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Abs t rac t  In this paper a new mesh simplification algorithm based on triangle 
collapses is presented. The algorithm can provide efficient error management and 
simplify the original mesh greatly. Progressive meshes may be constructed with 
triangle collapsing operation. To make continuous t/'ansition between level of detail 
(LOD) models possible, a method for interpolating is also presented. Examples 
illustrate the efficiency of the algorithm. 

Keywords  mesh simplification, triangle mesh, level of detail, progressive mesh 

1 I n t r o d u c t i o n  

Representing complex models is still a challenge in spite of the research achievements of 
powerful graphics hardware. Many computer graphics applications require complex, highly 
detailed model to maintain a convincing level of realism. Consequently, models are often 
created or acquired at a very high resolution to accommodate this need for detail. However, 
the complexity of such models is not always necessary, and the computational cost of using a 
model is directly related to its complexity, so it is useful to have simpler versions of complex 
model[ 1]. Recent work on surface simplification has focused on this goal. 

Surface simplification algorithm may be categorized into 3 classes: adaptive subdivision [2] , 
geometry removal [3-1~ and re-samplingB~ Many algorithms fall into the second cate- 
gory. They may be broadly categorized into 3 sub-classes. 

�9 Vertex or triangle decimation[3'g]: Schroeder [9] described an algorithm which selects a vertex 
for removal iteratively, removes all adjacent faces, and re-triangulates the resulting hole. 

�9 Vertex clustering: Rossignac [12] presented a surface simplification algorithm based on vertex 
clustering. In his algorithm, a bounding box is placed around the original model and divided into 
a grid. Within each cell, the cell's vertices are clustered together into a single vertex, and the 
model faces are updated accordingly. This process can be very fast and make drastic topological 
alternative to the model. 

�9 Edge contraction or Edge collapse[4'6'T]: Several algorithms simplify models by interactively 
contracting edges. The essential difference between these algorithms lies in how they choose an edge 
to contract. Garland's algorithm [41 can rapidly produce high quality approximations of polygonal 
models. It uses iterative contractions of vertex pairs to simplify models and maintains surface error 
approximations using quadric matrices. 

In polygonal simplification algorithms based on vertex or triangle removal, the re-triangu- 
lation process is required to apply to the hole left by the removed vertices or triangles. It 
is obvious that  the re-triangulation is a time consuming operation. On the other hand, 
the simplification algorithms based on edge collapse or triangle collapse do not require re- 
triangulation (See Fig.1 and Fig.2). 
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58 PAN Zhigeng, ZHOU Kun et al. Vol.16 

(~) (b) 

Fig.1. Edge collapse operation, (vl, v~) is collapsed into v0. (a) Before collapse. (b) After collapse. 
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Fig.2. Tgriangle collapsing operation, (vii,  v i 2 ,  Vi3) is collapsed into vio. 
(a) Before collapse. (b) After collapse. 

The basic operation in Garland's algorithm [41 is edge collapse. The algorithm computes 
error matrix for every vertex in the original mesh. The location of the new vertex is de- 
termined by computing the cost for contracting edges. The error matrix of the new vertex 
is the sum of error matrices of the two vertices of the edge. However, as pointed out by 
the authors, the error computing process may result in accumulated error. The primary 
simplification operations of the algorithm presented by Isler et a/.[ s] are edge collapse and 
triangle collapse. Fig.2 illustrates the basic idea of a triangle collapsing operation. In their 
algorithm, a triangle is collapsed into one of the vertices of the triangle. 

In this paper we present a new mesh simplification algorithm based on triangle collapse. 
Compared with the algorithm of Isler et a/.[ s], the location of the new point generated by 
the contracting operation is the optimized point according to the computation of distance 
of point to plane. We give an efficient method for transmitting simplification error, which 
can control the error between the simplified mesh and the original mesh. Compared with 
the algorithm of Garland[4], the effect of one triangle collapsing operation in our algorithm 
is equal to that  of two edge collapsing operations in Garland's algorithm. In addition, 
accumulated error resulted from the computation of the new point is avoided. 

