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Semigroup-Valued Solutions of the
Gotlab-Schinzel Type Functional Equation

By J. CHUDZIAK

Abstract. Let (S, o) be a semigroup. We determine all solutions of the functional
equation
fx+g)y)=fx)o f(»

under the assumption that g : R — R is continuous and f : R — S.

Let (8, o) be a semigroup. The functional equation

Fx+gxy)=fx)o f(y) forx,yeR, (M

where g : R — Rand f : R — § are unknown functions is a generalization of the
equations of the form

fa+ f@fy) =tf ) ), )

where ¢ is a non-zero real number and k is a positive integer. Equations of that
type are known in a literature as the Golgb-Schinzel type functional equations and
have been intensively studied in the last half-century. Solutions of (2) under various
regularity assumptions (continuity, continuity at a point, measurability) have been
considered e.g. in [5], [8], [9], [11], [12], [18] and [23]. It is worthy to mention
that the equations of the form (2) play an important role in the determination of
substructures of various algebraical structures (see e.g. [2], [9] and [10]). There are
also the close connections between (2) (in the case ¢ = k = 1) and a problem of
classification of near-rings (cf. [4]) and quasialgebras (cf. [22]). For more infor-
mations concerning (2), its generalizations and applications we refer to [1], [3], {6],
[71, [9], [13]-[17], [19]-[22] and [24]-{26].

In the present paper we determine all solutions (f, g) of (1) under the assumption
that g is continuous. As a consequence we obtain a generalization of some results
concerning continuous solutions of (2).

In the sequel we introduce the following notation. For a givenset @ # A C S,

Zi(A) ={seS|soa=s for ae A}
and
Z(A):={seS|soca=aos=s for ae€A}
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Moreover, by E(S) we denote a set of all idempotents of the semigroup S, i.e.
E(§)={seS|sos=ys}
We begin with the following

Remark 1. Let (S, o) be a semigroup. The equation (1) has a solution if and only
if E(S) # 0. In fact, if (f, g) is a solution of (1), then £(0) = £(0) o f(0), so
f(0) € E(S). Conversely, if s € E(S), then a pair (f, g), where g is an arbitrary
function and f = s, is a solution of (1).

For a proof of the main result we need two lemmas.

Lemma 1. Assume that (S, 0) is a semigroup, g : R - Rand f : R - §
are non-constant functions and g is continuous. If (f, g) is a solution of (1), then

@ # g7 (0D = FHZL(FR))).

Proof. Assume that (f, g) is a solution of (1). If x € g~'({0}), then by (1),
f(x) = f(x)o f(y) fory € R, whence x € f~1(Z.(f(R))). Conversely, if
x € f_l(ZL(f(lR))), then in view of (1), f(x + g(x)y) = f(x) fory € R.
Thus x € g_1 ({0}), because otherwise f would be constant. Therefore g_1 {oh =
f! (ZL(f(R))). It remains to show that g~ 1({0}) # . For the proof by contradic-
tion suppose that ,g_1 ({0}) = @. Then, by (1), we have

£0)= f(x)o f(—g%) forx € R. 3)
Let A := f~1({£(0)}) and B := g~ '({1}). Note that

AUB=R. 4)

In fact, if t € R\ B, then taking x; := #g(t)’ on account of (1) and (3), we obtain
Xt

f0 =00 O =@ o feof(~5)
X Xt _
= fetgwmyo f(- o) = few o f(= o) = FO.

whence ¢t € A. Next, by (1), foreverya € A and b € B, we have
fb+a)= fb+gbla)= f(b)o fla) = f(b)o f(0) = f(b).
Thus
fb+a)=fb) forac A, beB. 5)

Since f is non-constant and (4) holds, there exists b € B\ A. We prove by induction
that for everyn € N

