, see for instance [9], page

56. Furthermore, there exists a positive contant K such that ||Φ (x)|| ≤ K,
for every x ∈ R2. Hence

||x (s)|| ≤Me−ms

(
||x (0)|| − KM

m

)
+
KM

m
for all s > 0.

Then, there exists a compact set in R2 which contains the ω–limit set of
any orbit of Xε,α.
(a) Suppose that Xε,α has a limit cycle. From Corollary 9 it is unique

and unstable. In contradiction with the fact that there exists a compact
set which contains the ω–limit set of any orbit of Xε,α.
(b) Since the unique singular point of Xε,α is unstable (see Proposition

7) and there exists a compact set which contains the ω–limit set of any
orbit of Xε,α, by the Poincaré–Bendixson Theorem we conclude that there
exists a limit cycle. From Corollary 9 it is unique and stable.

5.2. Behaviour of Γε,α when ε tends to 0
For ε = 0, every point belonging to the curve L = {y = ϕ (x)} is a

singular point of X0,α and, except (−1, 1) and (0, 0) , they are normally
hyperbolic singular points (see for more details [6]). Outside L, the orbits
of X0,α are contained in horizontal straight lines.
The phase portrait of X0,α is given in Figure 5.
We can recognize four different kinds of closed curves formed by solutions,

see Figure 6. The question is to identify which of these limit periodic sets,
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x

y

L

FIG. 5. Phase portrait of X0,α.

see for a definition [11], can be approached by the one–parameter family
of limit cycles Γε,α(ε) of the one–parameter family of systems Xε,α(ε). The
limit periodic sets (a), (b) and (c) are commonly called “canards” (ducks),
because of the shape of the (c) case. The limit periodic set (d) is called
“big”.

(a) (b)

(c) (d)

FIG. 6. Possible limit periodic sets of Xε,α when ε ↘ 0.

Using the closing equations we obtain the following quantitative infor-
mation about the limit cycles Γε,α.

Theorem 11. The following statements hold.

(a)If ε > 1/4, the limit cycle Γε,α borns from a Hopf bifurcation at the
origin when α = 0.
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(b)If ε ≤ 1/4, the limit cycle Γε,α emerges from the boundary of an
elliptic sector when α = 0. Moreover, Γε,α is not contained in the half–
plane R = {(x, y) : x ≥ −1}.

(c)There exists a differentiable function α : (1/4,+∞) → (0, 1/2) such
that Γε,α(ε) is contained in R and Γε,α(ε) is tangent to the straight line
x = −1. Moreover,

α (ε) ≈ 1

1 +Ke

π√
4ε− 1

when ε is close to 1/4. Therefore, lim
ε↘1/4

α (ε) = 0 and lim
ε↘1/4

α′ (ε) = 0.

(d)The limit of Γε,α when ε tends to 0 is the big limit periodic set.

Proof : (a) Assume that ε > 1/4. From Proposition 10 when α ≤ 0 the
system Xε,α has no limit cycles, and for α ∈ (0, 1/2] there exists a unique
limit cycle Γε,α. Therefore a limit cycle bifurcates at α = 0. We want to
study the kind of bifurcation that takes place at α = 0.
The points e+ = (−α,−αc)T and e− = (−α, α)T are the solutions of the

equations Ax − b = 0 and Bx − b = 0 respectively, and the origin, p, is
the contact point of the flow of system Xε,α with the straight line x = 0.
Set p+ = p− e+ and p− = p− e−, and let HA (u, v) and HB (u, v) be the
first integrals of systems ẋ = Ax − b and ẋ = Bx − b related to p+ and
p−, respectively, see (14).
If Γε,α ⊂ R, then the closing equations

HA (1, v) = HA (1,−w) ,
HB (1, v) = HB (1,−w) ,

have exactly one solution (v0, w0), which determines the limit cycle Γε,α.
Moreover Γε,α intersects the y–axis at points v0ṗ and −w0ṗ, where ṗ =
(0,−εα)T .
The eigenvalues of the matrices A and B are denoted by λk and Λk,

respectively. From Theorem 5(a), HA (1, v) = (1 + λ1v)
λ2 (1 + λ2v)

−λ1

and HB (1, v) = (1 + Λ1v)
Λ2 (1 + Λ2v)