The rest of this paper is organized as follows. Section 2 describes the simplification 
algorithm. Section 3 gives the method for constructing progressive meshes based on tri- 
angle collapsing operation. To support  the continuous transition between different LOD 
models, we present a method for interpolation in Section 4. In Section 5, the implementa- 
tion techniques and experimental results are presented. Finally, conclusions are drawn in 
Section 6. 

2 A l g o r i t h m  D e s c r i p t i o n  

To facilitate the description of our algorithm, we first introduce some basic symbols and 
concepts. 
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2.1 Definit ions 

Def init ion 1. Given a set of triangles, if each triangle has a common edge with every 
adjacent triangle, then these triangles are called triangle mesh ( TM), TM may be expressed 
by a vertex set V and a triangle set T, where V = (V1, V2,. .. , V~), T = (Ti, T2 , . . . ,  T,~). 

Definit ion 2. For an edge in TM, if it is shared by only one triangle, then this edge 
is called boundary edge, and the vertices of this edge are called boundary vertices, and the 
triangle containing this edge is called boundary triangle. 

Defini t ion 3. For a vertex Vi in TM, the union of which contain vertex Vi are called 
the relative triangle set of vertex Vi. 

Defini t ion 4. For a triangle Ti in TM, the union of triangles interrelated t the vertices 
of Ti is called the interrelated triangle set Cj of the triangle Ti. 

2.2 Triangle Col lapsing Operat ion 

The basic simplifying operation in our algorithm is triangle collapse. In Fig.2(a), for 
triangle Ti =- {vii, Vi2, Vi3}, we can find out the interrelated triangle set of this triangle Ti, 
apply triangle collapsing operation to Ti, thus three vertices are contracted into one vertex 
vio. The result is shown in Fig.2(b). 

I t  is obvious that  there are two problems to be solved for triangle collapses. The first 
is the cost for triangle collapses, i.e., the error resulted from the contracting operation. 
The second is how to choose the location of vi0 in order to minimize the error of triangle 
contracting operation. 

To solve these problems, we allocate a 4 x 4 symmetric  matr ix  Qi for each triangle Ti in 
the original mesh. If  the triangle Ti is collapsed into vi0 = [xi0 Yio zio 1] T, then the cost or 
the error for this contracting operation is determined by the following equations. 

e(Ti) = VTioQiVio =qillXi2o + 2qil2xioYio + 2qil3xiozio + 2qiI4Xio ~- qi22Yi 2 

+ 2qi23YiOZiO + 2qi24YiO + qi33Zi20 + 2qi34Zio + qi44 (1) 

There may be several choices for the location of vio. The simplest one is to choose the 
center of the triangle Ti, and the best one is to choose the location of Vio which minimizes 
e(T~). We evaluate the partial derivatives of X~o, Y~o and z~o in (1), and set them to 0, i.e., 
Oe(Ti)/Oxio = Oe(Ti)/Oyio = Oe(Ti)/Ozio = 0. Thus we can obtain the following linear 
equations. 

qi12 qi22 qi23 qi24 1 rio = 

If the linear equations are solvable, then the location of vio is determined by (3); other- 
wise, we choose one point from the center of triangle Ti, three vertices, and the midpoints 
of three edges in the triangle as the location of vi0 to minimize (1). 

