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Semigroup-Valued Solutions of the 
Gol~b-Schinzel Type Functional Equation 

By J. CHUDZIAK 

Abstract. Let (S, o) be a sernigroup. We determine all solutions of the functional 
equation 

f(x + g(x)y) = f(x) o f(y) 
under the assumption that g : R --*- R is continuous and f : R ~ S. 

Let (S, o) be a semigroup. The functional equation 

f ( x  + g(x)y) = f ( x )  o f ( y )  fo rx ,  y E ~ ,  (1) 

where g : I1~ --+ ~ and f : II~ ~ S are unknown functions is a generalization of  the 
equations of  the form 

f ( x  + f ( x ) ky )  = t f ( x ) f ( y ) ,  (2) 

where t is a non-zero real number and k is a positive integer. Equations of  that 
type are known in a literature as the GoI~b-Schinzel type functional equations and 
have been intensively studied in the last half-century. Solutions of (2)  under various 
regularity assumptions (continuity, continuity at a point, measurability) have been 
considered e.g. in [5], [8], [9], [11], [12], [18] and [23]. It is worthy to mention 
that the equations of  the form (2) play an important role in the determination of  
substructures of  various algebraical structures (see e.g. [2], [9] and [10]). There are 
also the close connections between (2) (in the case t = k = 1) and a problem of  
classification of  near-rings (cf. [4]) and quasialgebras (cf. [22]). For more infor- 
mations concerning (2), its generalizations and applications we refer to [1 ], [3], [6], 
[7], [9], [13]-[17], [19]-[22] and [24]-[26]. 

In the present paper we determine all solutions ( f ,  g) o f ( l )  under the assumption 
that g is continuous. As a consequence we obtain a generalization of  some results 
concerning continuous solutions of  (2). 

In the sequel we introduce the following notation. For a given set 13 ~ A C S, 

Z L ( A ) : = { s ~ S l s o a = s  for a ~ A }  

and 
Z ( A ) : = { s t S I s o a = a o s = s  for a e A } .  
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Moreover, by E(S) we denote a set of  all idempotents of  the semigroup S, i.e. 
E(S) := {s ~ S I s o s  = s}. 

We begin with the following 

Remark 1. Let (S, o) be a semigroup. The equation (1) has a solution if and only 
if  E(S) ~ 0. In fact, if (f ,  g) is a solution of  (1), then f (0 )  = f (0 )  o f (0 ) ,  so 
f(O) ~ E(S). Conversely, i f s  6 E(S), then a pair (f ,  g), where g is an arbitrary 
function and f - s, is a solution o f ( l ) .  

For a proof of the main result we need two lemmas. 

Lemma 1. Assume that (S,o)  is a semigroup, g : N --+ R a n d  f : IR --~ S 
are non-constant functions and g is continuous. I f  ( f ,  g) is a solution of  (1), then 
0 7 L g-l({0}) = f - 1 ( Z L ( f ( R ) ) ) .  

Proof Assume that (f ,  g) is a solution of  (1). If x E g-l({0}), then by (1), 
f ( x )  = f ( x )  o f ( y )  for y E N, whence x ~ f - 1 ( Z L ( f ( N ) ) ) .  Conversely, if 
x E f - I ( Z L ( f ( R ) ) ) ,  then in view o f ( l ) ,  f ( x  + g(x)y)  = f ( x )  for y E IR. 
Thus x 6 g - I  ({0}), because otherwise f would be constant. Therefore g - l  ({0}) = 
f - 1  (ZL(f (R)) ) .  It remains to show that g-1 ({0}) ~ 0. For the proof by contradic- 
tion suppose that g-1 ({0}) = 0. Then, by (1), we have 

f ( O ) = f ( x ) o f ( - g - ~ )  forx ~ R. (3) 

Let A := f - l ( { f ( 0 ) } )  and B := g-l({1}). Note that 

A U B = N. (4) 

t In fact, i f t  E R \ B, then taking xt :=  l-g(t), on account o f ( l )  and (3), we obtain 

f ( t ) =  f ( t ) o  f ( O ) =  f ( t )  o f ( x t ) o  f ( -  Xe~x,)) 

" f(t § g(t)xt)o f(--  Xg~xt) ) " f(xt) o f(--  Xg~xt) ) " f(O), 

whence t E A. Next, by (1), for every a E A and b 6 B, we have 

f ( b  + a) = f ( b  § g(b)a) = f (b )  o f ( a )  = f (b )  o f(O) = f (b ) .  