(b+nA)NA=40. (6)
Ifb+a € A for some a € A, then by (5), we get f(0) = f(b+ a) = f(b). Thus
b € A, which gives a contradiction. Therefore (b + A) N A = §J. Assume that (6)
holds for some n € N. Then f(b+na) # f(0) fora € A and, by (4),+1rA C B.
Thus using (5), we obtain

fb+m+Da)= f((b+na)+a)= f(b+na)# f(0) forac A.
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Hence (b + (n + 1)A) N A = B, so we have proved (6). Now, if 0 € int A, then
in view of (6), we have A = ANR = AN J52,(b +nA) = @. Thus, by (4),
B = R, whence g = 1. This yields a contradiction. Therefore there exists a
sequence (¢, : n € N) of elements of R\ A C B convergingto 0. Since R\ Bisa
non-empty open set, then by (4), for every a € R\ B and sufficiently large n € N,
we have o, +a € R\ B C A. Thus, in virtue of (5), for sufficiently large n € N,
f©) = f(an +a) = f(a,), whence ¢, € A. This gives is a contradiction, so the
proof is completed. O

Lemma 2. Assume that (S, o) is a semigroup, g : R — Rand f : R — S are
non-constant functions and g is continuous. If (f, g) is a solution of (1), then there
exists ¢ € R\ {0} such that

glx)=cx+1 forxeR Q)
or

g(x) = max{cx + 1,0} forxeR. (8)

Proof. Assume that (f, g) is a solution of (1). Let for every x € R, a function
gx : R — R be given by g.(y) = x + gx)y for y € R. At first we show
that a set G := g~ 1({0}) is strongly invariant with respect to a family of functions
{gx | x € R\ G}, i.e. that foreveryx € R\ G

gx(y) e G ifandonlyify e G. 9)
Letx € R\ G. If y € G, then according to Lemma 1, f(y) € Zr(f(R)). Thus,
by (1), we get
F&x( o f@) = fx+gx)y)o f(2) = f(x)o f(¥)o f(2)
= f(x)o f(y)= fx+8(x)y) = f(gx(y)) forzeR.

Hence f(gx(y)) € ZL(f(R)), so in view of Lemma 1, g, (y) € G.
Now, suppose that g, (y) € G for some y ¢ G. Then, applying Lemma 1 and
using (1), we obtain

_ _ ) o f(——2-
ZL®) S [(6: 0 = [0 f(=75) = +gmo f(=25)
= f@o e f(-25) = o fO) = f.

Thus x € f~H(ZL(F(R))), so according to Lemma 1, x € G. This is a contradic-
tion. Therefore we have proved (9).

Now, let G™ := (—00,0] N G and G* := [0, 00) N G. In view of Lemma 1, at
least one of the sets G~ and G is non-empty. Suppose that both of them are non-
empty. As they are closed, there exist z; := max G~ and z; := min G*. Obviously
71 <0 < z2and

(z1,22)NG =0. (10

Since g is continuous and g(z2) = 0, there is anx € (0, z2) such that g(x) € (%, 1).

Ifg(x) e (%, 0),thenz) < x+21 < x+g(x)z2 < x < 22,50 gx(22) € (21, 22).
On the other hand, by (9), gx(z2) € G. This contradicts (10). If g(x) € (0, 1), then
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71 <x+21 <x+gx)z1 < x, whence gx(z1) € (21, x) C (21, 22), which again
contradicts (10). Consequently, exactly one of the sets G~ and G* is non-empty.
Since the proof in both cases is analogous, assume that G~ # @ and GT = @. Then

z:=maxG < 0. ay

Fix an x € (z,00). By (11), g(x) # 0. If g(x) < 0, then taking into account (9)
and (11), we obtain z < x < x + g{x)z = gx(z) < z, which brings a contradiction.
Therefore g(x) > 0 and so g, is strictly increasing. Moreover, in view of (9)
and (11), we get that g,(z) < z and gx“l(z) < z. Hence gx(z) = z, which implies
that g(x) = 1 — 7. In this way we have proved that

gy =1- ’Zﬁ for x € [z, 00). (12)

Now, suppose that g(x) # 0 for some x < z. If g(x) > 0, then according to (9),
G>sg Y= % > 0, which contradicts (11). Consequently g(x) < 0, gy is
strictly decreasing and, in virtue of (9) and (11), we obtain

(—00,8x(ZN NG = gx((z,00)) NG = 0.
Thus gx(z) < zand G C [gx(2), z]. As G is closed, this means that there exists
zp :=minG. Since —z € (z,00) C R\ G, by (9) and (12), we get
-z
G3g-nko)=—z2+g(-2)20=—2+ (1 - —Z—)ZO = —z 4+ 2z0.

