
Vol.17 No.5 J. Comput. Sci. & Technol. Sept. 2002

A Reduct ion Algor i thm Meet ing Users' Requirements

ZHAO Kai (~ ~"~) and W A N G Jue ()1~ f[;.)

Institute of Automation, The Chinese Academy of Sciences, Beijing 100080, P.R. China

E-marl: kai.zhao@mail.ia.ac.cn

Received February 1, 2002; revised June 12, 2002.

A b s t r a c t Generally a database encompasses various kinds of knowledge and is shared
by many users. Different users may prefer different kinds of knowledge. So it is important
for a data mining algorithm to output specific knowledge according to users' current require-
ments (preference). We call this kind of data mining requirement-oriented knowledge discovery
(ROKD). When the rough set theory is used in data mining, the ROKD problem is how to find
a reduct and corresponding rules interesting for the user. Since reducts and rules are generated
in the same way, this paper only concerns with how to find a particular reduct. The user's
requirement is described by an order of attributes, called attribute order, which implies the im-
portance of attributes for the user. In the order, more important attributes are located before
less important ones. Then the problem becomes how to find a reduct including those attributes
anterior in the attribute order. An approach to dealing with such a problem is proposed. And
its completeness for reduct is proved. After that, three kinds of attribute order are developed
to describe various user requirements.

K e y w o r d s requirement-oriented knowledge discovery, attribute order, discernibility ma-
trix, reduction algorithm

1 Introduction

As stated in [1], " - . . da t a mining tasks can be classified into two categories: descriptive and predic-
tive. Descriptive mining tasks characterize the general properties of the data in the database. Predictive
mining tasks perform inference on the current data in order to make predictions...." Since predict ion
has the same motivat ion with machine learning, description is more distinct than predict ion in da ta
mining. In detail, description aims at finding a concise explanation (reduction) of the given da t a set,
or what we call da ta extraction.

There are three issues in da ta extraction. First, a da tabase is usually shared by m a n y users who
have their own requirements (preferences) for the knowledge discovered. As the da tabase does contain
all the knowledge required, it is impor tan t for the da t a mining algori thm to provide the knowledge a
user prefers. We call this problem requirement-oriented knowledge discovery (ROKD). Second, eff•
algori thms are needed to deal with huge da ta sets. Third, the result should be presented in a na tura l
language or visual style. While a great effort has been made on the last two issues [2-s], we concentra te
on the first one, tha t is how to discover knowledge according to the users' requirements.

Generally speaking, reduct ion on words has a close relation with inductive machine learning, with
which a da ta set is typically consistent with several hypotheses (knowledge). Since it is generally NP-
complete to find all the hypotheses and the hypotheses have little meaning for a par t icular user except
making him bored, some strategies are embedded in an algori thm to determine just one hypothesis as
the output . Those strategies are called biases of the a lgor i thm [9-15]. Abstractly, induct ive machine
learning may be represented as a function, y = f (x) , where x denotes the da ta set, and y denotes the
knowledge discovered. Taken biases into consideration, a coefficient a is added in and the function
is varied to y = c~f(x). In classical learning algorithms, biases are usually implicitly fixed in the
algori thms and some modifications, such as shift bias, are introduced later [9'1~ The criteria of

This work is supported by the National Key Project for Prime Research on Image, Speech, Natural Language
Understanding and Knowledge Mining (NKBRSF, Grant No.G1998030508).

No.5 A Reduction Algorithm Meeting Users' Requirements 579

designing a bias consist of predictive accuracy, the computational complexity of the algorithm, the
syntactic complexity of the induced rules, and the stability of the algorithm[17]. We suggest another
kind of criteria, the requirements of users.

Using the fixed or shift bias, traditional algorithms actually assume that all the users have the
same requirements for the knowledge. Therefore the same knowledge are output for all users. But in
many applications, that is problematic. Most huge data sets are shared by many users, who usually
have their own requirements. That means different users may require different knowledge.

Consider a simple example about the production of soybean.

Table 1. Example About Production of Soybean
Temperature Humidity
high middle
middle middle
middle high
middle high
low middle
high middle
high high

Wind
middle
middle
weak
middle
strong
middle
middle

Fertilization Pesticide Production
ferl pesl high
fer2 pes 1 high
ferl pes2 high
ferl pesl low
ferl pesl ' low
fer3 pes2 low
ferl pes2 low

There are seven records in Table i. Three of them are about high production of soybean, while
the other four about low production. Among the six attributes, production is a decision attribute
and the remaining five are conditions. In the fertilization and pesticide attributes, ferl, fer2 and fer3
represent three kinds of fertilizers, and pesl and pes2 represent two brands of pesticides.

Suppose there are two users, A and B. A wonders how temperature, humidity and wind affect the
soybean production, while B cares about the effect of pesticide and fertilization. If the data set does
contain those two kinds of knowledge, how does an algorithm output customized knowledge for the
user? That is, how to provide A with the knowledge about temperature, humidity and wind, and B
with the knowledge about pesticide and fertilization, respectively?

To accomplish such a task, we have to answer two questions. First, how does a user describe his
requirement to the computer? Second, after a user has given the description of his requirement, how
does the algorithm support the requirement, i.e., discover the particular knowledge according to the
requirement description. In the following, we try to answer these two questions.

For the first question, we suggest a method based on the order of attributes, by which a user
describes his requirement by ordering attributes in terms of their importance for him, e.g., more
important attributes are located before less important ones. In this way, user A may order the
attributes as temperature>humidity>wind>fertilization>pesticide, which means temperature is the
most important attribute for him, while pesticide is the least important attribute. Here, al > a2
means attribute al is more important than a2 for the user. Then, user B may order the attributes
as pesticide>fertilization>wind>humidity> temperature, which means pesticide is the most important
attribute for him, while temperature is the least important one.

Note that usually to mark the importance of attributes is to associate every attribute with a
specific argument, i.e., a weight. And the higher the weight, the more important the attribute. But
the essentiality of such a method is to rank the attributes in an order. Therefore we directly use the
ordering method.

What has to be pointed out here is that the idea of attribute order is not firstly presented in this
paper. It has been used in [18]. But in that paper, it serves as a necessary condition that ensures
the completeness of the algorithm for reduct. However, in this paper, it serves as the specification of
users' requirements.

For the second question, we propose a new algorithm that is based on the rough set theory.
The rough set theory, developed by Pawlak and his co-workers in the early 1980s, has become

an important approach of knowledge discovery and data mining[19,2~ It constitutes a sound basis
for data mining applications. In the rough set theory, reduct is a significant concept and attribute
reduction has been one of the main thrusts in current applications[211. For a consistent data set with
decision attributes, a reduct (or relative reduct) is a minimal subset of attributes that maintains the

580 ZttAO Kai, WANG Jue Vol.17

same capabili ty of classification on objects as the whole set of at tr ibutes. UsuaIly more than one
reduct can be obtained from a da ta set. In the rough set theory, rules (knowledge) are induced from
the data set after a reduct is achieved, concerning only with a t t r ibutes within the reduct. So, for the
R O K D problem, it is na tura l to find out firstly a reduct containing a t t r ibutes interesting for the user
and then induce rules from the reduct. For the above example about soybean, we may firstly find a
reduct like {temperature, humidity, wind} for user A, and a reduct like {pesticide, fertilization} for
user B, and then generate their corresponding rules. So the rules induced for user A only concern with
temperature, humidity, and /o r wind, and are actual ly the knowledge about how these factors affect
the product ion of soybean. And for user B, the rules are about how pesticide a n d / o r fertilization
effect the product ion of soybean. In this way, we reach the goal of this example.

But such a t t r ibute sets as {temperature, humidity, wind} and {pesticide, fertilization} may not be
reducts of da ta set, so the problem becomes how to find a reduct containing a t t r ibutes as anterior in
the a t t r ibute order as possible. This problem is not as simple as it seems to be.

Fdr example, it is easy for an algori thm to identify reduct a t t r ibutes one by one from the head
of the order until all the objects are correct ly classified. We check the performance of the simple
algori thm with Table 1.

To view the da ta clearly, Table 1 is t ransformed to Table 2.

