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A b s t r a c t  Generally a database encompasses various kinds of knowledge and is shared 
by many users. Different users may prefer different kinds of knowledge. So it is important 
for a data mining algorithm to output specific knowledge according to users' current require- 
ments (preference). We call this kind of data mining requirement-oriented knowledge discovery 
(ROKD). When the rough set theory is used in data mining, the ROKD problem is how to find 
a reduct and corresponding rules interesting for the user. Since reducts and rules are generated 
in the same way, this paper only concerns with how to find a particular reduct. The user's 
requirement is described by an order of attributes, called attribute order, which implies the im- 
portance of attributes for the user. In the order, more important attributes are located before 
less important ones. Then the problem becomes how to find a reduct including those attributes 
anterior in the attribute order. An approach to dealing with such a problem is proposed. And 
its completeness for reduct is proved. After that, three kinds of attribute order are developed 
to describe various user requirements. 

K e y w o r d s  requirement-oriented knowledge discovery, attribute order, discernibility ma- 
trix, reduction algorithm 

1 Introduction 

As stated in [1], " - . . da t a  mining tasks can be classified into two categories: descriptive and predic- 
tive. Descriptive mining tasks characterize the general properties of the data in the database. Predictive 
mining tasks perform inference on the current data in order to make predictions...." Since predict ion 
has the same motivat ion with machine learning, description is more distinct than  predict ion in da ta  
mining. In detail, description aims at finding a concise explanation (reduction) of the given da t a  set, 
or what  we call da ta  extraction.  

There are three issues in da ta  extraction.  First, a da tabase  is usually shared by m a n y  users who 
have their own requirements (preferences) for the knowledge discovered. As the da tabase  does contain 
all the knowledge required, it is impor tan t  for the da t a  mining algori thm to provide the knowledge a 
user prefers. We call this problem requirement-oriented knowledge discovery (ROKD).  Second, eff• 
algori thms are needed to deal with huge da ta  sets. Third,  the result should be presented in a na tura l  
language or visual style. While a great effort has been made  on the last two issues [2-s], we concentra te  
on the first one, tha t  is how to discover knowledge according to the users'  requirements.  

Generally speaking, reduct ion on words has a close relation with inductive machine learning, with 
which a da ta  set is typically consistent with several hypotheses  (knowledge). Since it is generally NP-  
complete to find all the hypotheses and the hypotheses have little meaning for a par t icular  user except 
making him bored, some strategies are embedded in an algori thm to determine just  one hypothesis  as 
the output .  Those strategies are called biases of the a lgor i thm [9-15]. Abstractly,  induct ive machine 
learning may be represented as a function, y = f (x) ,  where x denotes the da ta  set, and y denotes the 
knowledge discovered. Taken biases into consideration, a coefficient a is added in and the function 
is varied to y = c~f(x). In classical learning algorithms, biases are usually implicitly fixed in the 
algori thms and some modifications, such as shift bias, are introduced later [9'1~ The  criteria of 
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designing a bias consist of predictive accuracy, the computational complexity of the algorithm, the 
syntactic complexity of the induced rules, and the stability of the algorithm[17]. We suggest another 
kind of criteria, the requirements of users. 

Using the fixed or shift bias, traditional algorithms actually assume that  all the users have the 
same requirements for the knowledge. Therefore the same knowledge are output  for all users. But in 
many applications, that is problematic. Most huge data sets are shared by many users, who usually 
have their own requirements. That  means different users may require different knowledge. 

Consider a simple example about the production of soybean. 

Table 1. Example About Production of Soybean 
Temperature Humidity 
high middle 
middle middle 
middle high 
middle high 
low middle 
high middle 
high high 

Wind 
middle 
middle 
weak 
middle 
strong 
middle 
middle 

Fertilization Pesticide Production 
ferl pesl high 
fer2 pes 1 high 
ferl pes2 high 
ferl pesl low 
ferl pesl ' low 
fer3 pes2 low 
ferl pes2 low 

There are seven records in Table i. Three of them are about high production of soybean, while 
the other four about low production. Among the six attributes, production is a decision attribute 
and the remaining five are conditions. In the fertilization and pesticide attributes, ferl, fer2 and fer3 
represent three kinds of fertilizers, and pesl and pes2 represent two brands of pesticides. 

Suppose there are two users, A and B. A wonders how temperature, humidity and wind affect the 
soybean production, while B cares about the effect of pesticide and fertilization. If the data set does 
contain those two kinds of knowledge, how does an algorithm output customized knowledge for the 
user? That is, how to provide A with the knowledge about temperature, humidity and wind, and B 
with the knowledge about pesticide and fertilization, respectively? 