Hence zp < —z + 220, 50 z < z0. Thus zg = z and G = {z}. Therefore, we have
proved that either G = (—o0, z] or G = {z}.

If the first possibility occurs, then using (12), we obtain that g has the form (8)
with ¢ 1= —% # 0. If the second one is valid, then according to (9), we get that

gx(@) =z forx e R\G =R\ {z).

Hence
g =1-2 forx eR\ (2}
Z
Since g(z) = 0, this means that g has the form (7) with ¢ := —1 3 0. This
completes the proof. 0O

The next theorem is the main result of the paper.

Theorem 1. Assume that (S, o) is a semigroup, g : R — R is continuous and
f : R — S. Then (f, g) is a solution of (1) if and only if one of the following
conditions holds:
(i) thereiss € E(S) suchthat f =s;
(i1) g = 0 and there is a subsemigroup Sy of S such thatu ov = u foru,v € S
and f(R) C So;
(iii) g = 1and f is a homomorphism of an additive group of real numbers into S;
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(iv) there exist a non-trivial homomorphism ¢ of a multiplicative semigroup of
real numbers into S and ¢ € R\ {0} such that
gx)=cx+1 forxeR,
J&x)=¢x+1) forxesS;

(v) there exist a non-trivial homomorphism ¥ of a multiplicative semigroup of
non-negative real numbers into S, ¢ € R\ {0} andl € Z; (¢ ([0, 00))) such
that

g(x) =max{cx+ 1,0} forx eR,

Ylex+1) forx e D}
Y(—(cx+1)ol forxeD_,

where D :={x e R|cx + 1 > 0}and D7 :=R\ D}.

f@x) =

Proof. Assume that (f, g) is a solution of (1). If f is constant, then taking into
account Remark 1, we get (i). Now, assume that f is non-constant and g is constant.
If g = 0, then (ii) holds with Sy := f(R). In the case, where g = 1, we get (iii).
Suppose that g = a ¢ {0, 1}. Then, by (1)
fx+ayy=f(x)o f(y) forx,y€R,
whence
flay)= f(0)o f(y) foryeR.
Thus
flax +ay) = flax)o f(y) = f(0)o f(x)o f(y) =
= f(0)o f(x +ay) = f(ax +d%y) forx,yeR,
so for every x, y € R, we have

f(x)zf(aax—y+ay—x)zf(aax—y_l_az;;—x)=f(y).

al—a al—a al—a —a

Hence f is constant, which yields a contradiction.

Therefore it remains to consider the case where f and g are non-constant. Then
according to Lemma 2, g is either of the form (7) or (8). If the first possibility
occurs, then we define a function¢ : R - Sby ¢(x) = f (%) for x € R. Note
that in view of (1) and (7), we have

_ox—1 y—=1y /x-—1 x=1Nyy—1\

2@ 00 = f(~) o f(*=) = r(F—+e(=-) ) =

x—1 x—1 -1 xy—1
A P ()
c c c c
=¢(xy) forx,yeR.

As f is non-constant, this means that ¢ is a non-trivial homomorphism of a mul-
tiplicative semigroup of real numbers into S. Furthermore, f(x) = ¢(cx + 1) for
x € R, so (iv) holds.
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Now, assumne that g is of the form (8). Let ¥ : [0, 00) — S be given by ¥ (x) =
F(£1) for x € [0, 00). Then, arguing analogously as in the previous case, we get
that ¥ is a non-trivial homomorphism of a multiplicative semigroup of non-negative
real numbers into S and

f(x)=1vy(cx+1) forxe D}. (13)

Moreover, since —% ~x € Dj for x € D7, then taking into account (1), (8)
and (13), we get

o= (s 2)-
- f<—§ —x) © f(‘%) =y(—(x+1))e f(—%) forx € D .

