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Summary. - -  We study, un.der the full action of gauge invariancc in- 
cluding two Itiggs phenomena, Weyl's gauge model coupled to a Higgs 
field. As a result, we obtain the coupled Einsteia-Wcyl field equations with 
the cosmological constant, which are analogous to the Einstein-Maxwell 
equations apart from difficulties inherent to Weyl's geometry. The vacuum 
solution of a Higgs field will be discussed in connection with a manifestly 
gaugc-invariant formulation of the Lagrangian density of gravitation. A 
generalized action which is a function of the gauge-invariant scalar cur- 
vature is examined. 

PACS. 11.10. - Yield theory. 

l .  - I n t r o d u c t i o n .  

Recent  studies on Weyl 's  gauge model  coupled to u Higgs field have been 

p romoted  in connections with the  appearance of the cosmological constant  and 

the  vacuum solution of u Higgs field (1-3). They  are mainly concerned with 

the Lagrnngian densi ty  of ~ Higgs field which is 7 in terms of a mnnifestly 

gauge-invariant  formul~tion~ the Lugrangian densi ty of gravitution. 

(1) G. DOMOKOS: DESY prepriut, DESY 76/24 (1976). 
(2) V. DE ALFXRO, S. FUBI~I and G. FURLa~: 2Vuovo Cimento A, 50, 523 (1979). 
(8) S .L .  ADLER: Phys. Rev. ~ett., 44, 1567 (1980). 

462 



THE COUFLED EINSTEIN-~VEYL FIELD EQUATIONS ETC. ~3 

On the other hand, the study on Weyl's gauge field has not been developed 
except for Utiyama~s work (4); he investigated, several years ago, in good 
earnest WeyPs gauge field by introducing a new scalar field called a measure 
field to avoid the two defects of Weyl's gauge theory which are: a) an invariant 
distance ds at any world point located in a gauge field cannot have a definite 
magnitude, b) Einstein equation in the conventional form violates the gauge 
invariance. Because of the complicated formulation of the theory~ his work 
did not rigorously lead to definite results. 

One defect (b)) can be resolved by making use of a manifestly gauge- 
invariant formulation which corresponds to the full action of gauge invariance 
and which was used by UTzYA~A (4). The other (a)) can also be avoided by 
the use of a measure field, but we are in this case faced with a complicated 
formulation, so we are so far from obtaining rigorous solutions (5). In this 
paper we arc at the sacrifice of avoiding defect b)~ but another at tempt of 
avoiding defect b) is seen in (6). 

In general, a Higgs field v; is massless and complex, but the phase of ~ (the 
Goldstone boson) can be removed by a gauge transformation (the Higgs phe- 
nomenon) (~). So, if we introduce a polar decomposition of ~, we can treat the 
radial part  of ~ as the Higgs field, which is nonnegative and massless, and 
which is denoted by ~. 

The affine c o n n e c t i o n / ~  in WeyFs geometry is defined by 

(1.1) 

where 

(1.2) 

1 
F~---- -~ g~[V#g~--~- A~g~--  V~g.~], 

which is transformed as 

V~g,.~ --> A2V, g~ 

under the gauge transformation 

2 a,A 
(1.3) cf -->A-lcf, A#-+A~, ] A ' gl"~A2g~"~ g~"~A-~g~"'  

where A is an arbitrary function of x. 
Here A,  and ½] are Weyl~s gauge field and the charge carried by the 

Higgs field ~p, respectively. 

(l) R. UTIYAMA" Prog. Theor. Phys., 53, 565 (1975). 
(5) iV[. NISHIOK~: Nuovo Cimento A, 75, 80 (1983). 
(s), 1~. NISHIOKA: •ett. £Vuovo Cimento, 36, 266 (1983). 
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Therefore, F~  is gauge invariant and is expressed in the following way: 

(1.4) /~= I 1 1 + 1/{~A,-~ hA ~ n - -  X g~,} 
t I z / ~ v  

where ( 1 }  is the Christ°ffel s y m b ° l " / ~ v  

The curvature tensor Wn, derived from the I~,  is given by 

(1.5) wn, ant; ~ -  r ~ j T ~ -  r~,r~ , 

the corresponding scalar curvature W is 

3/2 An An ~ 3JA~.n, (1 .6)  W = R -}- ~ , 

where A~n is the eovariant derivative of An with respect to xn. 
The usual form of the gravitational part of the Lagrangian density %/-~---g W 

is not gauge invariant, so we make it gauge invariant by making use of the 
Higgs field 99 

1 
(1.7) /ha -- 12 ~ 9°~ W. 