Table 2. Example
a b l c d
1 1 I 1 1
2 1 [1 2
2 2 3 1
2 2 1 1
3 1 2 1
1 1 1 3
1 2 1 1

Transformed from Table 1
e Production
1 1
1 1
2 1
1 2
1 2
2 2
2 2

In Table 2, a, b, c, d and e correspond to temperature, humidity, wind, fertilization and pesticide
respectively.

The discernibility matr ix is {ab, ac, de, bd, acd, ade, ce, abce, abed, be, abde}. Assume that user
A sets the attribute order as a > b > c > d > e. Then attribute a, the most important for the user, is

firstly selected as a reduct at t r ibute. According to the principle of discernibility matrix, all the entries
containing a can be d ropped from the discernibility matrix. So the discernibility matr ix becomes {de,
bd, ce, be}. Secondly, a t t r ibute b is selected, and discernibility matr ix becomes {de, ce}. Then, c
is selected, and discernibility matr ix becomes {de}. Finally, d is selected, and discernibility mat r ix
becomes empty. So the current result is {a, b, c, d}.

But the result is not a reduct of the da ta set. It still has some redundancy. In fact, a t t r ibute a
can be eliminated from the result and {b, c, d} becomes a reduct. Moreover, none of {a, b, c}, {a, c, d}
and {a, b, d} is a reduct. Thus, to cut down the redundancy, we have to eliminate a t t r ibu te a from the
result, and the final result is {b, c, d}. Then the rules induced from the da ta set in terms of the reduct
only concern with b, c, and /o r d. Here the drawback is clear, for a, the most impor tan t a t t r ibute for
the user, has been missed. However, the da ta set actually contains a reduct {a, b, e}, which is more
preferred by the user in the sense that it includes tile first two impor tant a t t r ibutes of the a t t r ibu te
order.

This example illustrates why such a simple algori thm does not fit for R O K D problem. In fact,
the algori thm fails because it cannot ensure tha t all the a t t r ibutes kept so far const ruct part of a
reduct. For example, in a step the algori thm kept {a, b, c}, but there is no reduct conta ining a, b, and
c simultaneously. Therefore, to ensure the final result to be a reduct, some impor tan t a t t r ibutes tha t
are originally kept have to be moved out.

Since a t t r ibute order firstly appears in [18], where a reduction algori thm RA-Order is proposed,
it is natural to think abou t using RA-Order for tile ROKD problem. Unfortunately, RA-Order also
meets some difficulty, because it begins to remain a t t r ibute from middle part of the a t t r ibu te order,
and from end to head. Therefore, some most impor tan t a t t r ib , t e s for the user may be missed. Tha~

No.5 A Reduction Algorithm .Meeting Users' Requirements 581

is the same as what happens in the simple algorithm. For the above example, RA-Order also outputs
{b, c, d} as the final reduct that excludes the most irnportant attribute a.

To sum up, both the simple algorithm and RA-Order do not work well in supporting attribute
order as the specification of user's requirement, because they cannot ensure keeping in the result some
most important attributes for the user.

In fact, the main challenge in supporting attribute order as the specification of user's requirement
lies in two points. First, the algorithm should identify reduct attributes one by one from the head of
the attribute order, that means the more important an attribute is, the more prior it will be included
in the final result. Second, after an attribute is selected, the algorithm should ensure that the attribute
will not be moved out from the final result, that implies that the current selected attributes must be
pare of a reduct. In this paper, we propose the reduction algorithm based on free attributes, which
just has these two important features.

This algorithm identifies reduct attributes one by one from the head of the attribute order. Ad-
ditionally, to ensure all the attributes currently identified being part of a reduct, the algorithm de-
termines some non-reduct-attributes, called free attributes, at the same time. For example, given a
discernibility matrix and an attribute order S = a > b > c > d > e > f , the algorithm first identifies
a in the reduct, but at the same time, it determines .f not in the reduct. Then it identifies b in the
reduct, and c not in the reduct. At last it includes d in the reduct, and excludes e. So the final result
is (a,b,d}.

The paper is organized as follows. [n the next section, we introduce some related work including
the study on preference and reduct. Sections 3, 4, and 5 are related to the theoretical foundation of
the new algorithm. In Section 6 we introduce the algorithm. In Section 7 we prove the completeness
of the algorithm for reduct. Section 8 is devoted to three kinds of attribute order. Section 9 shows
some experimental results. Section 10 summarizes the paper with some conclusive remarks.

2 R e l a t e d W o r k

2.1 P r e f e r e n c e

Preference has been studied by some researchers ~22-2~. In those papers, a special kind of problem,
sorting problem, is taken into consideration. In a sorting problem, a database includes two kinds of
attributes, criteria, (i.e., attributes with preference ordered domains (scales), like return on investment
or market share), and regular attributes, whose domains are not preference ordered, like color or texeure
(if those terms are used, all the attributes mentioned in this paper are actually regular attributes). To
deal with sorting problems, a new relation, dominance relation, substitutes the classical discernibility
relation of the rough set theory. The goal is to infer the preference model hidden in the database.
Those studies do not aim at ROKD problems. They obtain the same knowledge for all the users.

Another research on user preference can be found in !25]. It indicates that an algorithm usually
generates a large number of rules from a database, but most of them are not interesting for the user.
So it is necessary to identify those interesting rules from the total rules for the user. The user's
preference for the rules is described by a kind of specification language, called general impressions.
Then the system analyzes the discovered rules by matching them against the general impressions, and
then ranks them in terms of the matching result. Finally, high-rank rules are shown to the user. In
fact, the mining course is separated into two steps. [n the first step, all the rules are discovered, while
in the second step, interesting ones are identified for the user. [25] only concerns with the second
step. As to the first step, it leaves it to the current data mining algorithms. But that separation may
have a trouble when dealing with ROKD problems, as some interesting rules for a user may have been
missed after the first step so that they cannot be identified in the second step. If all the interesting
rules for all users have to be included after the first step, the data mining algorithm must cover the
total solution space, which is usually .NP-complete in time complexity so that it loses efficiency when
facing large databases. Different from it, the algorithm we present directly induces interesting rules

582 ZHAO Kai, WANG Jue Vol.17

for the current user, and, the specification of user's preference are different.

2.2 Reduction Algorithms of Rough Set Theory

Like data mining, we can classify researches on at t r ibute reduction into two kinds, prediction and
description. The former obtains reducts from a data set to make predictions on new cases, such as
approximate reduct and dynamic reduct [~6'271 . In such methods, the quality of classification on training
data may be decreased in order to receive higher quality of classification on new objects [26]. The latter
obtains reducts to make a short but accurate description of the da ta set. Here, the accuracy of the
data, rather than new ones, plays an important role. The methods include the RA-Order algorithm [ls],
approximate algorithms based on statistics [2s], and optimization algorithms for minimal reduct [29'3~

Since reduction algorithms generally find one reduct from the reduct set, there are some biases
embedded in the algorithms~ The biases may be accuracy of prediction [26], stabili ty of the result [271,
completeness for reduct [ls], or minimal length of redact [29'3~ Here we suggest another criterion,
requirement of the user. By such a criterion, a long reduct preferred by the user is be t ter than a short
but unsatisfactory one.

3 D i s c e r n i b i l i t y F u n c t i o n

Before the new algorithm is described, and its completeness for reduct is proved, it is necessary
to study the nature of discernibility function. Because only the propositional logic is involved, the
formulas below are all propositional ones.

Let (U, C u D) be an information system (data set), where C is the condition a t t r ibute set and D
is the decision at t r ibute set, and U = {xl, x 2 , . . . , x~}. I ts discernibility matr ix [31], denoted by ~, is
an n x n matrix defined as

mij = {a e C : a(xi) r a(xj) A (d E D, d(xi) r d(xj))}, f o r i , j = l , 2 , . . . , n .

Write ~P as a list {Pl , . - . ,Pt}. In ~, each Pi is called a discernibility entry, and is usually writ ten
as pi = all. �9 �9 ai,~, where each aik corresponds to a condition attr ibute of the information system, k =
1 , . . . , m, i = 1 , . . . , t. Furthermore, the discernibility matr ix can be represented by the discernibility
function f , a conjunctive normal form (CNF), i.e., f = Pl A . . . APt, where each Pi = nil V .-. V ai,~
is called a clause, and each aik is called an atom. Note that the discernibiIity function contains only
atoms, but not negations of atoms.