−Λ1 . Since λk and Λk only depends
on ε (see (14) and remember that c is fixed), then v0 and w0 only depends
on ε. Thus, we write v0 (ε) and w0 (ε). Furthermore, when α tends to
0, the intersection points, v0 (ε) ṗ and −w0 (ε) ṗ, of Γε,α with the y–axis
tends to the origin. Hence, we conclude that the limit cycle emerges from
a Hopf bifurcation at the origin when α = 0.
(b) If 0 < ε ≤ 1/4, then 0 > λ1 > λ2 and 1 > Λ1 ≥ Λ2 > 0. It is

easy to check that the eigenvectors of the matrix A associated to λ1 and
λ2 are respectively (1, λ1 + c)T and (1, λ2 + c)T , and the eigenvectors of
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the matrix B associated to Λ1 and Λ2 are respectively (−1, 1− Λ1)
T and

(−1, 1− Λ2)
T
.

Suppose α = 0 and let γ1 be the orbit which intersects the straight line
x = −1 at (−1, 1− Λ1)

T , see Figure 7(a). Let r1 = {(x, y) : y−x (λ1 + c)−
1 − c = 0} and r2 = {(x, y) : y − x (λ1 + c) = 0}. The half–lines r1 with
x < −1 and r2 with x > 0 are contained into two orbits of Xε,α. Hence, it
is easy to check that the origin is the α– and the ω–limit set of γ1. Thus,
γ1 ∪ {p} is a homoclinic loop. Let Σγ1 be the open region bounded by the
homoclinic loop, then any orbit contained in Σγ1 is a homoclinic loop.
Since Λ1 ≥ Λ2 > 0, the point (−1, 1− Λ2)

T is contained in Σγ1 and
each orbit γ of the system having the origin as α–limit set is tangent to
the vector (−1, 1− Λ2)

T at the origin, see Figure 7(a). Therefore, γ is
contained in Σγ1 and γ1 is the boundary of an elliptic sector.
Suppose now that α ∈ (0, 1/2]. From Proposition 10(b) there exists a

unique limit cycle, Γε,α. Since the singular point e− is contained in R and
it is a linear node, then the limit cycle Γε,α cannot be contained in R.
Let ΣΓε,α be the open region bounded by the limit cycle Γε,α. Since the

origin is the contact point of the flow of the system with the straight line
x = 0, then the origin is contained in ΣΓε,α .
Let q1 be the intersection point of the limit cycle Γε,α with the straight

line x = 0, see Figure 7(b). Suppose now that the point (−1, 1− Λ1)
T is

not contained in ΣΓε,α . Then the limit cycle Γε,α and the straight line, r,
passing through the origin and the point (−1, 1− Λ1)

T intersect at a point
q2 = (x0, y0)

T with −1 ≤ x0 ≤ 0. Thus, there exists a point q3 contained
in the orbit arc q1q2 such that the vector field on q3 is parallel to the
eigenvector (−1, 1− Λ1)

T . Since the system in this region is linear, the
point q3 is on a repelling invariant linear subspace of the singular point,
in contradiction with the fact that q3 is on the limit cycle. Therefore, the
point (−1, 1− Λ1)

T is contained in ΣΓε,α .
Let r1 = {(x, y) : y − x (λ1 + c) − 1 − c − αλ1 = 0} and r2 = {(x, y) :

y−x (λ1 + c)−αλ1 = 0}. The half–lines r1 with x ≤ −1 and r2 with x > 0
are contained into two orbits of Xε,α, see Figure 7(b). When α tends to
0, the half–lines r1 and r2 tends to the half–lines r1 and r2, respectively,
in Figure 7(a). Thus, when α tends to 0 the limit cycle Γε,α tends to the
boundary of the elliptic sector.
(c) Since q =

(
1− 1

α

)
p− is the contact point of the flow of system Xε,α

with the straight line x = −1, the existence of a limit cycle, Γε,α, of Xε,α

contained in the half–plane R and tangent to x = −1 is determined by the
equation

μ (ε, α) = HB

(
1− 1

α
, 0

)
−HB (1, v0 (ε)) = 0. (18)
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(a) (b)

°1

r1
r2

¡";®

r1
r2

(¡1; 1¡¤1) (¡1; 1¡¤1) q1

°

FIG. 7. (a) Boundary of the elliptic sector when α = 0. (b) Limit cycle Γε,α when
α ∈ (0, 1/2].