The Lagrangian density of the Itiggs field is given by 

(~.s) ~ . = - V = - 0  Vn~V,~gn~+ ~ '  , 

and the Lagrangian density of Weyl's gauge field is 

1 - - -  LA = -- ~ %/= g gn, goo ~,~e .E,a (1.9) 

where 

(1.1o) 
f 

By making use of (1.10), the total Lagrangian density L =--L a + La + La is 
given by 

(1.11) /) ---- --  %/----~ {V, 9~V, ~gn, -}- 4A--7 ~o, -/- 1 . i g 'g°aI"oF~+ 

1~ 1 1 1  } 
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We divide the total Lagrangian density into two parts, L~ and L,,  as follows: 

(1.12) 

L = L.,A- Zg ~ 

] 

1 1 /5 
~ = - v~---# - ~  9"'~"q~'q + T~ ~ R  + ~ ~ +  

where the last term of L, is the divergent term in the calculus of variation~ 
so it disappears. Then we neglect it hereafter. 

Lg is often used in a scalar-tensor theory of gravitation (7.s) in connection 
with broken symmetry and the appearance of the cosmological constant. 
Moreover, recent studies on Weyl~s gauge model coupled to a Itiggs field (1.~) 
exhausted much effort in obtaining the vacuum solution of the Higgs field. 

In sect. 2, using L,~ we study the connection between a manifestly gauge- 
invariant formulation and the Higgs-Kibble transformation (9) based on spon- 
taneous symmetry breaking. In  sect. 3, we will obtain the coupled Einstein- 
Weyl equations for WeyPs gauge field and their solutions. In the final section, 
by making use of the gauge-invariant scalar curvature, we study an action which 
is expressed as a function of the gauge-invariant scalar curvature. 

2 . -  A manifestly gauge-invariant formulation and the Higgs-Kibble trans- 
formation. 

Using Zg (1.12), we study the connection between a manifestly gauge- 
invariant formulation and the Higgs-Kibble transformation based on spon- 
taneous symmetry breaking. We assume the Higgs field ~ to have nonvanishing 
vacuum expectation value (we may work in the tree approximation). 

From (1.12)~ we have the field equation for ~ and the gravitational equa- 

tion, respectively, 

(2.1) 

(2.2) 

1 ~ 3  = 0 []~ + ~ R - ~  

-6- G~,, = T~,, 

(7) Y. ~TugII: Ann. Phys. (_N'. Y.), 69, 494 (1972). 
(s) A. Zv, E: Phys. l~ev. Lett., 42, 417 (1979). 
(g) F. Gi~I~SEY: Ann. Phys. (N.Y.), 24, 211 (1963). 
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where Gu~-~ Ru~-- ~ ~gu~R, Tu, is the energy-momentum tensor of the field ~0 (a,~). 
Taking the trace of (2.2)7 we obtain 

1 ~ ~) 
(2.3) ~ ~ o R @ [ ~ - - ~  = 0 .  

As we assume for ~ nonvanishing vacuum expectation value (spontaneous 
symmetry breaking), (2.1) is a consequence of (2.2). 

is a radial part  of ~p and is assumed to be nonzero, so ~ is considered to 
be positive. We consider the following gauge transformation: 

(2.4) ~Tu, = q~*gu,, ~u~ = q~-~ gu, , Bu = A n - -  2 ~" ~ /~  . 

This gauge transformation was fully used by U ~ ] ¥ ~ A  (~) in his theory of Weyl's 
gauge field. The gauge transformation (2.4) except for the last relation of (2.4) 
is equivalent to the finite Weyl transformation which is used by Do~oKos (~) 

(2.5) ~ ' =  exp [21- Q] ~ ,  g~ = exp [-- ~ ] gu~, 

where - -  c~ < ~(x) < c~, ~ ' =  const (which can be chosen to be unity). Fv- 
]3Im et al. (2) considered the case in which g:~ = Vu~ (Mlnkowski metric), in 
our notation (2.4), ~ , , =  ~u~. 

We notice here that,  in Utiyama's original usage of (2.4), ~ is not limited 
to be positive. 

By making use of (2.4) or (2.5), we can absorb the co-ordinate dependence 
of ~ into the metric, this is the ttiggs-Kibble transformation. Moreover, we 
would like to stress that  any quantity like, say, L~ or Lg, if written in terms 
of ~ ,  Bu, etc., is a gauge-invariant quantity. 