Furthermore, making sequentially use of (13), (1) and (8), for every x € D}, we
obtain
2 2 2 2 2
s(=5)ewer v =5(-2)esm=s(=Z +e(-7)r) = /(-7)
Hence f(—2) € ZL(¥([0, 00))). Consequently (v) is valid with | := f(=3).
Since the converse is easy to check, the proof is completed.

Corollary 1. Assume that (S, o) is a comutative semigroup, g : R — R is continu-
ousand f : R — S. Then (f, g) is a solution of (1) if and only if either one of the
conditions (1), (1ii) and (iv) of Theorem 1 holds; or
(V') there exist a homomorphism  of a multiplicative semigroup of non-negative
real numbersinto S, c € R\ (0} and | € Z{(Y ([0, c0))) such that

g(x) = max{cx +1,0} forx eR,

_J¥lex+D forx e D}
fo) = l forx e D_.

Proof. Since S is commutative, every subsemigroup Sp of S such that « o v = u for
u, v € So, has a form Sy = {s} with some s € E(S). Furthermore, for every @ #
A C S, Z1(A) = Z(A). Therefore, applying Theorem 1, we get the assertion.  [J

Corollary 2. Assume that (S,0) is a group, g : R — R is continuous and
f : R — S. Then (f,g) is a solution of (1) if and only if either f = e, where
e is a neutral element of the group (S, o); or g = 1 and f is a homomorphism of an
additive group of real numbers into S.

Proof. Assume that (£, g) is a solution of (1). Then, according to Theorem 1, one of
the conditions (i)—(v) is valid. Since S is a group, we have E(S) = {e}. Moreover,
the only subsemigroup Sp of § such that u o v = u foru,v € Sp, is Sp = {e}.
Thus each of the conditions (i) and (ii) implies that f = e. Furthermore, as every
homomorphism of a multiplicative semigroup of reals (non-negative reals, resp.)
into a group is trivial, neither (iv) nor (v) occur. So the proof is completed. O

The next proposition generalizes some results from [8] and [10].
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Proposition 1. Assume that o is an associative binary operation on R and k is a
positive integer. Then f : R — R is a non-constant continuous solution of the
equation
fa+f0* ) = fx) o f) forx,yeR (14)
if and only if one of the following three conditions holds:
(a) kiseven, uov=uvforu,v € [0, co) and there exists ¢ € R \ {0} such that

f(x) = (max{cx + 1, 0})% forx e R; (15)
(b) kisodd, uov =uvforu,v € R and there exists c € R\ {0} such that f has
a form (15) or
fO) =(x+1F forxeR; (16)
(c) kiseven, uov = —uv foru,v € (—00, 0] and there exists c € R\ {0} such
that 1
f(x) = —(max{cx + 1,0H* forx e R. a7n
Proof. 1t is easy to check that each of conditions (a)-(c) implies (14). So, assume
that f is a non-constant continuous solution of (14). Then (f, g), where g = (f)X,
is a solution of (1). Hence, according to Lemma 2, there exists ¢ € R \ {0} such that

either f(x)* = cx + 1 forx € R; or f(x)k = max{cx + 1, 0} for x € R. Assume
that the first possibility holds. Then k is odd and f has the form (16). Moreover,

for every u, v € R there exist x1, x, € Rsuch thatu = f(x1) = (cx; + 1)% and
v= f(x)=(cx2+ 1)%. Thus, by (14), we get
wov=f(x1)o f(x2) = f(x1 + f(x1)*x2) = f(x1 +x2 + cx1x2)
= (cx1 + DF(exa + DF = uw.

If the second possibility is valid, then either f has the form (15), or k is even and f
is of the form (17). Furthermore, arguing as previously, we obtain that u o v = wv

for u,v € [0,00) in the first case, and u o v = —uv for u, v € (—00, 0] in the
second one. This completes the proof. O
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