Although the discernibility matr ix and discernibility function have different styles of expression,
they are actually the same in nature. So the discussion on one subject is easily extended to the other
one. In this section, we discuss the discernibility function.

A clause p is said to subsume a clause p ' if p ' contains all the atoms in p. A clause p is called a
prime clause of f if no clause of f subsumes p. A CNF is called prime if it only consists of prime
clauses.

Applied the absorption law, a CNF is transformed to a prime CNF, which is written as

f = p~pAc(f)P

where P C (f) denotes the set of prime clauses of f .
Example 1. f = (a V b V d) A (a V b V c) A (b V d) A (c V e). Applied the absorption law, (a V b V d) is

absorbed by (b V d), and f is transformed to the prime CNF f ' = (a V b V c) A (b V d) A (c V e). Each
clause of f~ is a prime clause.

Proposit ion 1. Let f be the discernibility function of an information system in the form of CNF.
Applied the absorption law, f can be transformed to a unique prime CNF.

Since the prime CNF transformed from a CNF is unique, the above proposition is immediately
proved. The proposition shows that, each information system may be expressed uniquely by a prime
CNF.

No.5 A Reduction Algorithm Meeting Users' Requirements 583

In the following, we discuss a proper ty of prime CNF. Firstly, we define a set opera tor "~" .
D e f i n i t i o n 1 (Se t O p e r a t o r " ~ ") . If f is a prime CNF, a C f is a clause, and B is an empty

set, an atom, or a conjunction of atoms, then a ~ B = a - (a N B).
P r o p o s i t i o n 2. I f f is a prime CNF, a E f is a clause and a = a V]3, then for any/3 C f ,

Proof. Suppose there is a clause 2/ E f such tha t 7 "~ B = 0, then ~/ __ /? _C oe, which means
7 subsumes a so tha t a is not prime. Then f is not a prime CNF, which contradicts the known
condition. Therefore, there is no such clause as 7 in f . []

Example 2. f = (a V b v c) A (b v d) A (c V e) is a prime CNF. Consider a = a V b V c = a V B, where
B = b V c . Dropping B from f , w e h a v e f f = a A d A e , w h i l e a h s d r a n d e r

R e m a r k . This proposi t ion implies tha t if a is identified as a reduct a t t r ibute , all the a toms in
B may be dropped from f while keeping all the clauses nonempty. This is the basis of the reduct ion
algori thm presented in this paper.

4 P r i m e C N F and D N F

By applying the mult ipl icat ion (distributive) law, the discernibility funct ion represented by a CNF
is t ransformed to a disjunctive normal form (DNF), i.e., f = ql V- - . V %, where each q~, i = 1 , . . . , s,
is a conjunction of a toms and called an implicant of f .

Then the concept of subsume is extended to DNF. An implicant q is said to subsume an implicant
q / i f q /conta ins all the a toms in q. An implicant q is called a prime implicant of f if no implicant of f
subsumes q. A DN F is called prime if it only consists of prime implicants. Moreover, the set opera tor

and Proposi t ion 2 are also extendable f rom CNF to DNF.
By applying the absorpt ion law, a DNF is t ransformed to a prime DNF, f = ql V - �9 �9 v qk. In fact,

each qi, i = 1 , . . . ,k, is a reduct of the information system, and { q t , . - - , q k } is the reduct set of the
given information system[31].

Denote the prime CNF of f by F , and the prime DNF o f f by G. P and Q are the a t o m sets
of F and G, respectively. A question arises, whether P = Q or not? If the answer is yes, then for
every a tom in F , there mus t exist a prime implicant (reduct) in G including the atom. T h a t means,
to compute a reduct, we m a y start from any clause in F , and select one of its a toms as a reduct
at tr ibute. Furthermore, we may select the first one in the a t t r ibute order as a reduct a t t r ibute . This
is why we base our discussion on prime CNF of a discernibility matrix, bu t not on the discernibility
matr ix itself. Before answering the above question, we first introduce atom order (attribute order).

Given a CNF f with a tom set C, the atom order, denoted by S, is an order over C. Given an
a tom order S, each clause of f may be rearranged according to S so tha t the a toms in the clause
appear in the same order with S. For example, f = (a v c v b) A (d V b) A (c V e), C = {a, b, c, d, e},
and S = a > b > c > d > e. Rearrange f according to S, f = (a v b v c) A (b V d) A (c V e). After the
rearrangement, each clause is said to satisfy S.

When each clause satisfies S, we define an equivalence relation L(S) over f :

{~ : a E f , where a takes ak as the first atom, i.e., c~ = akB}

where ak E C and B C C. By L(S) , f is par t i t ioned into equivalence classes, i.e., f / L (S) =
([e l] , . . . , [an]} ---- { [1] , . . . , [n]}, where ai locates before ai+l in S, i = 1 , . . . , n - 1. Consider 0 5s [k] e
f / L (S) . Select a E[k] and c~-- a k V B , then for e v e r y a p E B, ap is located behind ak in S. ak is
called the labeled atom of [k]. Sometimes we write ~ = ak V B as a = akB.

The following proposi t ion is about clauses in the equivalence class [k].
P r o p o s i t i o n 3. Given a CNF f and an atom order S, [k] E f / L (S) with labeled atom ak, and

[k] = { a l , . . . , c~n}. Transform c~1 A . . . A an to DNF, denoted the result by ~k. There must exist an
implicant {ak} in f~k.

R e m a r k . This proposi t ion suggests that , {ak} is an implicant of t2k. Then, if the absorpt ion law
is applied to gtk, all the implicants in f~k containing ak will be absorbed. T h a t means, in the prime

584 ZHAO Kai, "WANG Jue Vot.17

DNF of t2k, there must exist a prime implicant {ak}, and all the other prime implicants exclude the
atom ak. Especially, if there is just one clause in [k], for example, a V b V c, then all the atoms in the
clause, a, b, and c, are implicants in ~k- In addition, the proposition must still hold for a DNF.

Ezample3. f = (a V d) A (a V e) A (b V c) is a CNF and S = a > b > c > d > e. [a] = [1] =
{(a V d), (a V e)}. Transforming [a] to DNF, we get f~, = a V (a A d) V (a A e) V (d A e). Then {a} is
an impticant of ~1o Applying the absorption taw to ~1, ~1 = a V (d A e). {a} is a prime implicant of
~tt and (d A e) excludes the a tom a.

In fact, what we are looking for is an algorithm that can obtain a reduct including those at tr ibutes
the user preferred. According to Proposition 3, for each [k], if its labeled atom, ak, is selected as an
redact at tr ibute, all the clauses in [k] can be dropped from the CNF of the discernibility function.

Let F be the prime CNF of discernibility function f , and G be the prime DNF of f . The a tom
sets of F and G are both subsets of C, and are arranged according to the a tom order S.

Consider a E [k], a = akB. Let F ' = F - [k], G' = {01 V -.. v 0q} be the prime DNF of F ' . For
the donvenience of discussion, move away the subscript k and write a = akB as a = aB. Applying
the multiplication law to a A G ~, we have the following formula.

a A G' = { (a l A 01) V . . - V (a A Oq)} V { (B A 01) V . . . V (B A Oq)}

Obviously, all the (a A 0i), i = 1 , . . . , q, are implicants of a A O'. Then two questions arise: (1)
does every (a A 0i) definitely keep prime in a A G'? Clearly, the answer is no. (2) is there any (a A 0{)
keeping prime in c~ A G'? This is an important question that has to be answered before the algorithm
is designed. If the answer is no, it is not possible for a to work as a reduct at tr ibute, so tha t any
algorithm should not identify a as a reduct at tr ibute. The following proposition answers this question.

P r o p o s i t i o n 4. (a A 0,~) is a prime implicant of a A G' if and only if for all b E B C a, b fl 0,~
holds, where 1 < m <_ q.

Proof. By the definition of G ~, a d 0,~ holds.
(~) Assume that (a A 0,~) is a prime implicant of a A G'. Suppose there is b C B C a and b E 0,~.

Since b E 0,, and a ~ 0~, we have b A 0,~ = 0m and (b A 0,~) C (a A 0,,), that is, (a A 0,,) can be
absorbed by (b A 0,~) (or (B A 0,0) . Thus, (a A 0,,) is not a prime implicant of (~ A G' , which contradicts
the assumption.