Thus 

f ( b + a ) = f ( b )  f o r a c A ,  b 6 B .  (5) 

Since f is non-constant and (4) holds, there exists b 6 B \ A. We prove by induction 
that for every n ~ N 

(b § nA ) M A = O. (6) 

I fb  + a ~ A for some a ~ A, then by (5), we get f (0 )  = f ( b  + a) = f (b) .  Thus 
b E A, which gives a contradiction. Therefore (b + A) M A = 0. Assume that (6) 
holds for some n 6 N. Then f ( b + n a )  r f(O) fora  c a and, by (4), b + n A  C B. 
Thus using (5), we obtain 

f ( b § 2 4 7  f o r a c A .  



Semigroup-Valued Solutions of the GoIob-Schinzel Type Functional Equation 93 

Hence (b + (n + 1)A) ~ A = 13, so we have proved (6). Now, i f0  e intA, then 
in view of  (6), we have A = A A ~ = A (q U~=I (b + nA) = 13. Thus, by (4), 
B = R, whence g = 1. This yields a contradiction. Therefore there exists a 
sequence (C~n : n e N) of  elements o f R  \ A C B converging to 0. Since R \ B is a 
non-empty open set, then by (4), for every a e R \ B and sufficiently large n e N, 
we have C~n + a 6 R \ B C A. Thus, in virtue of (5), for sufficiently large n e N, 
f ( O )  = f(Otn -']- a )  = f (Otn) ,  whence Ot n 6 A.  This gives is a contradiction, so the 
proof is completed. [] 

Lemma 2. Assume that (S, o) is a semigroup, g : ]~ --+ N and f : N ~ S are 
non-constant functions and g is continuous. I f ( f ,  g) is a solution o f  (1), then there 
exists c e ~ \ {0} such that 

g(x) = cx + l for  x e N (7) 

OF 

g(x) = max{cx + 1, 0} f o r x  ~ R. (8) 

Proof Assume that (f ,  g) is a solution of  (1). Let for every x e R, a function 
gx : R ~ R be given by gx(y) = x + g ( x ) y  f o r y  e R. At first we show 
that a set G :-- g-1 ({0}) is strongly invariant with respect to a family of  functions 
{gx I x e ~ \ G}, i.e. that for every x e R \ G 

gx(Y) e G i f a n d o n l y i f y  e G. (9) 

Let x e R \ G. I f y  e G, then according to Lemma 1, f ( y )  e Z L ( f ( R ) ) .  Thus, 
by (1), we get 

f (gx(Y))  o f ( z )  = f ( x  + g(x)y)  o f ( z )  = f ( x )  o f ( y )  o f ( z )  

= f ( x )  o f ( y )  = f ( x  + g ( x ) y )  = f (gx(Y) )  forz 6 ~ .  

Hence f (gx(Y) )  e Z L ( f ( R ) ) ,  so in view of  Lemma 1, gx(Y) e G. 
Now, suppose that gx (Y) e G for some y ~ G. Then, applying Lemma 1 and 

using (1), we obtain 

Z L ( f ( N ) )  g f ( g x ( y ) , =  f ( g x ( y ) ) o  f ( - - g -~y ) )  = f ( x  + g ( x ) y ) o  f ( - - g ~ )  

= f ( x )  o f ( y )  o f ( - g - ~ ) =  f ( x )  o f ( O ) =  f ( x ) .  

