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Note on Nonstability of the Linear Recurrence 

By J. BRZDI~K, D. POPA, and B. XU 

Abstract. We prove a non-stability result for linear recurrences with constant coef- 
ficients in Banach spaces. As a consequence we obtain a complete solution of the 
problem of the Hyers-Ulam stability for those congruences in the complex Banach 

space. 

Throughout this note, denote by N, N0, 11~ and C, as usual, the sets of  positive 
integers, nonnegative integers, reals and complex numbers, respectively. Moreover 
K is either the field R or C, X is a Banach space over K, and ~ := {a e C I lal = 1}. 

The stability problem of functional equations was originally raised by 
S. M. ULAM [13] in 1940. He posed the following problem: under what condi- 
tions does there exist an additive mapping near an approximately additive mapping? 
In 1941, this problem was solved by D. H. HYERS [8] in the case of  Banach spaces. 

After HYERS's result a great deal of papers on this subject have been published, 
generalizing ULAM's problem and HYERS'S theorem in various directions and to 
other functional equations (see e.g. [1, 2, 3, 4, 7, 10, 12]). Furthermore, many 
surveys, specially on stability of  functional equations and their systems in several 
variables, were given successively (see e.g. [5, 6, 9]). 

The Hyers-Ulam stability of  linear recurrence with constant coefficients, a dis- 
crete case of  equations in a single variable, was investigated in [11], where the 
second author of  the present paper has proved the following theorem. 

Theorem 1. Let p E N, 3 > 0, al . . . . .  ap E K be such that the equation 

P 
rP -- Z a i r P - i  = 0 (1 )  

i=1 

admits the roots rl . . . . .  rp c K \ g and (bn)neNo be a sequence in X. Suppose that 
(Yn)neNo is a sequence in X with the property 

Ilyn+p - alYn+p-1 . . . . .  apYn -- bnl[ <_ 3, Vn E NO. (2) 

Then there exists a sequence (Xn)neNo in X, given by the recurrence 

Xn+p = a lXn+p-1  -t- ' ' "  -{- apXn -t- bn, Vn E No, (3) 
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such that 

[ly~ - x~ll < Yn E No. (4) 
- [(1 - h i ) . . . ( 1  - [ r p l ) l '  

Roughly speaking, we say that a functional equation is stable in the Hyers-Ulam 
sense if for every solution of  the perturbed equation, there exists a solution of  the 
equation that differs from the solution of the perturbed equation with a small error. 
However, because of  many later restatements (see e.g. [1, 9]) of  the original prob- 
lem, raised by S. M. ULAM in 1940, we introduce the following two definitions 
(cf. [10], p. 290). 

Definition 1. Recurrence (3) is said to be weakly stable in the Hyers-Ulam sense 
provided, for every unbounded sequence (Yn)neNo in X with 

JI 1 I I  

suPllYn+v_ _ - a lYn+p-I  . . . . .  apYn - Onl[ < CO, 
nEN 

there exists a sequence (Xn)nENo in X such that (3) holds and 

sup IlYn - Xn II < oo. 
hEN0 

Definition 2. Recurrence (3) is said to be strongly stable in the Hyers-Ulam sense 
provided for every e > 0 there exists ~ > 0 such that, for every sequence (Yn)neNo 
in X satisfying (2), there exists a sequence (Xn)ner% in X such that (3) holds and 

SUpn~N0 Ily~ - xn II < e. 

Of course some other definitions are possible, but the first one seems to be rea- 
sonably weak, while the second one is quite strong. It is easily seen that a recurrence 
that is strongly stable is also weakly stable and a recurrence which is not weakly sta- 
ble is not strongly stable either. Therefore the definitions suit well the statement of 
the next theorem, where we supplement the result of  Theorem 1 by showing that, in 
each case where at least one of the roots of  the characteristic equation (1) is in S, 
the congruence is not (weakly or strongly) stable in the Hyers-Ulam sense. Thus we 
completely solve the problem of  the Hyers-Ulam stability for the linear congruences 
with constant coefficients in the complex Banach spaces, in the sense of  either of  
the definitions. 