In terms of ~ ,  gu~, Bu (which are also gauge invariant), we express ~ 
and L~ as 

(2.6) 

(2.7) 

Zm = - -  V'--  g t~ ]2 BuB~gu~-t- 
J 

where/~u, = 3uA~ --  ~Au =- ~uB, --  ~Bu , /~  is the scalar curvature in terms of gu~. 
From /Sg, we obtain from the variational principle the Einstein equation 

with the cosmological constant on the assumption that  ~ ' =  unity # 0  

1 
(2.8) Gu,-- ~ ~t~u, = aTu~ 
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where G,~ is the  Einstein tensor in terms of ~,~, T,~ is the  energy-momentum 
tensor made from Z . ,  a is a constant .  

I f  we neglect T,~, as for the  solution of (2.8), we obtain a space of constant  
curvature.  Wi th  regard to the  vacuum solution of 9 including the  case of a 
space of constant  curvature,  see (~.2.5). 

3. - The coupled Einstein-Weyl equations. 

From (2.6) and (2.7), we obtain from the  variat ional  principle the  coupled 
Einstein-Weyl equations. For  the  variat ion of B~ we have 

(3.1) ~ ( % / ~  ~ )  + ~ ] %/-- gB~ = O . 

For the  variat ion of ~ ,  we obtain (2.8). T , ,  is given by  

(3 .2)  2 g = 

) 
The trace of Tu~ is 

(3.3) ~u~,~= ~ ]~ BuBu ; 

it  is generally known (4.~0) t ha t  the  trace of T ~  vanishes, then  we have 

(3.4) BuB" : 0 . 

A s / v ~  is ant isymmetr ic  wi th  respect to # and v, we obtain from (3.1) 

(3.5) B~;~ = 0 ,  

where B ~  is the  co~¢ariant derivative with respect to x,. 
F rom (3.2) and  (3.4) T ~  becomes 

1 _ _ 1 
(3.6) T~,= ( i  ~ , g ~ a ~  ~ F a ~ - -  g~ ~oF,~)---~ ]2 B~B, . 

Comparing our results with the  coupled Einstein-M~xwell equations (11), first, 
~s for the  gravitat ional  equation (2.8) with (3.6), we have an extra t e rm which 

(10) L. GIRA.RDELLO and S. PALLU&: •UOVO Cimento A, 41, 377 (1977). 
(11) lV[. CAR~ELI: Classical 2*ields (New York, N.Y., 1982), p. 110, 189, 311. 
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is the last term of the r.h.s, of (3.6), second, Weyl's gauge field Bu in the sec- 
ond term of the 1.h.s. of (3.1) corresponds to the current density in the 
Einstein-Maxwell equation. Then the coupled Einstein-Weyl equations are 
analogous to the Einstein-Maxwell equations, but not one to one. 

As for behaviour of Bu in this framework, Bu behaves normally, because 
in Minkowski metric eqs. (3.1), (3.4) and (3.5) become 

P ] Bu Bu , 
1 \ 

[] - - -~  ] = O , B u =  O OuBu= O 

respectively, then Bu = a~ exp [ikx] with the properties 

a~ au---- 0 (null vector), au ku = 0 ,  V 1 ]3 ko= (k,),+~ . 

4 .  - A g e n e r a l i z e d  a c t i o n .  

By making use of the gauge-invariant quantities (2.4), we rewrite ~ W  
in (1.6) or (1.7) as follows: 

(4.1) 3 /~ Bu Bu + 3]B~.1, : w ' =  ~ w  = _ ~ +  ~ 

this is the gauge-invariant scalar curvature. 
We consider the following Zagrangian density Z' :  

{ 1 } 
(4.2) L' = ~ l ( w ' )  - a ~ Y " ~ W G ~ , .  , 

where /7 is, of course, gauge invariant, ](z) is a differentiable function, a is 
constant. 

The field equations derived from (4.2) contain in general derivatives of ~u, 
higher than second order, then we must introduce some conditions. W E n  (1~) 
considered the case for ](z) = z ~, but his W' was not gauge invariant, cor- 
respondingly the Lagrangian density did not. In his case he considered the 
gauge condition W ' =  const. 

According to W E n ,  we impose the gauge condition 

(4.3) W'---- eo ---- const 

on the Lagrangian density Z'. 

(12) I~. W]~YL: Sitzungsber. Preuss. Akad. Wiss., 465 (1918). 
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Using (4.3), we have  the  formula  which will be  useful  for la ter  discussion 

( 4 . 4 )  = + 

where  ]'(z) = d l /dz .  