(0) Assume that for all b E B C a, b q20~ holds. Since b ~ 0m and a ~ 0m, and a ~ b, we have
(aAO,~) r (bAO~) and (bAOm) r (aAO,~). Thus, (a A 0 m) cannot be absorbed by any (bAOm)
(or (B A 0m)). And obviously, (a A 0,~) cannot be absorbed by any other (B A Or) either, 1 < t < q,
t r rn. Therefore, (a A 0~) is prime in a A G'. []

R e m a r k . Since only multiplication and absorption laws are employed in the above proof, the
proposition must hold for DNF, that is, we can prove in the same way that the proposition holds
when transforming a DNF to CNF.

Proposition 4 implies an algorithm that is complete for reduct.
Ezample4. F = (a V b V c) A (b V d) A (c V e) is a p r i m e C N F a n d S = a > b > c > d > e . [a] =

{ (avbvc)} . F' = F-[a] = (bVd)A (cVe). a = aVbVc = a V B and B = bVc. Applying multiplication
and absorption laws to (b V d) A (c V e), we have its prime DNF G' = (b A c) V (b A e) V (d A c) V (d A e).
Then applying the multiplication law to (a V b V c) A G', we have

a AG' = (aAbAc) V (aAbAe) V (aAdAc) V (aAdAe) ,
b A G ' = (b A b A c) V (b A b A e) V (b A d A c) V (b A d A e) ,

cA G' = (cA bA c) V (cA b A e) V (cA dA e) V (cA dA e).

The p r i m e D N F o f (a V b V c) A G ' i s (a A d A e) V (b A e) V (b A e) V (d A c) .
Note that in G', only (d A e) does not contain b or c. Therefore, (a A d A e) is a prime implicant of

a A G', and none of (a A b A c), (a A b A e), (a A d A c) is. The result validates Proposit ion 4.
Now, we can answer the question, whether P = Q or not, put forward at the beginning of this

section.

No.5 A Reduction Algorithm Meeting Users' Requirements 585

Let F be a prime CNF and S be an a tom order. Let [k] < F/L(S) , oe e [k], and c~ = aB. Applied
multiplication and absorption laws, F is t ransformed to prime DNF G. P and Q are a tom sets of F
and G, respectively.

P r o p o s i t i o n 5. P = Q.
Pro@ First, we prove that P C_ Q holds.
Since c~ = a B C F, a E P. For any 7 E F, by Proposition 2, 7 ~ B # 0 holds. Applied

multiplication and absorption laws to F, there must exist an implicant /3 = a A A in G, such that
A N B = 9. Then according to Proposition 4,/3 = aAA is a prime implicant of G, i.e., a E Q. Because
of the liberty of c~, for any a E P, we have a C Q. Then P C_ Q holds.

Because Propositions 2, 3, 4 hold for CNF and DNF, in the same way, we can prove Q c_ P .
P = Q holds. []
This proposition implies that any a tom in a prime CNF must be included in an implicant of a

prime DNF. Since the discernibility function of an information system can be expressed in the form
of prime CNF, and the prime DNF is just the reduct set, for any a tom of the prime CNF, there must
exist a reduct containing that atom. This is the necessary condition of the algorithm presented in this
paper.

5 R e d u c t

Reduct is one of the most important contributions Of Pawlak to machine learning theory. It can be
regarded as a goal between minimal reducts and trivial reducts, with the computat ional complexity
of O(n2). This concept is originally defined on the positive region of the information system (low

approximation) (9
D e f i n i t i o n 2 (R e d u c t , P a w l a k) . Given an information system (U,C U D), and R C C. If

POSR(D) = ROSa(D) and for any r e R, POSn(D) ~ ROSR_(~}(D), then R is a reduct of
(U, CUD) .

Roughly speaking, for a subset of condition attributes, the positive region is the maximal subset
of the universe U, in which all the objects are consistent with each other. To make it dear, we give a
direct explanation following Pawlak's definition.

Given an information system (U, CUD}, R C_ C and E _C U. For R, U - E is the positive region of
the information system, if and only if for all x, y E U - E, if R(x) = R(y), then D(x) = D(y), and for
any z E E, there exists a z ' E t77, such that R(z) = R(z') but D(z) r D(z'). And, {y : R(z) = R(y)
but D(z) r D(y), z E E and y E U - E} = 0.

R e m a r k . In fact, the original definition of positive region given by Pawlak has considered the
inconsistent case of an information system. Although it is significant for prediction tasks, it loses
essentiality in description ones, because we only need to consider the case ROSa(D) = U for reduction.
If the given information system is inconsistent, according to Pawlak's definition, the reduction is
accomplished on the positive region for decision at tr ibute D. Tha t is, the reduct on (U, C tO D) is
replaced by the reduct on (U - E, C tO D).

By this remark, reduct may be defined in another way.
D e f i n i t i o n 3 (R e d u c t) . Given an information system (U, C tO D}, t~ C C is a reduct, if and only

if (1) for every x, y E U with D(x) 7 s D(y), R(x) # R(y) holds and (2) for any r ~ R, P = R - {r},
there exist x, y e U, such that D(x) # D(y), R(x) # R(y), but P(x) = P(y).

R e m a r k . Definition 3 is closely related to the discernibility matrix.
In the principle of discernibility matrix, reduct is related to core attributes.
P r o p o s i t i o n 6. R is a reduct of (U, C U D) if and only if l~ is the core attribute set of (U, R O D).

(9 In Pawlak's papers, reduct is defined with and without decision at tr ibutes, respectively. Since we can t ransform
the latter case to the former case, it is only necessary to consider reducts in an information sys tem with decision
at tr ibutes, which is based on the positive region (Iow approximation).

586 ZHAO Kai, WANG Juc Vol.t7

R e m a r k . By this proposition, the information system (U, { R - { r } } u D) is constructed by moving
out a core attribute r from (U, R U D), which must cause a change of the positive region.

In this paper, we use another definition of reduct that is based on the principle of discernibility
matrix. The new definition is equivalent to Definition 3.

Let ~ be the discernibility matrix of the information system.
Def in i t ion 4. Given an information system (U, C U D), and R C C. For r E R, if there is an

a E r such t h a t R N a : r , t henr is said to be independent i n R . R is a redact of the information
system, if and only if (1) R n a 7s ~ for any a E ~ and (2) any r E R is independent in R.

P r o p o s i t i o n 7. Given an information system (U, C U I)) and POSc(D) = U, Definition 4 is
equivalent to Definition 3.

Proof. Let R C C , r E R a n d P = R - { r } .
By Definition 3, (1) for every x, y E U with D(x) # D(y), R(x) # R(y) holds. Then a, the

discernibility element of x and y, satisfies R n a r 0. (2) For any r E R, P = R - {r}, there
exist x, y E U such that D(x) # D(y), R(x) # R(y) but P(x) = P(y) . Hence, by the principle of
discernibility matrix, a satisfies r E a but P ~ a. Then R c1 a = r. Thus, the two conditions of
Definition 3 correspond to those of Definition 4 respectively.

By Definition 4, (1) R n a 5s (~ for any a E (I>, i.e., for every x, y E g with D(x) 7s D(y), there
is some difference between them on a subset of R, i.e., R(x) ~ R(y). (2) For any r E R, there is an
a E ~, such that R n a = r. That is, for any r E R, there is an a E ~, such that R N a r 0 and
P n a = ~. By the principle of discernibility matrix, there exist x, y E U satisfying D(x) r D(y) and
R(x) 7s R(y), but P(x) = P(y). That is just Definition 3. []

We close this section by defining free attributes. In fact, the algorithm we will present tries to drop
non-redact-attributes from the discernibility matrix. That is different from traditional algorithms,
where it is the redact attributes that would be dropped. The non-redact-attributes are called free
attributes.

There are two sorts of free attributes. First, free attributes for the information system, which are
free for all the redacts. Second, free attributes for a reduet, which are free just for that redact.

Given an information system (U, C U D), by Proposition 5, the attribute set of redact set (prime
DNF) is the atom set of prime CNF of its discernibility function, denoted by P.

