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Summary. — We study, under the full action of gauge invariance in-
cluding two Higgs phenomena, Weyl's gauge model coupled to a Higgs
field. As a result, we obtain the coupled Einstein-Weyl field equations with
the cosmological constant, which are analogous to the Einstein-Maxwell
equations apart from difficulties inherent to Weyl’s geometry. The vacuum
solution of a Higgs field will be discussed in connection with a manifestly
gauge-invariant formulation of the Lagrangian density of gravitation. A
generalized action which is a function of the gauge-invariant scalar cur-
vature is examined.

PACS. 11.10. — Field theory.

1. — Introduction.

Recent studies on Weyl’s gauge model coupled to a Higgs field have been
promoted in connections with the appearance of the cosmological constant and
the vacuum solution of a Higgs field (?). They are mainly concerned with
the Lagrangian density of a Higgs field which is, in terms of a manifestly
gauge-invariant formulation, the Lagrangian density of gravitation.

(1) G. Domoxos: DESY preprint, DESY 76/24 (1976).
(?) V. pE Avrraro, 8. Fueint and G. FurraN: Nuovo Cimento A, 50, 523 (1979).
(3) S. L. ApLER: Phys. Rev. Lett., 44, 1567 (1980).
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On the other hand, the study on Weyl’s gauge field has not been developed
except for Utiyama’s work (4); he investigated, several years ago, in good
earnest Weyl’s gauge field by introducing a new scalar field called a measure
field to avoid the two defects of Weyl’s gauge theory which are: @) an invariant
distance ds at any world point located in a gauge field cannot have a definite
magnitude, b) Einstein equation in the conventional form violates the gauge
invariance. Because of the complicated formulation of the theory, his work
did not rigorously lead to definite results.

One defect (b)) can be resolved by making use of a manifestly gauge-
invariant formulation which corresponds to the full action of gauge invariance
and which was used by UrrvaMA (*). The other (a)) can also be avoided by
the use of a measure field, but we are in this case faced with a complicated
formulation, so we are so far from obtaining rigorous solutions (®). In this
paper we are at the sacrifice of avoiding defect b), but another attempt of
avoiding defect b) is seen in (%).

In general, a Higgs field y is massless and complex, but the phase of y (the
Goldstone boson) can be removed by a gauge transformation (the Higgs phe-
nomenon) (). So, if we introduce a polar decomposition of y, we can treat the
radial part of v as the Higgs field, which is nonnegative and massless, and
which is denoted by ¢.

The affine connection ij in Weyl’s geometry is defined by

1
(1.1) T’;},, = 3 gﬂ"[Vugw—l— Avgua— Vogu],
where
(1.2) Vygva: augvo + fAugro' ’

which is transformed as
Vugpo' —~> A2Vﬂgv6
under the gauge transformation

(13) ¢-—A7g, Au—>AM_‘7"/Ty Gu—> A2 Guy, g7 —> A2 g,

where A is an arbitrary function of .
Here A, and }f are Weyl’s gauge field and the charge carried by the
Higgs field ¢, respectively.

) R. Urivama: Prog. Theor. Phys., 53, 565 (1975).
() M. NisaiorA: Nuovo Cimento A, 75, 80 (1983).
). M. Nisuioka: Lett. Nuovo Cimento, 36, 266 (1983).
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Therefore, I’;}v is gauge invariant and is expressed in the following way:

A 1
(1.4) Ff'w= {‘u/y} —|—- 5 f{éf‘ Av —[— 6ﬁAu— Alg,w} ,

where {:y} is the Christoffel symbol.

The curvature tensor Wy, derived from the I’;}v is given by
(1.5) W= 0,00 — 0,5+ I I%— I, T%,,

uy e

the corresponding scalar curvature W is
(1.6) W= R+ fd,dnt3p4n,,

where A* is the covariant derivative of A# with respect to .