[qiii qii2 qii3 q~i4]-i [0] 
|qii2 q122 qi23 qi24J [ i J  (3) v ~ 0 =  /q~13 q,23 q,~3 q,34 

[ o  0 0 1 

2.3 C o m p u t a t i o n  o f  Error Matrices  and Error Propagat ion  

In the previous subsection, the 4 x 4 error matr ix  Qi may have different choices according 
to the error criteria selected. In our algorithm, we choose the distance between the vertex 
and the average plane [4] as the error measuring method. 
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For each triangle T~ in the original mesh, we may obtain the interrelated triangle set 
Ci by evaluating the union of triangles which are interrelated to its three vertices. The 
approximation error (say e(Ti)) resulted from the triangle collapsing process is defined as 
the maximum value of the distances of the new vertex (vi0 = [xi0 Yio z~o 1] T) to each triangle 
in the triangle set. We have: 

e ( r i )  : ~ (pTv{0)~ (4) 
pEOi 

where p = [a b c d] T represents the triangle in triangle Ti's interrelated triangle set Ci, 
whose plane is defined by the equation ax + by + cz + d = 0, where a s + b 2 + c 2 = 1. This 
approximation error is similar to that of Garland's algorithm. (4) may be changed to the 
form of (1) accordingly. 

v o)) = Z = Z (5) = Z 
pECi pCOi pEOi 

where tkrp is a 4 • 4 symmetric matrix. M:p is defined as error matr ix Qi; and we have 

[ a 2 a b a c ] a d  

ab b ~ bc bd 
J~IP = pp T = ac bc c 2 cd (6) 

ad bd cd d ~ 

For boundary triangle, the interrelated triangle set of the triangle cannot form a triangle 
loop. Thus, to preserve the boundary feature of the original model, for each boundary 
edge in the triangle set we generate a plane that meets the following constraints: (i) the 
boundary edge is on the plane; (ii) the plane is perpendicular to the boundary triangle where 
the boundary edge resides. These planes are considered when computing error matrices. We 
have found that this method works quite well for preserving the boundary discontinuity. 

For each triangle in the original mesh, we may evaluate its error matrix according to (6). 
If we apply contracting operation to some triangles in original mesh, then the coordinates of 
those triangles which share common vertex with collapsed triangles (if exist) changed, and 
the problem is whether the error matrices need to be re-computed? In the simplest case, 
re-computation is not required, and the error matrL'~ is considered as the local error matrix. 
But it cannot control the error between the simplified mesh and the original mesh. 

However, we adopt the method of re-computation, and transmit the error generated by 
each triangle collapsing operation. In Fig.2, the triangle T / =  {vii, vi2, vi3} is collapsed into 
vertex vio. It is easy to find out the physically interrelated triangle set of vio in Fig.2(b). In 
the view of error propagation, we consider the. triangle set interrelated logically to vi0 as the 
interrelated triangle set to triangle Ti. Since the vertex rio is generated with the combination 
of vertices vii ,  vi2 and vi3, we need to deal with the triangle set interrelated ~o vertices 
vii ,  vi2 and vi3 when we compute the error caused by collapsing operation corresponding to 
Vio. Therefore, for triangles interrelated to vi0 physically after contraction of triangle T/, it 
is required to re-compute the triangle set which is interrelated to them logically, and the 
error matrices are re-evaluated. By this means, we can propagate the error caused by each 
triangle collapsing operation. The experience shows that this method for propagating error 
is very efficient. 

2.4 A l g o r i t h m  O u t l i n e  

Our mesh simplification consists of the following steps: 
Step I. Compute the error matrix Qi for each triangle Ti. 
Step 2. For each triangle ri, compute the location of contracting vertex vi0 according to its 

error matrix Q~, and compute its corresponding approximation error according to vTQivlo. 
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Step 3. Arrange the triangles into a sequence according to the contracting cost or error (in 
ascending order). 

Step 4. Fetch the triangle whose contracting error is the smallest (the first one in the triangle 
sequence), apply triangle contracting operation, and update corresponding information. 

Step 5. If the triangle sequence is empty or the error requirement is met, then go to Step 6, else 
go to Step 4. 

Step 6. Finish. 

