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1 One of the authors has previously obtained the following result:

Theorem™ Let & = {F,, ..., F,} be a finite set of admissible distribution
functions, and let p be the maximum among the affinities p (¥, Fy) (4 2 7).
Further, for an arbitrarily chosen positive number &€ let ¥ be an integer
such that (8-1) p* < &, and in the k-dimensional sample space B*® put

Ey = {(2), %y - B) ;5 Pe(2). ... () > py(2). ... Ds(20)
“G=*+41,j=1,..8)}
and
E, = ,nlEu

where p.(x) denote the demsity or probability of F; for each 1, i, e,
F(E) = f pi(z)dm. ‘Then E, ..., E, are mutually disjoint and we have
B

FOE)>1—¢6 (i=1..,9)

where F,® represent the extended distribution on R® of Fi.

In virtue of the theorem, we can take E, as a criterion region in the
case where we are concerned with the problem, whether the true distribution
function is F, or is contained in Q,=\{F, F;, ..., F,}. That is, if we decide
that the true distribution function is. , when the obtained sample point
(%, ..., 2,) lies in E,, and the true distribution function is contained in Q,
in all other cases, then the risk is smaller than &, provided that the
weight function does not take any value larger than 1. Now, we have
clearly

By = (@2 805 Pu@)- e () > S0P PY(@)- - Py

This shows that in this case our decision rule is apparently similar to that
by the \-principle, but it is essentially different. Though the above theorem
is restricted only to the case where {2, is finite, we shall remark in the
following section (2) that our method is also valid in some cases where
Q, consists of an infinite number of distributions. Further, in section 3

* Cf. K. Marvsira: On the Theory of Statistical Decision Functions. This Annals Vol. 11
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we shall illustrate this method by some numerical examples.

2 Given a distribution ¥, and a set of distributions Q ={F,}, we
have the following

Theorem If supp (F, F,) <1 and if there exist a finite number of
distributions {F,, : F,} in  such that for any F, in O

'El)v DE,=E,; ~ By~ ~ E,,

holds, where E,, denotes the above-mentioned set in %-dimensional sample
space, then E, can be used as a criterion region for F, and { in the sense
of decision rule. The risk can be made arbitrarily small by taking k
large enough. (The true distribution function may or may not be F,.)

The proof runs just as in the case of finite  and is omitted here.
The theorem can also be extended to the case where we have any number
of distributions instead of Fj.

In the following some examples will be given.

(1) Let F, be a Gaussian distribution N (m,,¢*) and Q a family
{N (m, ) ; lm—m,| =8> 0}. As

[ m—tng|2

p(N(my, *), N(m,o?)) = e 5ot

we have i
p(N(may, 0*), N(m,a*)) < et < 1
F, = N(m, + 6,07
F, = N(m, — 8,0%)
Then
Fo(k)(E:n ~ Euz) > 1—¢€
F®(E, Ey,) <é& (t=12)
when & > — 8;2 logé. Now, for any F, = N (m,,¢*) in Q, we have
E,D> E, if m, > m,,
and

E, > E, if m, < m,

Thus, we have

E,DE = Ey ~ B
which shows that our theorem is applicable.

(2) Let F, be N(m,qa?) and Q {N(m,d"); |oc—ay| = 8}

In this case, taking

F, = N(m, (o, + 8)*)

F2 = N(m7 ("'o - 8)2)
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we proceed as in (1).
(8) Let F, be a Poisson distribution P(«a,) with mean «a, and
Q {P(a); |V a — Aa,) = 8}. Then, taking
F, = P((va + 8)%)
F, = P((Va, — 8)*)

we proceed as in the above examples.

8 Numerical Examples
(1) Let F, be N(m,;¢*) and @ {N(m,d*); |m — m,]| = 8c}. Then

9
p=maxp(F,F) =¢%
Fen
Consequently i
PP =¢8=0.034

36
pt=¢e¥=0.011
which shows that & sample of size 8 or 4 is enough for our decision with
the risk less than 49% or 29%.

(2) Let F, be a y*distribution with degree of freedom m and Q a
single distribution Fy,=N (m, 2m).
Then we have

8

)

When m = 10, p is approximately equal to 0.3644, and we have
p* < 0.05 p° < 0.01
which has as a result that a sample of size 8 or 5 is enough for deciding
whether the sample is drawn from a population with ¥ or Gaussian
distribution, with the risk less than 59, 1%, respectively.

(3) Let F, be P(1). (Poisson distribution with mean 1) and O a
family {P(a');a’ = 2}. Then

p = max (F,, F) = ¢"% 2= 07788
Feo )

p=p(F, F) =

Famin(s )
1

and

p® < 0.05 P < 0.01
What these inequalities mean are obvious.
(4) Let Fy; be N(m,o) and Q {N(m,d*); ¢ =1.50,}. In this case
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we have the following results.

: L
— 3a,? ] — 3 \? _-:
p = max p(F, F) = \j T ;—9—5 =0.9608
P75 < 0.05 < pu PI.IB < 0.01 < PllG

These results shows intuitively that the discrimination ot two Gaussian
distributions with the same mean and different variances is quite difficult
compared with the discrimination of two Gaussian distributions with the
same variance and different means from the standpoint of our two-way
decision. In fact, comparison of p’s ascertains it generally.

(5) Given a sample of size n from a population with Gaussian
distribution, we want to decide whether this distribution has variance o*
or 7. Now, when the sample

xl, xz: crcy T
is drawn from N (m,¢*), then

n @\ n
X = 2___(”" z) where #="S"2t
i=1 a1 M

obeys y*-distribution with degree of freedom n-1. From this fact follows
that z = &X* = é(x, — Z)? has the distribution with probability density
i=1

£(2) = (2::>— 1) eo—z:z

21‘_(

Denoting this distribution by F, we have the following two-way
decision problem. Let a sample (2, ..., ,) and two numbers o, T be given.

Is é(% — &)* distributed according to F, or F,? Following the pro-
{=l
cedure carried out in the above examples, we have in this case

p=p(F,F,)= (_o—,%,)?—?l

and the risk can be calculated. Further, when the means are known, the
affinity p is obtained by replacing n—1 by n in the above formula.
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