Thus x e f - l ( Z L ( f ( N ) ) ) ,  SO according to Lemma 1, x e G. This is a contradic- 
tion. Therefore we have proved (9). 

Now, let G -  := ( -00 ,  0] A G and G + :=  [0, oo) N G. In view of  Lemma 1, at 
least one of the sets G -  and G + is non-empty. Suppose that both of  them are non- 
empty. As they are closed, there exist Zl := max G -  and z2 := min G +. Obviously 
Zl < 0 < z 2 a n d  

(zl, z2) A G = 0. (10) 

Since g is continuous and g (z2) = 0, there is an x e (0, z2) such that g (x) e ( ~ ,  1). 

I fg (x )  e (~2'0) '  thenzl  < x + Zl < x + g(x)z2 < x < z2, so gx(z2) e (Zl,Z2). 
On the other hand, by (9), gx(z2) e G. This contradicts (10). I fg (x )  e (0, 1), then 
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El < X -~- Z l  < X "-1- g(x)Zl < x,  whence  gx(zl) E (Zl ,  x )  C (Zl ,  Z2), w h i c h  again 
contradicts (10). Consequently, exactly one of  the sets G -  and G + is non-empty. 
Since the proof in both cases is analogous, assume that G -  # 0 and G + = 0. Then 

z := maxG < 0. (11) 

Fix an x e (z, ec). By (11), g(x)  ~ O. I fg (x )  < 0, then taking into account (9) 
and (11), we obtain z < x < x + g(x )z = gx(z) < z, which brings a contradiction. 
Therefore g(x)  > 0 and so gx is strictly increasing�9 Moreover, in view of  (9) 
and (11), we get that gx(z) < z and gx-] (z) < z. Hence gx(z) = z, which implies 

x that g(x)  = 1 - z" In this way we have proved that 

g ( x ) = l - X  f o r x e [ z ,  oo). (12) 
Z 

Now, suppose that g(x)  # 0 for some x < z. I f g (x )  > 0, then according to (9), 
G ~ gx - l ( z )  = z-x g-~ > 0, which contradicts (11). Consequently g(x)  < O, gx is 
strictly decreasing and, in virtue of(9)  and (11), we obtain 

( - o o ,  gx(z)) f3 G = gx((Z, oo)) N G --- 0. 

Thus gx(z) < z and G C [gx(z), z]. As G is closed, this means that there exists 
z0 := min G. Since - z  e (z, c~) C R \ G, by (9) and (12), we get 

G 9  g(_z)(Zo) = - z  + g ( - z ) z o  = - z - t -  ( 1 -  ~-~)zo -- - z  + 2zo. 

Hence z0 < - z  + 2z0, so z < z0. Thus z0 = z and G = {z}. Therefore, we have 
proved that either G = ( - c ~ ,  z] or G = {z}. 

If  the first possibility occurs, then using (12), we obtain that g has the form (8) 
1 # 0. If  the second one is valid, then according to (9), we get that with c := - :  

gx(z) = z f o r x e / ~ \ G = R \ { z } .  

Hence 

g(x) = 1 - x  forx 6 R \  {z}. 
Z 

�9 1 Since g(z) = 0, this means that g has the form (7) with c .=  - :  # 0. This 
completes the proof�9 [] 

The next theorem is the main result of  the paper. 

Theorem 1. Assume that (S, o) is a semigroup, g : R --+ ~ is continuous and 

f : R --+ S. Then ( f ,  g) is a solution o f  (1) i f  and only i f  one o f  the following 
conditions holds: 

(i) there is s 6 E(S)  such that f -- s; 
(ii) g -- 0 and there is a subsemigroup So o f  S such that u e v = u for  u, v 6 So 

and f ( R )  C So; 
(iii) g -- 1 and f is a homomorphism of  an additive group o f  real numbers into S; 