To accomplish such a task, we have to answer two questions. First, how does a user describe his 
requirement to the computer? Second, after a user has given the description of his requirement, how 
does the algorithm support the requirement, i.e., discover the particular knowledge according to the 
requirement description. In the following, we try to answer these two questions. 

For the first question, we suggest a method based on the order of attributes, by which a user 
describes his requirement by ordering attributes in terms of their importance for him, e.g., more 
important attributes are located before less important ones. In this way, user A may order the 
attributes as temperature>humidity>wind>fertilization>pesticide, which means temperature is the 
most important attribute for him, while pesticide is the least important attribute. Here, al > a2 
means attribute al is more important than a2 for the user. Then, user B may order the attributes 
as pesticide>fertilization>wind>humidity> temperature, which means pesticide is the most important 
attribute for him, while temperature is the least important one. 

Note that usually to mark the importance of attributes is to associate every attribute with a 
specific argument, i.e., a weight. And the higher the weight, the more important the attribute. But 
the essentiality of such a method is to rank the attributes in an order. Therefore we directly use the 
ordering method. 

What  has to be pointed out here is that the idea of attribute order is not firstly presented in this 
paper. It has been used in [18]. But in that paper, it serves as a necessary condition that ensures 
the completeness of the algorithm for reduct. However, in this paper, it serves as the specification of 
users' requirements. 

For the second question, we propose a new algorithm that is based on the rough set theory. 
The rough set theory, developed by Pawlak and his co-workers in the early 1980s, has become 

an important approach of knowledge discovery and data mining[19,2~ It constitutes a sound basis 
for data mining applications. In the rough set theory, reduct is a significant concept and attribute 
reduction has been one of the main thrusts in current applications[211. For a consistent data set with 
decision attributes, a reduct (or relative reduct) is a minimal subset of attributes that maintains the 
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same capabili ty of classification on objects as the whole set of at tr ibutes.  UsuaIly more than one 
reduct can be obtained from a da ta  set. In the rough set theory, rules (knowledge) are induced from 
the data  set after a reduct  is achieved, concerning only with a t t r ibutes  within the reduct.  So, for the 
R O K D  problem, it is na tura l  to find out firstly a reduct  containing a t t r ibutes  interesting for the user 
and then induce rules from the reduct.  For the above example about  soybean, we may firstly find a 
reduct  like {temperature, humidity, wind} for user A, and a reduct like {pesticide, fertilization} for 
user B, and then generate their corresponding rules. So the rules induced for user A only concern with 
temperature, humidity, and /o r  wind, and are actual ly the knowledge about  how these factors affect 
the product ion of soybean. And for user B, the rules are about  how pesticide a n d / o r  fertilization 
effect the product ion  of soybean. In this way, we reach the goal of this example. 

But such a t t r ibute  sets as {temperature, humidity, wind} and {pesticide, fertilization} may not  be 
reducts of da ta  set, so the problem becomes how to find a reduct  containing a t t r ibutes  as anterior in 
the a t t r ibute  order as possible. This problem is not  as simple as it seems to be. 

Fdr example, it is easy for an algori thm to identify reduct  a t t r ibutes  one by one from the head 
of the order until all the objects are correct ly classified. We check the performance of the simple 
algori thm with Table 1. 

To view the da ta  clearly, Table 1 is t ransformed to Table 2. 

Table 2. Example 
a b l c d 
1 1 I 1 1 
2 1 [ 1 2 
2 2 3 1 
2 2 1 1 
3 1 2 1 
1 1 1 3 
1 2 1 1 

Transformed from Table 1 
e Production 
1 1 
1 1 
2 1 
1 2 
1 2 
2 2 
2 2 

In Table 2, a, b, c, d and e correspond to temperature, humidity, wind, fertilization and pesticide 
respectively. 

The discernibility matr ix  is {ab, ac, de, bd, acd, ade, ce, abce, abed, be, abde}. Assume that  user 
A sets the attribute order as a > b > c > d > e. Then attribute a, the most important for the user, is 

firstly selected as a reduct  at t r ibute.  According to the principle of discernibility matrix,  all the entries 
containing a can be d ropped  from the discernibility matrix.  So the discernibility matr ix  becomes {de, 
bd, ce, be}. Secondly, a t t r ibute  b is selected, and discernibility matr ix  becomes {de, ce}. Then,  c 
is selected, and discernibility matr ix  becomes {de}. Finally, d is selected, and discernibility mat r ix  
becomes empty. So the current  result is {a, b, c, d}. 