Where (v0(ε), w0(ε)) is the solution of the closing equations

HA (1, v) = HA (1,−w) ,
HB (1, v) = HB (1,−w) .

In this case, the limit cycle intersect with the straight line x = 0 at points
v0(ε)ṗ and −w0(ε)ṗ, for more details see the proof of the statement (a).
Assume ε0 > 1/4 and α > 0. When α is sufficiently small the limit cycle

Γε0,α is contained in R, see Statement (a); and when α is sufficiently close
to 1/2, by the symmetry around the point x = −1/2, y = 1/2, α = 1/2,
the cycle Γε0,α intersects with the three open regions of the phase space
{(x, y) : x < −1}, {(x, y) : −1 < x < 0} and {(x, y) : 0 < x}. Hence, there
exists α0 ∈ (0, 1/2) such that μ (ε0, α0) = 0.
Since

∂μ

∂α

∣∣∣∣
(ε0,α0)

=
∂HB

∂u

∣∣∣∣(
1− 1

α0
,0
) 1
α2

0

= (Λ2 − Λ1)
(
α0 − 1
α0

)Λ2−Λ1−1 1
α2

0

�= 0,

by the Implicit Function Theorem there exists a differentiable function
α : (1/4,∞) → (0, 1/2) such that μ (ε, α (ε)) = 0. From expression (18)
and Theorem 5(b) we obtain that

(1 + Tv0 (ε) +Dv0 (ε)
2) = e

2T√
4D − T 2

 (ε)(
1− 1

α (ε)

)2

,
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where the angle

 (ε) = arctan

(
v0 (ε)

√
4D − T 2

2 + Tv0 (ε)

)
− arctan (0)

belongs to the same domain that the angle θ covered by the solution be-
tween the points v0 (ε) ṗ and q, see Remark 6.
Isolating α (ε) we obtain that

α (ε) =
1

1 +
√
1 + Tv0 (ε) +Dv0 (ε)

2
e

−T√
4D−T2

�(ε)
.

Since HA (u, v) = (u+ λ1v)
λ2 (u+ λ2v)

−λ1 with 0 > λ1 > λ2, v0 (ε) > 0
and w0 (ε) > 0, from equation

(1 + λ1v0 (ε))
λ2 (1 + λ2v0 (ε))

−λ1 = (1− λ1w0 (ε))
λ2 (1− λ2w0 (ε))

−λ1

follows that 1 + λ1v0 (ε) > 0, and then v0 (ε) < 2/
(
c−√c2 − 1

)
. Thus,

when ε tends to 1/4 the intersection point v0 (ε) ṗ tends to the origin, the
angle θ tends to −π and lim

ε↘1/4
 (ε) = −π.

Therefore, it is easy to check that

α (ε) ≈ 1

1 +Ke

π√
4ε− 1

when ε is close to 1/4.
(d) If ε tends to zero, the eigenvalue Λ1 of the matrix B tends to 1.

Therefore, (−1, 1− Λ1)
T tends to (−1, 0)T . Since (−1, 1− Λ1)

T is con-
tained in ΣΓε,α (the open region bounded by Γε,α), see Figure 7, then Γε,α

tends to the curve represented in Figure 5(d).
From Theorem 11, it follows that the bifurcation set for the limit cycles

of systems Xε,α when ε > 0 and α ∈ (−∞, 1) are the half–line H0 =
{(0, ε) : ε > 1/4} and the segment HES = {(0, ε) : 0 < ε ≤ 1/4}. The half–
line H0 corresponds to a Hopf bifurcation at the origin, and the segment
HES corresponds to a bifurcation of a limit cycle from a homoclinic loop,
see Figure 8. The dashed lines are not bifurcation lines of limit cycles, but
they represent the transition of the singular point from focus to node. For
parameters on the shading region bounded by the graph of α (ε), the limit
cycle Γε,α is not contained in the half–plane R.
Acknowledgements. The authors are partially supported by a DGES
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FIG. 8. Bifurcation set of Xε,α, where ε ≥ 0 and α ∈ (−∞, 1/2] .
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