Semigroup-Valued Solutions of the Go/~tb-Schinzel Type Functional Equation 95 

(iv) there exist a non-trivial homomorphism r of a multiplicative semigroup of  
real numbers into S and c �9 IR \ {0} such that 

g ( x ) = c x  + l for x E ~, 

f ( x ) = d p ( c x  + l) f o r x  � 9  

(v) there exist a non-trivial homomorphism 7] of  a multiplicative semigroup of 
non-negative real numbers into S, c 6 N \ {0} and l �9 ZL(~([O, oo))) such 
that 

g(x) = max{cx + 1, 0} for x ~ ]~, 

I@(cx + 1) f o r x  E O + 

f ( x ) =  [ ~ p ( - ( c x + l ) ) o l  f o r x  e D c,  

where D + := {x �9 ~ l cx + l > O} and D c := R \ D +. 

Proof Assume that (f, g) is a solution of  (1). If  f is constant, then taking into 
account Remark 1, we get (i). Now, assume that f is non-constant and g is constant. 
I f g  --= 0, then (ii) holds with So := f (R) .  In the case, where g - 1, we get (iii). 
Suppose that g = a r {0, 1}. Then, by ( l )  

f ( x + a y ) = f ( x ) o f ( y )  forx, y E N ,  

whence 

Thus 

f ( a y ) =  f (O)o  f ( y )  f o r y E N .  

f ( a x  + ay) = f ( a x )  o f ( y )  = f(O) o f ( x )  o f ( y )  = 

= f(O) o f ( x + a y ) =  f ( a x + a 2 y )  forx, y E ~ ,  

so for every x, y E N, we have 

( - ,ox-Y+a Y-X  ax y + a  = f(aa--f~_a = f ( y ) .  f ( x ) =  f a -~  a a 2 - - a ]  

Hence f is constant, which yields a contradiction. 
Therefore it remains to consider the case where f and g are non-constant. Then 

according to Lemma 2, g is either of  the form (7) or (8). I f  the first possibility 
occurs, then we define a function r : R ~ S by r  = f (-~--~) for x c R. Note 
that in view of ( l )  and (7), we have 

r  o O(Y) = f ( - - ~ )  o f = f ( X -  + g\---~-/( __. .~)  _ Y - 1  

x - I  - 1  , , y -  l ,  " r  + (cX + 1 ) @ )  -- 
= q~(xy) for x, y E IR. 

As f is non-constant, this means that r is a non-trivial homomorphism of a mul- 
tiplicative semigroup of  real numbers into S. Furthermore, f ( x )  = r  + 1) for 
x E R, so (iv) holds. 
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Now, assume that g is of  the form (8). Let ~p : [0, c~) --+ S be given by ~p(x) = 
f ( - ~ )  for x 6 [0, c~). Then, arguing analogously as in the previous case, we get 
that ~ is a non-trivial homomorphism of a multiplicative semigroup of  non-negative 
real numbers into S and 

f ( x ) = ~ ( c x + l )  f o r x ~  D +. (13) 

Moreover, since - 5  - x ~ D + for x 6 D c ,  then taking into account (1), (8) 
and (13), we get 

f ( x ) =  - c  - x  + g  - c - X  - = 

= f ( - ! - x )  o f ( - ! ) = ~ ( - ( c x  + l ) )o  f ( - ~ )  f o r x e D  c .  

Furthermore, making sequentially use of (13), (1) and (8), for every x ~ D +, we 
obtain 

!t (!/ (21 f \-( o r  + l ) =  f - o f ( x ) =  f - x 

Hence f(--2c) a ZL0P([0, oo))). Consequently (v) is valid with t :=  f ( - ~ ) .  
Since the converse is easy to check, the proof is completed. [] 

Corollary 1. Assume that (S, o) is a comutative semigroup, g : ~ -+ ~ is continu- 
ous and f : I~ --+ S. Then ( f ,  g) is a solution of (1) if and only if either one of the 
conditions (i), (iii) and (iv) of Theorem 1 holds; or 

(v ~) there exist a homomorphism ~p of a multiplicative semigroup of non-negative 
real numbers into S, c ~ ~ \ {0} and 1 ~ Z(~k([0, ~ ) ) )  such that 

g(x) = maxlcx + 1, 0} f o r x  ~ ~,  

f ( x ) _ ~ { ~ l  ( c x + l )  f ~  
for x ~ D 7. 