Def in i t ion 5 (Free A t t r i b u t e) . For any a E C, if a f~ P, it is called free attribute of the
information system. Let R C_ C be a redact. Any b E C - R is called free attribute of the redact R.

6 T h e A l g o r i t h m B a s e d o n F r e e A t t r i b u t e s

Some reduction algorithms based on the principle of discernibility matrix take the following reduc-
tion rule.

P r o p o s i t i o n 8 (R e d u c t i o n Ru le B a s e d on D i sce rn ib i l i t y M a t r i x) . Let r be the discernibility
matrix of an information system. I f ~ ~ R C_ C is a redact, then ~ N R r 0 holds for any a E q~.

The reduction method implied by Proposition 8 is based on dropping entries from the discernibility
matrix. Although various strategies may be embedded in the above rule, it has been proved that not
all the strategies are complete for redact [ls]. Also in [18], a strategy based on attr ibute order is
proposed, and the corresponding algorithm is proved to be complete for redact. However, since the
strategy replies on the nonempty equivalence class with maximum subscript in F/L(S), it meets some
difficulty in supporting uscr requirement.

The algorithm to be presented in this paper adds another reduction rule to Proposition 8, which
in fact identifies the free attributes.

P r o p o s i t i o n 9 (R e d u c t i o n Ru le Based on Free A t t r i b u t e s) . Let �9 be the discernibility
matrix. For a reduct ~ 7~ R C_ C, there must exist kb ~ C q~, such that for any a E ~Y, where a = aB,
U ~ a = R and B c2 R = ~ must hold.

Proof. Let (D r R C_ C be a reduct. By Definition 4, for any a E R, there is an a E r) satisfying
R A n = a. Written a as a = a/3, t 3 N R = ~ holds. Construct ~ by including all these a. Then

No.5 A R.eduction Algorithm Meeting Users' R.equirements 587

'~=c~a = R holds. .~
P ropos i t ion 9 ex tends the reduc t ion rule in P ropos i t ion 8. The key po in t lies in the select ion of

B. Since the a t t r i bu t e s in B are free for R, t hey can be d r o p p e d from discern ib i l i ty m a t r i x before the
reduc t ion rule in P ropos i t ion 8 is appl ied.

Example 5. �9 = {abe, ab, ad, bd, be, ce, cf} and R = {a,b,c}.
r = {ad, bd, ce}. Note tha t {d, e} n R = 0.
Let F be the C N F of the d iscernibi l i ty funct ion, S be the given a t t r i b u t e o rder and R = 0.
Algorithm 1. (Reduc t ion A lgo r i t hm Based on Free At t r ibu te s)

(1) If F = 0, stop.
(2) Apply the absorption law to F and transform it to prime CNF.
(3) F/L(S) = {[al] [a,~]}. R = RU {al}. Select an c~ E jail, c~ = alB.
(4) F = F - [al].
(5) Va E F, a = a ~ B.
(6) Goto (1).

W h e n the a lgor i thm stops, R is a reduct .
Example 6. F = (a v b V f) A (a V c V f) A (a V c) A (a V d) A (b V d) A (b V e) A (c V e) A (c V f) .

S = a > b > c > d > e > f .
To have a clear view, wri te F as �9 --: {abf, acf, ac, ad, bd, be, ce, cf}, and replace using the algo-

r i t h m on F wi th using it on O. Bo th the process and resul t are the same.

(t) since r # ~, go to (2).
(2) Apply the absorption law to ~5. acfis absorbed by ac. So @ = {abf, ac, ad, bd, be, ce, cf}.
(3) ~/L(S) = {[al,[b],[c]}. [a] = {abf, ae, ad}, [b] = {bd, be}, [c] = {ce, cf}. R = {a}. Select c~ = abI,

c~ = aB, where B = {b,f}.
(4) ~ -=-- ~ -- [a] = {bd, be, ce, cf}.
(5) Drop B = {b,f} from ~5. ~5 _- {d, e, ce, c}.
(6) Goto (1).
(7) Since r r O, go to (2).
(8) Apply the absorption law to ~. ce is absorbed by c. So q5 = {d, e, c}.
(9) r = {[c], [d], [e]}.

W h e n the a lgo r i thm stops, R = {a, c, d, e} is a reduct .
Note tha t in Step (3), since [al] usual ly conta ins more than one entry, how to select a E [al] is

a s t ra teg ic p rob l em tha t must be considered carefully. Different s t ra tegies usual ly lead to different
result . For the above example , [a] -- {abf, ac, ad}. If c~ = abf, the resul t is {a, c, d, e}; if c~ = ac,
the resul t is {a, b, e , f}; i r a = ad, the resul t is {a, b, c}. Obviously {a, b, c} is the bes t r educ t for the
user because i t conta ins the first three a t t r i b u t e s in S. The deta i l s of s t ra tegies will be discussed in
Sect ion 8.

The a lgo r i t hm is based on forming the d iscern ib i l i ty ma t r i x of an in format ion sys t em t h a t has a
t ime complex i ty of O(n2), where n is the number of objects in the in format ion sys tem. As to the
a lgo r i thm itself, since the absorp t ion law is used, the t ime complexi ty becomes O(Card(O)2), wkere
Card(O) is the en t ry number of d iscernibi l i ty mat r ix .

7 T h e C o m p l e t e n e s s o f A l g o r i t h m 1 f o r R e d u c t

To prove t h a t the a lgor i thm based on free a t t r i bu t e s is comple te for reduct , we need the following
p ropos i t ion t h a t is p roposed by Skowron [31].

Proposition 10 (R e d u c t S e t) . The prime DNF of the information system is its reduct set.
Each irnpIicant of the prime DNF is a reduct.

By this p ropos i t ion , to prove the a lgo r i t hm ' s completeness for reduct , it only needs to prove tha t
the o u t p u t of the a lgor i thm is one of the impl icants of the pr ime D N F of the in fo rma t ion sys tem.

P r o p o s i t i o n 10 has a useful corollary, which may be regarded as another def ini t ion of reduct .

588 ZHAO Kai, ~VANG Jue Vohl7

C o r o l l a r y 1 (R e d u c t) . For an information system, F is the prime CNF of the discernibility
function, and G is the DNF ofF. For ~ E G, t3 is a reduct, if and only if for any v E G, ~ ~ 13 holds.

Since the algorithm based on free at tr ibutes identifies one reduct from the reduct set, it will be
complete for reduct if its output is actually one/3 in Corollary 1 for every information system.

By Proposition 1, F is unique for the given information system. Let S be an a t t r ibute order, and
[k] E F/L(S) , whose labeled at t r ibute is 'a ' . a : a B E F, ~ E G. We have the following statements
prepared for the proof of the completeness of the algorithm..

(1) By Proposition 5, a C ~. There must be an implicant in G that contains attribute a (Step 3).
(2) By Proposition 3, if a is selected as a reduct attribute, all the clauses in [k] may be dropped (Step 4).

(3) By Proposition 2, select a clause a ---- aB, for any 7 C F, V ~" B r ~. We get the new CNF H (Step
5).

(4) Assume 5 , r S C r 1 6 2 T h e n a A S A r (Step2).

Let R be the output of the algorithm. It must be an implicant of the DNF of F, but may not
be prime. To prove the completeness of the algorithm for reduct, we must prove that R is a prime
implicant.

P r o p o s i t i o n 11. The algorithm based on free attributes is complete for reduct.
Proof. Let R be the output of the algorithm.
Let a E F, a = aB. Drop B from F-[a], and then transform it to prime DNF O' . O' = 81V" -V0k.

Applying the multiplication law to a A G', we have

aAG'= (aA01) V'--V(aASk)V(BA81)V-''V(BASk).

Consider 8~ E G'. By Proposition 4, (aAS,~) is a prime implicant of a A G ' if and only ifb ~ 8~ for
all b E B. Since B has been dropped before G' is formed, that condition is satisfied. By Proposit ion
2, for any ~/E F, we have V ~ B ~ 0. Therefore, G' ~ 0 holds, so that there must exist an 8~. Thus,
the output of the algorithm, R = a A 8,~ is a prime implicant of a A G'. According to Proposit ion 10,
R is a reduct. []

8 T h r e e Kinds of A t t r i b u t e Orders

In the above sections, the at t r ibute order is supposed to have a unique form, S = al > a2 >
�9 �9 - > an, which implies that the user can distinguish each couple of at tr ibutes clearly in terms of their
importance for him. But that is a rather strict condition, which may make a user feel difficult when,
for example~ some at tr ibutes are equally important for him.