But  the result is not  a reduct  of the da ta  set. It still has some redundancy. In fact, a t t r ibute  a 
can be eliminated from the result and {b, c, d} becomes a reduct.  Moreover, none of {a, b, c}, {a, c, d} 
and {a, b, d} is a reduct.  Thus,  to cut  down the redundancy,  we have to eliminate a t t r ibu te  a from the 
result, and the final result  is {b, c, d}. Then  the rules induced from the da ta  set in terms of the reduct  
only concern with b, c, and /o r  d. Here the drawback is clear, for a, the most  impor tan t  a t t r ibute  for 
the user, has been missed. However, the da ta  set actually contains a reduct  {a, b, e}, which is more 
preferred by the user in the sense that  it includes tile first two impor tant  a t t r ibutes  of the a t t r ibu te  
order. 

This example illustrates why such a simple algori thm does not fit for R O K D  problem. In fact, 
the algori thm fails because it cannot  ensure tha t  all the a t t r ibutes  kept so far const ruct  part  of a 
reduct.  For example, in a step the algori thm kept {a, b, c}, but  there is no reduct conta ining a, b, and 
c simultaneously. Therefore,  to ensure the final result to be a reduct,  some impor tan t  a t t r ibutes  tha t  
are originally kept have to be moved out. 

Since a t t r ibute  order  firstly appears in [18], where a reduction algori thm RA-Order is proposed, 
it is natural  to think abou t  using RA-Order for tile ROKD problem. Unfortunately,  RA-Order also 
meets some difficulty, because it begins to remain a t t r ibute  from middle part  of the a t t r ibu te  order, 
and from end to head. Therefore, some most  impor tan t  a t t r ib , t e s  for the user may be missed. Tha~ 
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is the same as what happens in the simple algorithm. For the above example, RA-Order also outputs 
{b, c, d} as the final reduct that excludes the most irnportant attribute a. 

To sum up, both the simple algorithm and RA-Order do not work well in supporting attribute 
order as the specification of user's requirement, because they cannot ensure keeping in the result some 
most important attributes for the user. 

In fact, the main challenge in supporting attribute order as the specification of user's requirement 
lies in two points. First, the algorithm should identify reduct attributes one by one from the head of 
the attribute order, that means the more important an attribute is, the more prior it will be included 
in the final result. Second, after an attribute is selected, the algorithm should ensure that the attribute 
will not be moved out from the final result, that implies that the current selected attributes must be 
pare of a reduct. In this paper, we propose the reduction algorithm based on free attributes, which 
just has these two important features. 

This algorithm identifies reduct attributes one by one from the head of the attribute order. Ad- 
ditionally, to ensure all the attributes currently identified being part of a reduct, the algorithm de- 
termines some non-reduct-attributes, called free attributes, at the same time. For example, given a 
discernibility matrix and an attribute order S = a > b > c > d > e > f ,  the algorithm first identifies 
a in the reduct, but at the same time, it determines .f not in the reduct. Then it identifies b in the 
reduct, and c not in the reduct. At last it includes d in the reduct, and excludes e. So the final result 
is (a,b,d}. 

The paper is organized as follows. [n the next section, we introduce some related work including 
the study on preference and reduct. Sections 3, 4, and 5 are related to the theoretical foundation of 
the new algorithm. In Section 6 we introduce the algorithm. In Section 7 we prove the completeness 
of the algorithm for reduct. Section 8 is devoted to three kinds of attribute order. Section 9 shows 
some experimental results. Section 10 summarizes the paper with some conclusive remarks. 

2 R e l a t e d  W o r k  

2.1 P r e f e r e n c e  

Preference has been studied by some researchers ~22-2~. In those papers, a special kind of problem, 
sorting problem, is taken into consideration. In a sorting problem, a database includes two kinds of 
attributes, criteria, (i.e., attributes with preference ordered domains (scales), like return on investment 
or market share), and regular attributes, whose domains are not preference ordered, like color or texeure 
(if those terms are used, all the attributes mentioned in this paper are actually regular attributes). To 
deal with sorting problems, a new relation, dominance relation, substitutes the classical discernibility 
relation of the rough set theory. The goal is to infer the preference model hidden in the database. 
Those studies do not aim at ROKD problems. They obtain the same knowledge for all the users. 

Another research on user preference can be found in !25]. It indicates that an algorithm usually 
generates a large number of rules from a database, but most of them are not interesting for the user. 
So it is necessary to identify those interesting rules from the total rules for the user. The user's 
preference for the rules is described by a kind of specification language, called general impressions. 
Then the system analyzes the discovered rules by matching them against the general impressions, and 
then ranks them in terms of the matching result. Finally, high-rank rules are shown to the user. In 
fact, the mining course is separated into two steps. [n the first step, all the rules are discovered, while 
in the second step, interesting ones are identified for the user. [25] only concerns with the second 
step. As to the first step, it leaves it to the current data mining algorithms. But that separation may 
have a trouble when dealing with ROKD problems, as some interesting rules for a user may have been 
missed after the first step so that they cannot be identified in the second step. If all the interesting 
rules for all users have to be included after the first step, the data mining algorithm must cover the 
total solution space, which is usually .NP-complete in time complexity so that it loses efficiency when 
facing large databases. Different from it, the algorithm we present directly induces interesting rules 
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for the current user, and, the specification of user's preference are different. 