The usual form of the gravitational part of the Lagrangian density v—g W
is not gauge invariant, so we make it gauge invariant by making use of the
Higgs field ¢

1
(1.7) qu_ﬁﬂ/—_g(pzw.
The Lagrangian density of the Higgs field is given by

1 A
(1.8) Ly=—+/—¢ 5 VaupVypg - 71_!¢4 ,

and the Lagrangian density of Weyl’s gauge field is

1
(1.9) L,= —Z\/—g!]”ggglﬂugFWy
where
(1.10) V”(p =3u(p—2z.Au(p, F[.WZ auAy— avAu-

By making use of (1.10), the total Lagrangian density L = L,+ L, + L, is
given by

i 1
(1.11) L=—+=7yg {Vu(vaq?y’” -+ 4—!90“—]“ i 94 920 F o Fyo +

1

1 11 —_
+ E(pﬁR—égl"‘awpaﬂp t3 ey ou(v="g pg~ af‘i’)} .
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We divide the total Lagrangian density into two parts, L, and L,, as follows:
L =L,+L,,

T = — V=G { TV + {07 TP

(1.12) 1 1 )
Ly = —v/=91=5 9" 0uplsp + 5 "B + 9+

1 1 S
+ 5 V=g au(\/—‘g‘P!]‘an‘P)}y

where the last term of L, is the divergent term in the caleulus of variation,
so it disappears. Then we neglect it hereafter.

L, is often used in a scalar-tensor theory of gravitation (%#) in connection
with broken symmetry and the appearance of the cosmological eonstant.
Moreover, recent studies on Weyl’s gauge model coupled to a Higgs field (*2)
exhausted much effort in obtaining the vacuum scolution of the Higgs field.

In sect. 2, using L,, we study the connection between a manifestly gauge-
invariant formulation and the Higgs-Kibble transformation (°) based on spon-
taneous symmetry breaking. In sect. 3, we will obtain the coupled Einstein-
Weyl equations for Weyl’s gauge field and their solutions. In the final section,
by making use of the gauge-invariant scalar curvature, we study an action which
is expressed as a function of the gauge-invariant scalar curvature.

2. — A manifestly gauge-invariant formulation and the Higgs-Kibble trans-
formation.

Using L, (1.12), we study the connection between a manifestly gauge-
invariant formulation and the Higgs-Kibble transformation based on spon-
taneous symmetry breaking. We assume the Higgs field ¢ to have nonvanishing
vacuum expectation value (we may work in the tree approximation).

From (1.12), we have the field equation for ¢ and the gravitational equa-
tion, respectively,

1 A
(2.1) Op+59R—59° =0,

2
(2.2) %‘ Guo= Ty,

(") Y. Fuou: Ann. Phys. (N. X.), 69, 494 (1972).
(®) A. ZeE: Phys. Rev. Lett., 42, 417 (1979).
(*) F. GiUmsey: Ann. Phys. (N.Y.), 24, 211 (1963).
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where Gu= Ru— }guwR, Ty is the energy-momentum tensor of the field ¢ (2).
Taking the trace of (2.2), we obtain

1 A
(2.3) ¢(5¢R+D¢—g¢3)=0-

As we assume for ¢ nonvanishing vacuum expectation value (spontaneous
symmetry breaking), (2.1) is a consequence of (2.2).

@ is & radial part of y and is assumed to be nonzero, so ¢ is considered to
be positive. We consider the following gauge transformation:

_ _ 2
(2.4) Juw=@*Juw, *=q¢2g", By=A,— 7 Suply .

This gauge transformation was fully used by UTrvAMA (4) in his theory of Weyl’s
gauge field. The gauge transformation (2.4) except for the last relation of (2.4)
is equivalent to the finite Weyl transformation which is used by DoMoxos (1)

, : 1
(2.5) ur= exp[—elgw,  ¢'=exp [5 @] ?s

where — oo << () < oo, ¢'= const (which can be chosen to be unity). Fu-
BINT ¢t al. (?) considered the case in which g;w= 7,, (Minkowski metric), in
our notation (2.4), Gur= nuv.

We notice here that, in Utiyama’s original usage of (2.4), ¢ is not limited
to be positive.