Using (4.4) and  considering - - I / / ] ' ( eo )  to be  the  Lagrang ian  dens i ty  for our 

sys t em,  we have  

(4.5) -5 = - -L ']] ' (o~)  = - - % / - ~ g  W ' - ~  ~ + ~O, '~0~f~0F,~ , 

where  ~ ---- {l(w) - -  w]'(eo)}/]'(w), - -  a = ]'(w). 

F r o m  (4.5) and  (4.1) the  Lagrang ian  dens i ty  -5 is expressed  as 

where  the  las t  t e r m  of ~ / Z ~ W '  vanishes  because  of the  divergence in the  cal- 

culus of var ia t ion .  
Compar ing  (4.6) wi th  (2.6) ~- (2.7), we find t h a t  t h e y  have  the  same fo rm 

except  for the  numer ica l  value of coefficients. Therefore~ the  coupled 

Eins te in -Weyl  equat ions for (4.6) have  the  same forms as (2.8) and  (3.1) 
except  for the  numer ica l  value of the  coefficients, and  the  equat ion of ~Veyl's 

gauge field also produces  (3.5). The  vanish ing  of the  t r ace  of the  energy- 

m o m e n t u m  tensor  ob ta ined  f rom (4.6) in t roduces  again (3.4). We mus t  notice 

t h a t  the  cosmological  cons tan t  appears  as the  consequence of the  gauge con- 

di t ion (4.3); in case t h a t  ](z)~=z, the  cosmological  cons tan t  a lways ~ppears.  

F inal ly  we m a y  conclude t h a t  (4.6) and  (2.6) -~ (2.7) will be  physical ly  equi- 
va len t  in c~se t h a t  the  Higgs-Kibble  t r ans fo rma t ion  (2.5) or (2.4) can apply ;  
in o ther  words, the  Higgs field is ~bsorbed into the  met r ic  and  the  Lagrang ian  

densi ty  can be wr i t t en  in t e rms  of t he  gauge- invar ian t  quanti t ies.  

$ $ $  

We would like to t h a n k  Prof.  G. D o ~ o K o s  for sending us the  p rep r in t  on 

b roken  Weyl  symmet ry .  

O R I A S S U N T O  (*) 

Si studia, so,to l'azione piena dell'invarianza di gauge che include due fenomeni di 
Higgs, il modello di gauge di Weyl accoppiato ad un campo di Higgs. Come risultato 
si ottengono le equazioni di campo accoppiate di Einstein-Weyl con la costante cosmo- 
logica, che sono analoghe alle equazioni di Einstein-Maxwell tranne per difficolt~ inerenti 
alia gcometria di Weyl. La soluzione nel vuoto di un campo di Higgs sar~ discussa in 
connessione con una formulazione palesemente invariante di gauge della densit~ la- 
grangiana di gravitazione. Si esamina un'azione generalizzata eh6 ~ funzione della cur- 
vatura sealare invariante di gauge. 

(*) Traduzione a cura della Redazione. 
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CBn3annble noaenb~e ypannenna ~3fmmTefina-Befi~g~ c gOCMO~OtTgqect~ofi noeTommofi n 

pooh ~ y x  ~BJIenm~ XmTca B KaYm6pOB0qH0fi Mo~e.~m Beft~m, cnn3annofi c no.~IeM XmTca.  

Pe3IoMe ( * ) . -  Mbr Hcc~e]IyeM rann6poBoqnyro MO~enb Be~p~q, CB~3anay~o c no~IeM 
Xm-rca. M~,t nonyqaeM caz3aim~ie no~eBbie y p a B n e i ~  3~amTe~Ha-Be~Ia c rOCMO- 
norri~eci~o~ nocroariao~, roTopI, Ie aaaaorrtqrm~ ypaBHenmcnvt 3fimnTe~ta-MarcBeJIaa, 
3a ncrnm~ermeM Tpy~I~OCTe~, nprIcyumx reoMeTprm Befiaz. BaKyyMHoe penIerrge ~zut 
noaz Xnrrca o6cym~aeTc~ B CB~I3H C $[BHO~ Kann6pOBOqaO mmaprmHTHO~ qbopmynn- 
pOBKOfi ]].rIOTIIOCTI,I .rlarpart~aHa ~ng rpaBnTaI~rn~. Hccne)/yeTc~ o6o6mermoe ~eficT- 
BHe, KOTOpOe gBYI~eTC~I qbyHr, I~ne~ KanrISpoBo~HO rmBapHaHTHO~ cKan~pHO~ xprmn3rn, i. 

(*) 1-lepeee3eno pe3atcquef¢. 