An alternative is to develop different forms of a t t r ibute orders for different situations. In this
section, three kinds of at t r ibute orders are developed, i.e., total order, group order and balance order.
In addition, a problem still remains in Algorithm 1, that is, how to identify the part icular a from [all
at Step (3)�9 Since that strategy closely concerns with user requirement, it will be discussed within
the three kinds of a t t r ibute orders, respectively. In the following, the a is called free entry, for all its
at t r ibutes will become free at tr ibutes except the label one.

In this section, the discussion is made on the discernibility matrix.

8.1 T o t a l O r d e r

The total order over the a t t r ibute set C i s denoted by S = al > a2 > " " > an. A user sets a
total order when he can distinguish each couple of attr ibutes by their importance for him. Below, we
discuss the strategy of identifying the free entry. The idea is to make the free a t t r ibutes contained in
the free entry as posterior in S as possible.

Let c be the current reduct at tr ibute. /3 E [c]. Let r(/~,c) be the position of c in/3, 1/31 be the
number of attr ibutes of ,N. Let Apos(fl, i) be the position of the i-th at t r ibute of /3 in S. Then
mini=l IZl##=(Z,c)(Apos(~,i)) represents the position of the most anterior a t t r ibute of fl except c

No.5 A Reduction Algorithm Meeting Users' Requirements 589

in S, which is called secondary attribute of/3. Obviously, the more posterior the position is, the
more un impor tan t the free a t t r ibutes implied by /3 are. Therefore, among all fl C [e], the one with
maxz~[~l(min~=l IN,i#~(~,~)(Apos(/J,i))) should be selected as the free entry. The a t t r ibute taking
position maxze[r 1 I~l##,-(~,c)(Apos(/3, i))) in S is called the maximal secondary attribute of
[c].

Example 7. q? = { ab , ac, adf , be, cf , dg }. S = a > b > c > d > e > f > g.
The current reduct a t t r ibu te is a. [a] = {ab, ac, adf}.
For/3 = ab, min(Apos(ab, i)) = min(Apos(ab, 2)) = 2. (The posit ion of b in S is 2)
For/3 = ac, min(Apos(ac, i)) = min(Apos(ac, 2)) = 3.
For/3 = adf, min(Apos(adf, i)) = min(Apos(adf, 2), Apos(adf, 3)) = 4.
Thus, max(min(Apos(fl, i))) = max(2, 3,4) = 4. Therefore, /3 = adf is selected as the free entry,

and d, f become free at tr ibutes. The final redact is {a, b, c, g}.
Consider the example about soybean product ion ment ioned in Section 1. ~5 = {ab, ac, de, bd, acd,

ade, ce, abce, abcd, be, abde}. For user A, S = a > b > c > d > e. The f ina l r educ t is { a , b , e } . For
user B, S = e > d > c > b > a. The f ina l r educ t is { e , d , a } . Bo th of them include the first two
at t r ibutes in their corresponding S .

Sometimes more than one ~ E [c] takes the maximal secondary a t t r ibu te of [c] as its own secondary
at tr ibute. For instance, [c] = {cde, cdf} and S = c > d > e > f . Here, d is the maximal secondary
a t t r ibute of [c], and bo th cde and cdftake d as the secondary at tr ibute. In such a case, the Max-Min
s t rategy should be refined to identify the free entry of [c]. A simple supplementa t ion may compare
their third at t r ibute, and then the forth at t r ibute, . . . , until the end of one entry. Since the absorpt ion
law has been used, not any two entries of [c] are exactly the same. So there must be a time when the
difference between the two entries appears. For example, in the above case, cdfwill be selected as the
free entry since its third at t r ibute, f , has a more posterior position in S than e, the third a t t r ibute of
cde.

8.2 G r o u p O r d e r

Sometimes it is difficult for a user to distinguish clearly among all the at tr ibutes, for some of them
are equally impor tan t in his mind. In such cases, the user may use a group order instead of a total
order.

For a group order, all the a t t r ibutes are divided into some groups, A t , . . . , Ak, where At u . . . u Ak =
C, Ai ~ Aj = 9, i , j = 1, . . . ,k, i # j . The total order relation is satisfied among the groups, i.e.,
A1 > --- > Ak, which means all the a t t r ibutes in Ai are more impor tan t for the user than those in
Ai+l, i = 1 , . . . , k - I. While in each group, all the at t r ibutes are equally impor tant .

The s t ra tegy of identifying the free entry under a group order shares the same principle as in total
order cases. It also tries to choose free a t t r ibutes as posterior in S as possible, so tha t the Max-Min
principle still works in the group order. However, one of the differences between the two kinds of
orders is tha t no mat te r how to refine the strategy, sometimes the group order cannot identify a single
free entry of [c]. See a simple example, ~5 = {ab, ac, bc}, S = {a} > {b, c}. Since b and c s tay in the
same group, they have the identical posit ion in S. Therefore, in [a], ab and ac are indistinguishable,
and the free ent ry cannot be determined directly. To solve it, a simple solution constructs artificially
a quasi- total-order inside a group, for instance, following the alphabetic order, which implies tha t b is
more impor tan t than c and ac should be selected as the free entry in this example.

8.3 B a l a n c e O r d e r

A balance order is developed when the following real case is considered.
H u m a n development database (HDD) is a large database including hundreds kinds of social, eco-

nomic and na tura l data. Many researchers s tudy HDD to get knowledge about the sustainabili ty
of a country. Because the sustainability of a country is connected with not only population quality
and economic level, but also social and economic structure, resource and environmental state, and

590 ZttAO Kai, WANG Jue Vol.17

economic and ecological function, it requires keeping balance in all the social, economic and environ-
mental aspects [32i. This raises a special k ind of user requi rement . To meet the requ i rement , all the
a t t r i bu t e s are d iv ided into some groups, and the a lgo r i t hm is invoked to find a r educ t con ta in ing
a t t r i bu te s d i s t r i bu t ed evenly among all the groups.

Here we define the ba lance order. All the a t t r i b u t e s are d iv ided into some groups , A 1 , . . . , Ak,
where Ai tJ . . . tO Ak = C, Ai ~ A j = @, i , j = 1 , . . . ,k , i # j . All the groups are at the same level of
impor tance , while inside each group, t i le to ta l o rder re la t ion is satisfied, i.e., all the a t t r i b u t e s inside
a group are t o t a l l y ordered.

Under the ba lance order, a s t r a t egy is des igned following the rules:
1) Select r educ t a t t r i bu t e s in the following way. At first, all the groups form a c a n d i d a t e set.

Then the min ima l group cont r ibu tes a reduc t a t t r i b u t e . Since all the a t t r i b u t e s in each group are
to t a l ly ordered, the first a t t r i b u t e in the min ima l group is identif ied as the cur ren t r educ t a t t r i bu t e .
Then tha t group quits the cand ida t e set. In this way, every group con t r ibu tes a r educ t a t t r i b u t e and
qui ts the cand ida t e set in turn . This process cont inues unt i l the cand ida t e set becomes empty . If the
d iscernibi l i ty m a t r i x is not empty, all tile groups form the cand ida t e set again except the e m p t y ones,
and the above s teps repea t .

2) Select free a t t r i bu t e s in the free en t ry under the following principles . Let c be the cur ren t
reduct a t t r i b u t e and denote i ts group by Ac.

a) If two a t t r i b u t e s a and b, a E Ar b ~ A~, select a as the free a t t r i bu t e .
b) If two a t t r i b u t e s a and b, a, b E A and a > b in the order , select b as the free a t t r i b u t e .
c) If two a t t r i b u t e s belong to different groups and have the same pos i t ion in the i r own order ,

select the a t t r i b u t e wi th in the larger group.