By making use of (2.4) or (2.5), we can absorb the co-ordinate dependence
of ¢ into the metrie, this is the Higgs-Kibble transformation. Moreover, we
would like to stress that any quantity like, say, L, or L,, if written in terms
of guv, By, etc., is a gauge-invariant quantity.

In terms of §u,J*, B, (which are also gauge invariant), we express L,
and L, as

— (1 1
(2.6) Lp=—V— g{l 2B, B, g» 1 guvgeuFunga} ,
2.7 I,——2v=j(E+1z
( . ) V_—lz —g +2 ’

where Fuy= 0ydy— 0y Ay= 0uBy— 0,B,, Ris thescalar curvature in terms of gpy.
From I,, we obtain from the variational principle the Einstein equation
with the cosmological constant on the assumption that ¢'= unity =40

~ 1. _
(2.8) GMI"— Z }.g‘up = aT‘,uJ ]
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where G, is the Einstein tensor in terms of gu, Tu is the energy-momentum
tensor made from L,, a is & constant.

If we neglect T',,, as for the solution of (2.8), we obtain a space of constant
curvature. With regard to the vacuum solution of ¢ including the case of a
space of constant curvature, see (1:%5).

3. — The coupled Einstein-Weyl equations.

From (2.6) and (2.7), we obtain from the variational principle the coupled
Einstein-Weyl equations. For the variation of B, we have

(3.1) &(V—g Fw) + % f2V—GBu=10.

For the variation of ., we obtain (2.8). T, is given by

— L | —
(3.2) Tuv‘-‘-: 2 'éﬁ/’\/— -
_ 1 _ {1 _ 1.
= — §e Fyp Fyo— 5 2BuBy+ Guw (Z 2 Ba B g |- Zg“ﬁg‘g”FaeFﬂc) .

The trace of T, is

(3.3) g Tow=3 P BuBH

it is generally known (1) that the trace of 7T',, vanishes, then we have
(3.4) B,Br=0.

As Py, is antisymmetric with respect to y and », we obtain from (3.1)

(3.5) ’ B* =0,

s

where B, is the covariant derivative with respect to a*.
From (3.2) and (3.4) T, becomes

— 1_ _ . _ 1
(3.6) Tw= (E guvg“ﬂgWFanga— gQ"Fu@Fm) -5 f2B.B,.

Comparing our results with the coupled Einstein-Maxwell equations (1), first,
as for the gravitational equation (2.8) with (3.6), we have an extra term which

(1) L. GIRARDELLO and S. PALLUA: Nuovo Cimento A, 41, 377 (1977).
(*Y) M. CarmEeLl: Olassical Fields (New York, N, Y., 1982), p. 110, 189, 311.
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is the last term of the r.h.s. of (3.6), second, Weyl’s gauge field B, in the sec-
ond term of the Lh.s. of (3.1) corresponds to the current density in the
Einstein-Maxwell equation. Then the coupled Eingtein-Weyl equations are
analogous to the Einstein-Maxwell equations, but not one to one.

As for behaviour of B, in this framework, B, behaves normally, because
in Minkowski metric eqs. (3.1), (3.4) and (3.5) become

1
(D_"éfz)Bﬂ=0, BNBI‘ZO’ auBu:(),
respectively, then B, = a,exp[ikz] with the properties

a” ah— 0 (nun VectOI‘) y aﬂkll: 0 , k() =] V(k’)z + %fz .

4. — A generalized action.

By making use of the gauge-invariant quantities (2.4), we rewrite @*W
in (1.6) or (1.7) as follows:

(4.1) W =¢*W=R - g f2B.Be - 3fB~,:

this is the gauge-invariant scalar curvature.
We consider the following Lagrangian density L':

(@.2) 1= {{07) = g T

where L’ is, of course, gauge invariant, f(2) is a differentiable function, a is
constant.

The field equations derived from (4.2) contain in general derivatives of Fu»
higher than second order, then we must introduce some conditions. WEYL (*2)
considered the case for f(z) = 22, but his W' was not gauge invariant, cor-
respondingly the Lagrangian density did not. In his case he considered the
gauge condition W' = const.

According to WEYL, we impose the gauge condition

(4.3) W' = w = const

on the Lagrangian density L'.