T h e o r e m  2. Let  IK =- C, al . . . .  , ap E K, and (bn)n~No be a sequence in X. The 

recurrence (3) is weakly (strongly, respectively) stable in the Hyers-Ulam sense i f  

and only i f  the characteristic equation (1) does not  have any root in ~. 

In the real case we have only the following. 
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Theorem 3. Let K = R, al . . . . .  ap E K, and (bn)n6l~ o be a sequence in X. As- 
sume that the characteristic equation (1) admits roots r! . . . . .  rp E R. The recur- 
rence (3) is weakly (strongly, respectively) stable in the Hyers-Ulam sense if  and 

onlyifrl  . . . . .  rp 9~ {-1 ,  1}. 

Corol lary  1. Let K = 1~, a E K, and (bn)n6No be a sequence in X. The recurrence 

Xn+l = axn + bn, u E NO (5) 

is weakly (strongly, respectively) stable in the Hyers-Ulam sense if and only if 

lal ~ 1. 

It is easily seen that Theorems 2 and 3 are immediate consequences of Theorem 1 
and the given below Theorem 4 (Corollary 1 follows from Theorem 3). 

Theorem 4. Let al . . . . .  a p c  K and (bn)n6No be a sequence in X. Suppose that 
the characteristic equation (1) admits the roots r l ,  r2 . . . . .  rp E K and at least one 
of them is of module 1. Then for any ~ > 0 there exists an unbounded sequence 
(Yn)n~No, satisfying the inequality (2), such that for every sequence (Xn)n~l% in X, 
fulfilling the linear recurrence (3), we have 

sup IlYn - Xnll = oo. (6) 
nEN0 

For the proof of  Theorem 4 we need two lemmas. 

L e m m a  1. Let a E K, (bn)n6No be a sequence in X, xo c X, and 

X n + l  = aXn + bn, Yn ~ No, (7) 

Then 
n 

n - k  Xn = anxo + Z a bk-l ,  Vn E N. (8) 
k=l 

Proof Induction on n. [] 

L e m m a  2. Let 3 > 0, a E K, la[ = 1, and (bn)n~No be a sequence in X. Then for 
each Yo ~ X there exists an unbounded sequence (Yn)n 6No, satisfying the inequality 

I[Yn+t -- ayn -- bni[ _< 3, Yn E No, (9) 

such that for arbitrary sequence (Xn)n~No in X, satisfying (7), we have 

sup IlYn - X n  II = oo .  (10)  
nEN0 

Proof Letu  6 X, Hull = 1, 

1, if SUpn~N 0 IIX~=, an-kbk-I + na"*ull = oo; 

e :=  - 1 ,  otherwise, 

Y0 c X, and (Yn)n~No be given by 

Yn+l = ayn + bn + ean+13u, Vn E N0. 
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Take xo 6 X and define (Xn)ner% by (7). Then, according to Lemma 1, 

Yn -- Xn = an(yo -- xo) + nean~u, Yn ~ No. 

Since, for n 6 N, 

Ilyn - Xn II > [llan(yo - xo)ll - IlnanSu Ill = lily0 - xoll - n61 

it is easily seen that 

lim IlYn - Xnll = OC. 
n--+ o o  

To complete observe that, according to Lemma 1, for every n c N, 

Yn = anyo q- ~-~an-kbk-1 + nean~u, 
k=l 

whence, in the case e = 1, 

n 

IlYnll > Z a n - k b k - 1  q -nanSu --IlY011, 
k = l  

and, in the case e = - 1, 

n n 

IlYnll = a n y o ' t - Z  an-kbk-I -nan~u > 2nt~- y ~  an-kbk_l-t-nanSu --IlYoII, 
k = l  k = l  

which, in either case, means that (Y~)~er% is unbounded. [] 

Now we are in a position to prove Theorem 4. 

Proof of Theorem 4. For p = 1, the conclusion o f  Theorem 4 is true in virtue o f  
Lemma 2. 