3 Construct ion of Progress ive  Mesh  Based on Triangle Collapses 

Hoppe [7] introduced the concept of progressive mesh representation mechanism. He also 
presented a method for constructing progressive mesh based on edge contractions. For an 
original mesh model, a simplified model is obtained by an edge contracting operation. And 
the edge contracting operation is recorded. When we get the most simplified version of 
the mesh, the sequence of edge contraction is obtained. If we apply the reverse operation 
(vertex split) to the simplified version of the mesh, we can get any LOD models between the 
original mesh model and the most simplified model [13]. Since Hoppe presented the energy 
optimization method [15] for choosing edges for contraction, the whole computing process is 
very time consuming. 

In this paper,  we also present a method for constructing progressive mesh based on tri- 
angle collapsing operation. In Fig.2, when we apply the triangle collapsing operation to the 
triangle Ti, the three vertices vii, vi2 and vi3 are collapsed into the new vertex vio. Similar to 
the method of Hoppe, we record the coordinates of vertices vii, vi2 and vi3, their number in 
the vertex table, and the vertex number of surrounding vertices vi4, Vih, vi6,viT,vis and vi9. 
With this information, we can get the model in Fig.2(a) from the model in Fig.2(b). For an 
initial mesh model M~, assume n is the number of vertices in the mesh, and 0 < m < n, when 
each triangle collapsing operation is applied, the corresponding collapsing information di is 
recorded, where di = {{rio}, {vii, vi2, vi3}, {vi4, v~s, vi6, viz, v~8, v~9}}. Thus, when (n - m) 
triangle contracting operations are performed, we can get the simplified model _]Y[,~, and also 
the sequence of contracting information {d,~, d ~ - l , . . . ,  d,~+l}. With this sequence of infor- 
mation {d,~,d,~_l,.. .  ,d,~+l}, we can obtain the model sequence {~I ,~ ,M~-I , . . .  ,~I,~+1} 
from the base model M,~. 

Progressive meshes offer an elegant solution for a continuous resolution representation 
of polygonal meshes. They present a novel approach to storing, rendering, and t ransmit t ing 
meshes by using a continuous-resolution representation. It  is obvious that  this representing 
mechanism will be applied widely in the future. 

4 Interpolat ion be tween  Different LOD Models  

Turk [16] presented an interpolation algorithm between two different LOD models. After 
a detailed analysis, we found the limitation of the algorithm. It is required that vertices on 
the coarse model should be a subset of the vertices on the detailed model, so it is not suit 
for LOD models generated by simplification algorithm based on edge collapses or triangle 
collapses. In addition, the implementation of the algorithm is very complex. 

In this section, we present a very simple but efficient method for model interpolation. 
It works well for any kind of LOD models. The basic idea of our algorithm is to find 
out corresponding points in both models, and perform linear interpolation directly. The 
algorithm is described as the following. 

Step i. For every vertex in the coarse model, find the nearest vertex in the detailed model. 
Thus it builds the corresponding relation between the two vertices. 

Step 2. For those vertices in the detailed model which do not have corresponding vertices, try 
to find the nearest vertex in the coarse model. It also builds the corresponding relation between 
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the two vertices. 
Step 3. Given an interpolation parameter t (0 < t < 1), for each vertex Ph in the detailed 

model, we assume that its corresponding vertex in coarse model is Pl, then the interpolated point 
is P (P = tPl + (1 - t)Ph) on the in-between model. 

Step 4. For a given error measure e, if the distance between two adjacent vertices is less than 
s, then the two vertices are collapsed into one, and the degenerated triangle is removed. 

Step 5. Finish. 
It  is obvious that  our method is very straightforward. And we construct octree for the 

coarse model and the detailed model to accelerate the executing speed in Step 1 and Step 2. 

5 Implementation and Experimental Results 

5.1 D a t a  S t r u c t u r e s  

Since the algorithm may deal with meshes with a large number  of vertices, a well-designed 
data  structure is required. By this means we can process very large models, and the simpli- 
fying speed is very fast. 