The above pr inciples consider some s imple cases of ident i fying free entry. In more complex s i tua-
t ions, some weights of a t t r i bu t e s have to be in t roduced .

k
Let e be the current reduc t a t t r i bu te . Denote the number of a t t r i bu t e s in Ai by rni. m = Y~i=1 mi .

rnmax = max (mi) . For an a t t r i b u t e b having pos i t ion q in the order of the l - th group,
i----l,...,k

1, if b c A~

Wl = 0.5, o therwise

w2 =- q / m m a x

W 3 : Tn / / r / 7 , rnax

W b ~- W 1 * W 2 * W 3

F o r / 3 E [c], /3 = cB, the weight of/3, w z = ~ b e B Wb. Then t h e / 3 wi th m a x (w z) is ident i f ied as the
~e[c]

free entry.

Example 8. �9 = {ab, af, acg, aeg, a.qh, bef, beg, eefg, efgh}. S = {a > c}{b > g}{e > f > h}. In
t e rms of S, there are three ~ o u p s , A1 = {a > c}, Aa = {b > g}, A3 = {e > f > h}. rnl = 2. m2 = 2.
m 3 = 3. m r n a x = m a x (r e , , m 2 , m 3) = 3.

A1 and A2 are the min imal groups. Select a t t r i b u t e a in AI as reduct a t t r i b u t e . T h e n select the
free en t ry of [a].

For ab, w~b = wb = wl * w2 * w3 = 0 . 5 . (1 /3) * (2 /3) = 2/18
For af, w~.f = wf = 0.5 * (2/3) �9 (3/3) = 6/18
For acg, w ~ j = w~ + tug = 1 . (2/3) * (2/3) + 0.5 * (2/3) * (2/3) = 12/18
For aeg, w~,r = we -r-w9 = 0.5 * (1/3) * (3/3) + 0.5 * (2/3) * (2/3) = 7/18
For agh, w,~gh = w~ + w,, = 0.5 * (2/3) * (2/3) + 0.5 * (3/3) * (3/3) = 13/18
Because agh has the biggest weight, it is ident if ied as the free entry, while g and h become free

a t t r ibu tes . The final reduct is {a, b, f}. I t selects one a t t r i b u t e from each group, and among the
a t t r ibu te s , a and b are bo th the first one in their own group, while f is the second one in its group.
In fact, t ha t is the bes t result under the balance order , for {a, b, e}, consis t ing of" the first a t t r i b u t e
of each group, is not a reduct of ~.

No.5 A Reduction Algorithm Meeting Users' Requirements 591

Note t ha t the above weight compu t ing m e t h o d is an app rox ima te s t r a t egy to keep ba lance among
the a t t r i b u t e groups. We cannot ensure to r ema in in the result even one a t t r i b u t e from each group.
F i r s t , such a reduc t m a y not exist. Second, even if the re is such a reduct , it m a y be missed because
the s t r a t egy is ac tua l ly heuris t ic r a the r t h a n de te rmin is t ic .

9 Experimental Results

In this section, we present three expe r imen t s to tes t the per formance of A l g o r i t h m 1. The exper i -
ments are t aken on a compute r wi th A M D 1GHz processor and 256M memory.

Example 9. The exper imen t is t aken on DATA1, which is a d a t a set m a d e ar t i f ic ia l ly and has
10,000 records, 20 condi t ion a t t r ibu te s , and one decis ion a t t r i bu te . The a t t r i b u t e s are labe led by
thei r index, i.e., 1,2, . . . , 21. Among them, a t t r i b u t e 1 is the decision a t t r i b u t e , and 2, . . . , 21 are
condi t ion ones. The discernibi l i ty m a t r i x conta ins 131,048 different entries. No core exists in DATA1.
T h e following tab le shows the results of nine expe r imen t s taken on DATA1 u n d e r different a t t r i b u t e
orders. Each expe r imen t takes abou t 76 seconds (The t ime is t ha t of A l g o r i t h m 1 bu t does not include
tha t of genera t ing the d iscernibi l i ty ma t r ix) .

Table 3. Experiments Taken on the DATA1
Co~e

1
2
3
4
5
6
7
8
9

Attribute order Results
2, 3 , . . . , 21 2, 3, 4, 5, 6, 7, 8, 9
21, 20, . . . , 2 21, 20, 19, 18, 17, 16, 15, 14
3, 5 , . . . , 21, 2, 4 , . . . , 20 3, 5, 7, 9, 13, 15, 17, 4
2, 4 , . . . , 20, 1, 3 , . . . , 19 2, 4, 6, 8, 10, 12, 14, 16
3,8,7,12,15,2,18,14,6,10,11,21,5,17,4,16,9,13,19,20 3,8,7,12,15,18,14
13,3,18,16,7,5,14,9,19,17,11,8,21,4,15,6,20,2,12,10 13,3,18,16,7,5,14,9
14,10,17,2,16,3,7,8,18,4,19,6,21,13,12,15,5,9,20,11 14,10,17,2,16,3,7,9
10,3,8,7,13,17,19,12,4,20,15,16,11,18,6,21,14,5,2,9 10,3,8, 7, 13, 17,20
8,7,10,13,14,4,15,2i, I1,16,12,3,19,17,18,20,6,9,2,5 8,7,10,13,14,4,21,17

In the a t t r i b u t e order , the symbol ">" is o m i t t e d and a l , . . . , an means a l > " " > an. In the
above nine exper iments , the reducts found by the a lgo r i thm are r a the r sa t is factory. For example , in
case 1, the r educ t {2, 3, 4, 5, 6, 7, 8, 9} remains the first eight a t t r i bu t e s of the given order. And t h a t
also happens in case 2 and case 4. In fact, the a lgo r i t hm has a good proper ty , t h a t is, if the first k
a t t r i b u t e s in the order h a p p e n to make up a reduct , the a lgor i thm surely finds t ha t reduct . In case
5, the resul t conta ins the first eight a t t r i bu t e s in the order except the s ix th a t t r i b u t e 2. A n d in o the r
cases, mos t a t t r i b u t e s in the final resul t take an te r ior pos i t ions in the a t t r i b u t e order .

Example 10. The exper iment is t aken on DATA2, which is also made ar t i f ic ia l ly and has the same
number of a t t r i b u t e s wi th DATA1 bu t ten t imes of the records in DATA1, i.e., 100,000 records. The
d iscern ib i l i ty m a t r i x conta ins 411,943 different entr ies , which is three t imes more t h a n tha t of DATA1.
The expe r imen t s take abou t 216.96 seconds. Since in this exper iment we only care abou t how the
runn ing t ime goes up when the d a t a set expands , no deta i l s of exper iment resul ts are shown.

Table
Case

1
2
3
4
5
6
7
8
9

10 i

4. Experiments Taken on Data Set of Cars
A t t r i b u t e order Resu l t s

5, 3, 2, 8, 7, 6, 4, 9, 1 5, 3, 2, 8, 6, 4, 9
2, 4, 9, 3, 1, 5, 8, 6, 7 2, 4, 9, 3, 1, 8
4, 8, 5, 9, 2, 1, 3, 6, 7 4, 8, 5, 9, 2, 3, 6
7,5,9,6,3,4,1,8,2 7,9,6,4,2
4,1,5,7,3,2,8,6,9 4,1,5,9
1,7,6,2,4,9,3,5,8 1,7,6,4,9
1,3;2,9,4,7,8,6,5 1,3,2,9,4,8
4, 9, 7, 5, 6, 2, 3, 8, 1 4, 9, 7, 6, 2
8,7,1,9,2,6,5,3,4 8,1,9,2,3,4
3, 4, 1, 9, 5, 2, 8, 7, 6 3, 4, 1, 9, 2, 8

Example 11. The exper iment is taken on the d a t a set of cars [33], which includes nine condi t ion
a t t r i bu t e s , one decision a t t r i bu te , and 21 records. T h e a t t r i bu te s are labeled by thei r index, i.e., 1,2,

592 ZHAO Kai, WANG Jue Vol.17

. . . , 10. Attr ibute 10 is the decision at tr ibute, and 1 , . . . , 9 are condition ones, among which at tr ibutes
4 and 9 are cores. The discernibility matr ix contains 104 different entries. The following table shows
ten experimental results under different a t t r ibute orders.

Since the discernibility matr ix contains only a few entries, the algorithm takes a short running time
(less than 0.1 second). As in Example 9, most at tr ibutes in the final results take anterior positions in
the at tr ibute order (Table 4).