(12) H. WeYL: Siteungsber. Preuss. Akad. Wiss., 465 (1918).
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Using (4.3), we have the formula which will be useful for later discussion
(44)  SV=FHW")} =[(0)6(V—7 W) + {f(0) — of (0)}6(v—7) ,

where f'(2) = df/dz.
Using (4.4) and considering — L'/f'(w) to be the Lagrangian density for our
system, we have

43 B = Vg h ke

where 1 = {f(w) — of (©)}/f' (®), — a = ().
From (4.5) and (4.1) the Lagrangian density I is expressed as

([ _ 3 1
(4.6) L= —\/—g{R +5PBuBr A7 ggFF}

where the last term of 4/ :E W' vanishes because of the divergence in the cal-
culus of variation.

Comparing (4.6) with (2.6) -+ (2.7), we find that they have the same form
except for the numerical value of coefficients. Therefore, the coupled
Einstein-Weyl equations for (4.6) have the same forms as (2.8) and (3.1)
except for the numerical value of the coefficients, and the equation of Weyl’s
gauge field also produces (3.5). The vanishing of the trace of the energy-
momentum tensor obtained from (4.6) introduces again (3.4). We must notice
that the cosmological constant appears as the consequence of the gauge con-
dition (4.3); in case that f(z) 742, the cosmological constant always appears.
Finally we may conclude that (4.6) and (2.6) 4 (2.7) will be physically equi-
valent in ease that the Higgs-Kibble transformation (2.5) or (2.4) can apply;
in other words, the Higgs field is absorbed into the metric and the Lagrangian
density can be written in terms of the gauge-invariant quantities.

% %k %

We would like to thank Prof. G. DoMoxkos for sending us the preprint on
broken Weyl symmetry.

@ RIASSUNTO ()

8i studia, sotto 1'azione piena dell’invarianza di gauge che include due fenomeni di
Higgs, il modello di gauge di Weyl accoppiato ad un campo di Higgs. Come risultato
si ottengono le equazioni di campo accoppiate di Einstein-Weyl con la costante cosmo-
logica, che sono analoghe alle equazioni di Einstein-Maxwell tranne per difficoltd inerenti
alla geometria di Weyl. La soluzione nel vuoto di un campo di Higgs sard discussa in
connessione con una formulazione palesemente invariante di gauge della densitd la-
grangiana di gravitazione. Si esamina un’azione generalizzata che & funzione della cur-
vatura scalare invariante di gauge.

(*)  Traduzione a cura della Redazione.
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Chsazannpie MOJeBbIe ypaBHeHHs DifHmTeina-Beilisi ¢ KOCMOIOrHYecKoi HOCTOSHHOK H
PoJIb ABYX fiBJeHMii Xurrca B xka/mOpoBoumoii Moaenn Beiiid, ceasannoii ¢ mojem Xurrca.

Pesiome (*). — MEu1 mccnenyeM KanmOpOBOYHYIO MOIenb Beiins, cBf3aHHYIO ¢ IOJEM
Xwurrca. MBEI TIONyYaeM CBsA3aHHBIE TIONEBBIE ypaBHenws OifHmreitHa-Beins ¢ xocmo-
JIOTHYECKOM IIOCTOSIHHOM, KOTOpPBIE aHAJOIMYHBL YpaBHEHHSAM OiiHmreiina-Makcsenna,
33 HMCKIFOYEHHEM TPYHHOCTEH, NMPHUCYIMX reoMETpHH Beiinid. BakyymHOE peillcHHE OIS
nonss Xurrca oOCYKIAeTC B CBA3HM C fABHOM XaJmOPOBOYHO WHBAPHAHTHOM (opMyim-
pPOBKO# mioTHOCTH JlarpanxkuaHa mjasd rpasutammu. Wccneayercs oboOmenHoe neitcr-
BHE, KOTOpOe sBICTC (GyHKUHEH KaauGpOBOYHO MHBAPHAHTHON CKAJISIPHOYM KPUBH3HBL

(*) Ilepesedeno pedaxyueii.