In our algorithm, we employ the following da ta  structures: (i) a vertex table; (ii) a 
triangle table; (iii) a triangle table composed by triangles which are interrelated to each 
vertex (including physical table and logical table); (iv) an error matr ix  table. 

5.2 E x p e r i m e n t a l  R e s u l t s  

The algorithm is implemented on Sun Spaxc Workstation and IBM RS6000 Workstation 
with programming language C. It  has been integrated into an LOD tool on PC. Some 
experimental  results axe shown in Fig.3 to Fig.6. From these figures, we can see that  our 
algorithm is efficient for both smooth models and non-smooth models. 

In Fig.3, the simplified model shown in Fig.3(b) is very similar to the original model. 
And the result is also acceptable when the triangles are decimated 99% (Fig.3(d)). (Please 
refer to the inside back cover for Fig.3) 

In Fig.4, we show shaded pictures of a terrain model. Since the triangle number  in the 
original model is not very large, the model can only be simplified to a certain extent (the 
max imum percentage is 79%). Most features are preserved in simplified models. In addition, 
our algorithm especially works well for surfaces composed of triangles. In Fig.5, (a) is the 
original model consisting of 5000 triangles. The simplified models at three levels of detail 
(75%, 95% and 99% triangles decimated) are shown in Figs.5(b), (c) and (d) respectively. 
The boundary features are well preserved. In Fig.6, (a) and (f) are the original coarse model 
and detailed model respectively, (b), (c), (d) and (e) are interpolated models with different 
interpolation parameters.  (Please refer to the inside back cover for Fig.4, Fig.5 and Fig.6.) 

Table 1. Execution Time Comparison between Our Algorithm and Garland's 
Original model Simplified model Garland's Our algorithm 

(Triangle number) (Triangle number) [ algorithm [41 (s) (s) 
Surface (5000) 272 13.43 6.76 
Terrain (8192) 1872 29.85 1L86 
Bunny (69473) 2306 -] 1777.18 332.10 

6 C o n c l u s i o n  a n d  F u t u r e  W o r k  

The polygonal simplification algorithm based on triangle collapses presented in this paper  
is very fast and can get bet ter  approximation quality. When the basic element of mesh model 
is polygons other than  triangles, our algorithm can easily be extended to deal with the situ- 
ation. It  can be used to construct multiple LOD models that  are widely used in interactive 
graphics application such as Virtual Reality and interactive visualization systems [1'141. 
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We may extend the idea of t r iangle collapses, and  let more areas composed of tr iangles 
be collapsed, thus the execution t ime may be reduced further.  Fu ture  work includes the 
following three aspects. (1) F ind  me thod  for dividing the t r iangle mesh into areas for 
cont rac t ion  efficiently. (2) S tudy  more efficient error control method.  (3) Apply  the me thod  
to dynamic  v i r tua l  environments .  
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Fig.3. Simplification on bunny model. (a) Original model (69473 triangles). (b) Simplified model 1 (8310 
triangles, 88% decimated). (c) Model 2 (1842 triangles, 97% decimated). (d) Model 3 (763 triangles, 99% 
decimated). 

Fig.4. Simplification of terrain model. (a) Original model (6035 triangles). (b) Simplified model 1 (3704 
triangles, 39% decimated). (c) Model 2 (2306 triangles, 62% decimated). (d) Model 3 (1268 triangles, 79% 
decimated). 

Fig.5. Simplification of surface model. (a) Original model (5000 triangles). (b) Simplified model 1 (1204 
triangles, 76% decimated). (c) Model 2 (272 triangles, 95% decimated). (d) Model 3 (54 triangles, 99% 
decimated). 

Fig.6. Interpolation between different LOD models. (a) Original model 1 (coarse modei). (b), (c), (d) 
and (e) are in-between models (with t = 0.2, 0.4, 0.6, and 0.8 respectively). (f) Original model 2 (detailed 
model). 