10 C o n c l u s i o n s

In data mining, there are two tasks, description and prediction. Prediction has little difference
from machine learning in nature. Both of them try to find out model upon a data set, while keeping
their capability to other objects in the same domain, i.e., generalization. However, description has
a rather different objective from them. It regards the data set as a closed world. Under a process,
the data set is transformed to a more concise form, while keeping the possibility of explanation, i.e.,
reduction. Thus, compared with prediction, description is more distinct in da ta mining. In this paper,
we focus on description tasks.

Generally speaking, a data set contains several kinds of knowledge. In addition, a da ta set is usually
shared by several users. And different users may require different knowledge. So it is important for a
data mining algorithm to provide users the knowledge they wanted, which we call requirement-oriented
knowledge discovery (ROKD). In this paper, we present a new method to find customized reducts to
meet the users' requirements, which is useful in a lot of applications because one reduct may be bet ter
in one sense than another. Thus, how to describe users' requirements, and then how to compute a
reduct according to the requirements become the key point. This paper just regards a t t r ibute ordering
as a special kind of method. It surely needs much more research to establish a general language for
describing users' requirements. Some basic strategies are designed to describe a t t r ibute order. Then
ar~ algorithm supporting such description is proposed.

We emphasize the completeness of the algorithm for reduct because reduct is an objective between
minimal reduct and trivial reduct, with the computat ional comple~ty of O(n2). In the future, we will
try to promote the efficiency of the algorithm based on free attributes.

R e f e r e n c e s

[1] Han J, Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
[2] Catlett J. Megainduction: Machine learning on very large databases [Dissertation]. Dept. of Computer Science,

University of Sydney, Australia, 1991.
[3] Musick R, Catlett J, Russell S. Decision theoretic subsampling for induction on large databases. In Proceedings of

the Tenth International Conference on Machine Learning, Utgoff P E (ed.), San Francisco, CA: Morgan Kaufmann,
1992, pp.212-219.

[4] Chan P K, Stolfo S J. Learning arbiter and combiner trees from partitioned data for scaling }aachine learning. In
Proceedings of the First International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA:
AAAI Press, 1995, pp.39--44.

[5] Shafer J, Agrawal R, Mehta M. SPRINT: A scalable parallel classifier for data mining. In Proceedings o[the
Twenty-Second VLDB Conference, San Francisco, CA: Morgan Kaufmann, 1996, pp.544-555.

[6] Mehta M, Agrawal R, Rissanen J. SLIQ: A fast scalable classifier for data mining. In 5th Int. Conf. on Extending
Database Technology, New York: Springer, 1996, pp.18-32.

[7] Provost F, Kolluri V. Scaling up inductive algorithms: An overview. In Proceedings of the Third International
Conference on Knowledge Discovery and Data Mining (KDD-97), 199"/, pp.239-242.

[8] Ronen F, Willi K, Amir Z. Visualization techniques to explore data mining results for document collections. In
Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD-97), AAAI
Press, 1997, pp.16-23.

[9] Utgoff P, Mitchell T. Acquisition of appropriate bias for inductive concept learning. In Proceedings of the National
Conference on Artificial Intelligence, AAAI-82, Pittsburgh, 1982, pp.414-417.

[10] Utgoff P. Shift of bias for inductive concept learning. In Machine Learning: An Artificial Intelligence Approach,
Michalski R S, Carbonell J G, Mitchell T M (ads.), Volume II, California: Morgan Kaufmann, 1986, pp.107-148.

No.5 A Reduct ion Algor i thm Meet ing Users ' Requi rements 593

[11] Rendell L. A general framework for induction and a study of selective induction. Machine Learning, 1986, 1(2):
177-226.

[12] Haussler D. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial Intel-
ligence, 1988, 36(2): 177-221.

[13] Machine Learning, Vol.20, Issue 1/2, Special Issue of ML on Bias Selection, July, 1995.
[14] Dietterich T G, Kong E B. Machine learning bias, statistical bias, and statistical variance of decision tree algorithms.

Tech. Rep., Department of Computer Science, Oregon State University, Corvallis, Oregon, 1995.
[15] Wilson D R, Tony R M. Bias and the Probability of Generalization. In Proc. the Int. Conf. Intelligent Information

Systems (IIS'97), 1997, pp.108-114.
[16] Turney P D. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm.

Journal for A I Research, 1995, 2: 369-409.
[17] ~trney P D. Technical note: Bias and the quantification of stability. Machine Learning, 1995, 20(1-2): 23-33.
[18] Wang Jue, Wang Ju. Reduction algorithms based on discernibility matrix: The ordered attributes method. J.

Computer Science and Technology, 2001, 16(6): 489-504.
[19] Pawlak Z. Rough sets. Int. J. Comput. Inform. Sci., 1982, 11(5): 341-356.
[20] Polkowski L, Skowron A (eds.). Rough sets in knowledge discovery. Heidelberg: Physica-Verlag, 1998.
[21] Duntsch I, Gediga G. Rough set data analysis. Encyclopedia of Computer Science and Technology, 2000, 43(Sup-

plement 28): 281-301.
[22] Greco S, Matarazzo B, Slowinski R. Rough approximation of a preference relation by dominance relations. European

Journal of Operational Research, 1999, 117(1): 63-83.
[23] Greeo S, Matarazzo B, Slowinski R. The use of rough sets and fuzzy sets in MCDM. Gal T, Stewart T, Hanne

T (eds.), Chapter 14, Advances in Multiple Criteria Decision Making, Kluwer Academic Publishers, Dordrecht,
Boston, 1999, pp.14.1-14.59.

[24] Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria decision analysis. European Journal of
Operational Research, 2001, 129(1): 1-47.

[25] Liu B, Hsu W, Chen S. Using general impressions to analyze discovered classification rules. Knowledge Discovery
and Data Mining, 1997, pp.31-36.

[26] Bazan J, Skowron A, Synak P. Discovery of decision rules from experimental data. In Proc. the Third International
Workshop on Rough Sets and Soft Computing, Lin T L (ed.), San Jose CA, November 10-12, 1994, pp.526-533.

[27] Bazan J, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decision tables. In Proc.
the Syrup. Methodologies for Intelligent Systems, Charlotte, NC, Lecture Notes in Artificial Intelligence, Berlin:
Springer-Verlag, 1994, pp.346-355.

[28] Wang J, Cui J, Zhao K. Investigation on AQl l , ID3 and the principle of discernibility matrix. J. Computer Science
and Technology, 2001, 16(1): 1-12.

[29] Wroblewski J. Finding minimal reducts using genetic algorithms. In Proceedings of the fnternational Workshop
on Rough Sets Soft Computing at Second Annual Joint Conference on Information Sciences (JCIS'95), Wang P P
(ed.), Wrightsville Beach, North Carolina, USA, September 2 8 - October 1, 1995, pp.186-189.

[30] Wroblewski J. Genetic algorithms in decomposition and classification problems. In Rough Sets in Knowledge
Discovery 2: Applications, Case Studies and Software Systems, Polkowski L, Skowron A (eds.), Physica-Verlag,
Heidelberg, 1998, pp.472-492.

[31] Skowron A, Rauszer C. The discernibility matrices and functions in information systems. Intelligent Decision
Support Handbook of Applications and Advances of the Rough Sets Theory, Slowinski R (eds.), 1991, pp.331-362.

[32] Wang X F, Wang R S, Wang J. Sustainability knowledge mining from human development database. In Third
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD99), Zhong N, Zhou L Z (eds.), 1999,
pp.279-283.

[33] Ziarko W. The discovery, analysis, and representation of data dependencies in databases. In IJCAI Workshop on
Knowledge Discovery in Databases Proceedings, Piatetsky-Shapiro G, Frawley W J (eds.), AAAI /MIT Press, 1991,
pp.195-209.

Z H A O K a i received his B.S. degree from Beijing Inst i tu te of Technology in 1993, and Ph.D. degree from
the Ins t i tu te of Au tomat ion , the Chinese Academy of Sciences. His research interests are adap ta t ion systems,
genetic p rog ramming and da ta mining.

W A N G J u e is a professor of computer science and artificial intell igence at the Ins t i tu te of Automat ion ,
the Chinese Academy of Sciences. His research interests include artificial neural network, machine learning
and knowledge discovery in database.