For p _> 2, without loss o f  generality, assume that Irll = 1. From Lemma 2 
it follows that there exists an unbounded sequence @n)ner% in X, satisfying the 
inequality 

{{Yn+l - r l Y n - b n l l  <_8, Vn ENo,  (11) 

such that for every sequence (3~n)neNo with 

Xn+l = rlXn + bn, 

we have 

Yn 6 No, (12) 

sup [[Yn - Xn][ = o0. 
nEN 0 

Further, there exists a sequence (Yn)ncNo in X with 

(13) 
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Yn+p-1--(r2+" "+rp)Yn+p-2+'" "+(--1)P-lr2""rpYn = Yn, u E No (14) 

(it suffices to take Yo . . . . .  yp-2 = O, Y p - 1  = 20 ;  then ( Y n ) n C %  c a n  be 
determined step by step). 

Inequality (11) implies that the sequence (Yn)ner% satisfies the inequality 

[[Yn+p+(-1)(rl+'" "+rp)Yn+p-l+'" " + ( - 1 ) P r l  "" "rpYn-bn[I <_ 3, Vn E No, 
(15) 

which is equivalent with (2). Let now (X~)n~r% be an arbitrary sequence defined 
by (3) and (.~n)nENo be the sequence given by 

Xn = Xn+p-l +( - -1 ) ( r2+ '"+rp)Xn+p-2  + ' " + ( - - 1 ) P - l r 2 " " r p X n ,  Yn E NO. 
(16) 

Then (12) and (13) holds. 
We have to prove that SUPneN 0 IIx. - yn II = oo. Suppose the contrary. Then there 

exists M > 0 such that 

I l y ~ - x ~ I I < M ,  V n e N o .  

From (14) and (16) it follows that 

IlYn - Xnl[ < ][Yn+p-I - Xn+p-111 + [r2 + ' ' '  + rpl �9 IlYn+p-2 --  Xn+p-2[[ 

+ " "  + [ r2 . . . r p [ .  IlYn --Xnl[ 

< (1 + [r2 + ' "  +rp[ + . . .  + ]r2 . . . r p D M  

for every n E No, which contradicts (13). 
To complete the proof observe that, in view of(14), (Yn)neNo m u s t  be unbounded. 

[] 

Remark 1. Let K = N. Consider the linear recurrence 

Xn+2 = -Xn, Vn ~ N0. (17) 

Its characteristic equation 
r 2 = --1 

have roots rl = i, r2 = - i .  We show that (17) is not stable. 
Let u 6 X, HuH = 1, yo E x ,  and (Yn)ner% be given by 

Yn+2 = -Yn + (-1)[~]3u,  u E No, 

where 3 > 0 and [a] is the biggest integer which is not greater than a. Clearly, we 
have 

[lYn+2 + ynll _< 8. 

For n = 2k, we have 

We claim that 

Y2(k+l) = --Y2k + (--I)  k3u, 

Y2k = (--1)kyo + ( -1 )k - lk6u ,  

Yk ~ No. (18) 

Vk ~ N. (19) 



188 J. Brzd~k, D. Popa, and B. Xu 

In fact, it is trivial for k = 1. Take m E 1~1 and suppose that it is true for k = m. 
By (18), 

Y2(m+l) : --Y2m q- (--1)mSu 

_-- --((--1)my0 + ( - -1)m- lm6u)  + (--1)m&u 

= (-- l )m+ly0 + (--1)m(m + 1)&u. 

So we have proved (19). Hence, for every sequence (Xn)nGNo in X, satisfy- 
ing (17), we have 

[]Y2k - x2kl[ = [[(-1)ky0 + ( - 1 ) k - l k ~ u  - (-1)kxol[ 

>_ IIl(-1)k(y0 - x 0 ) l [  - I I ( - 1 ) k - i k ~ u l l [  = l i l y 0  - x011  - k ,~ l  

for every k 6 N, which implies that 

sup IlYn - xnll = oo. 
nENo 

Thus we have shown that in the case where K = R and the characteristic equation 
of (3) (i.e. (1)) has no real roots, the recurrence can be not stable. Therefore the 
following problem seems to be of interest. 

Problem. Let K = R, al . . . . .  ap ~ R and (bn)n~No be a sequence in X. Suppose 
that r : ,  r2 . . . . .  rp 6 C are the roots of the characteristic equation (1). Is it true that 
recurrence (3) is weakly (strongly, resp.) stable in the Hyers-Ulam sense if and only 
if  [ri[ ~ 1 for i = 1 . . . . .  p?  (In other words: does Theorem 2 remain valid if 
K = Re) 
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