Proof Since S is commutative, every subsemigroup So of S such that u o v = u for 
u, v 6 So, has a form So = {s} with some s ~ E(S). Furthermore, for every 0 # 
A C S, ZL(A) = Z(A).  Therefore, applying Theorem 1, we get the assertion. [] 

Corollary 2. Assume that (S, o) is a group, g : R --+ 1~ is continuous and 
f : 1~ --~ S. Then ( f ,  g) is a solution of  (l) if and only if either f =~ e, where 
e is a neutral element of the group (S, o); or g = 1 and f is a homomorphism of  an 
additive group of  real numbers into S. 

Proof Assume that (f, g) is a solution of(l) .  Then, according to Theorem 1, one of  
the conditions (i)-(v) is valid. Since S is a group, we have E(S) = {e}. Moreover, 
the only subsemigroup So of  S such that u o v = u for u, v ~ So, is So = {e}. 
Thus each of  the conditions (i) and (ii) implies that f ~ e. Furthermore, as every 
homomorphism of a multiplicative semigroup of  reals (non-negative reals, resp.) 
into a group is trivial, neither (iv) nor (v) occur. So the proof is completed. [] 

The next proposition generalizes some results from [8] and [ 10]. 
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Proposition 1. Assume that o is an associative binary operation on N and k is a 

positive integer. Then f : II~ --+ N is a non-constant continuous solution o f  the 

equation 

f ( x  + f(x)l~y) = f ( x )  o f ( y )  f o r x ,  y c R (14) 

i f  and only i f  one of  the following three conditions holds: 

(a) k is even, u o v = uv for  u, v c [0, e~) and there exists c ~ N \ {0} such that 

1 
f ( x )  = (max{cx + 1,0})r f o r x  ~ R; (15) 

(b) k is odd, u o v = uv for  u, v E N and there exists c ~ N \ {0} such that f has 

a form (15) or 
1 

f ( x )  = (cx + 1)~ f o r x  6 N; (16) 

(c) k is even, u o v = - u v  for  u, v c ( - c ~ ,  0] and there exists c ~ ~ \ {0} such 
that 

I 
f ( x )  = - (max{cx  + 1, 0})~ f o r x  ~ R.  (17) 

Proof  It is easy to check that each of conditions (a)-(c) implies (14). So, assume 
that f is a non-constant continuous solution of(14). Then (f ,  g), where g = ( f )k ,  
is a solution of(I ) .  Hence, according to Lemma 2, there exists c c R \ {0} such that 
either f ( x )  k = cx + 1 forx  6 R; or f ( x )  k = max{cx + 1, 0} forx  6 N. Assume 
that the first possibility holds. Then k is odd and f has the form (16). Moreover, 

for every u, v ~ R there exist xl ,  x2 c 1~ such that u = f ( x l )  = (CXl -t.- 1)~ and 
1 

v = f (x2)  = (cx2 + 1)r. Thus, by (14), we get 

u o v = f ( x l )  o f (x2)  = f ( x l  q- f ( x l ) k x 2 )  : f ( x l  -t- x2 + CXlX2) 
1 1 

: ( C X  1 q -  1 ) i ( C X 2  n t- 1)~ - -  u v .  

If  the second possibility is valid, then either f has the form (15), or k is even and f 
is of  the form (17). Furthermore, arguing as previously, we obtain that u o v -- u v 
for u, v ~ [0, c~) in the first case, and u o v = - u v  for u, v e ( - o c ,  0] in the 
second one. This completes the proof. [] 
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