2.2 Reduction Algorithms of Rough Set Theory 

Like data mining, we can classify researches on at t r ibute  reduction into two kinds, prediction and 
description. The former obtains reducts from a data  set to make predictions on new cases, such as 
approximate reduct and dynamic reduct [~6'271 . In such methods, the quality of classification on training 
data may be decreased in order to receive higher quality of classification on new objects [26]. The latter 
obtains reducts to make a short but accurate description of the da ta  set. Here, the accuracy of the 
data, rather than new ones, plays an important  role. The methods include the RA-Order algorithm [ls], 
approximate algorithms based on statistics [2s], and optimization algorithms for minimal reduct [29'3~ 

Since reduction algorithms generally find one reduct from the reduct set, there are some biases 
embedded in the algorithms~ The  biases may be accuracy of prediction [26], stabili ty of the result [271, 
completeness for reduct [ls], or minimal length of redact  [29'3~ Here we suggest another  criterion, 
requirement of the user. By such a criterion, a long reduct preferred by the user is be t ter  than  a short 
but unsatisfactory one. 

3 D i s c e r n i b i l i t y  F u n c t i o n  

Before the new algorithm is described, and its completeness for reduct is proved, it is necessary 
to study the nature of discernibility function. Because only the propositional logic is involved, the 
formulas below are all propositional ones. 

Let (U, C u D) be an information system (data set), where C is the condition a t t r ibute  set and D 
is the decision at t r ibute  set, and U = {xl, x 2 , . . . ,  x~}. I ts  discernibility matr ix  [31], denoted by ~, is 
an n x n matrix defined as 

mij = {a e C : a(xi) r a(xj) A (d E D, d(xi) r d(xj))},  f o r i , j = l , 2 , . . . , n .  

Write ~P as a list {Pl , . - .  ,Pt}. In ~, each Pi is called a discernibility entry, and is usually writ ten 
as pi = all.  �9 �9 ai,~, where each aik corresponds to a condition attr ibute of the information system, k = 
1 , . . . ,  m, i = 1 , . . . ,  t. Furthermore,  the discernibility matr ix  can be represented by the discernibility 
function f ,  a conjunctive normal form (CNF), i.e., f = Pl A . . .  APt, where each Pi = nil V .-.  V ai,~ 
is called a clause, and each aik is called an atom. Note that  the discernibiIity function contains only 
atoms, but not negations of atoms. 

Although the discernibility matr ix  and discernibility function have different styles of expression, 
they are actually the same in nature. So the discussion on one subject is easily extended to the other 
one. In this section, we discuss the discernibility function. 

A clause p is said to subsume a clause p '  if p '  contains all the atoms in p. A clause p is called a 
prime clause of f if no clause of f subsumes p. A CNF is called prime if it only consists of prime 
clauses. 

Applied the absorption law, a CNF is transformed to a prime CNF, which is written as 

f = p~pAc(f)P 

where P C ( f )  denotes the set of prime clauses of f .  
Example 1. f = (a V b V d) A (a V b V c) A (b V d) A (c V e). Applied the absorption law, (a V b V d) is 

absorbed by (b V d), and f is transformed to the prime CNF f '  = (a V b V c) A (b V d) A (c V e). Each 
clause of f~ is a prime clause. 

Proposit ion 1. Let f be the discernibility function of an information system in the form of CNF. 
Applied the absorption law, f can be transformed to a unique prime CNF. 

Since the prime CNF transformed from a CNF is unique, the above proposition is immediately 
proved. The proposition shows that,  each information system may be expressed uniquely by a prime 
CNF. 
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In the following, we discuss a proper ty  of prime CNF. Firstly, we define a set opera tor  "~" .  
D e f i n i t i o n  1 (Se t  O p e r a t o r  " ~ " ) .  If  f is a prime CNF, a C f is a clause, and B is an empty 

set, an atom, or a conjunction of atoms, then a ~ B = a - (a N B).  
P r o p o s i t i o n  2. I f  f is a prime CNF, a E f is a clause and a = a V ]3, then for any/3 C f ,  

Proof. Suppose there is a clause 2/ E f such tha t  7 "~ B = 0, then ~/ __ /? _C oe, which means 
7 subsumes a so tha t  a is not  prime. Then  f is not  a prime CNF, which contradicts  the known 
condition. Therefore, there is no such clause as 7 in f .  [] 

Example 2. f = (a V b v c) A (b v d) A (c V e) is a prime CNF. Consider a = a V b V c = a V B,  where 
B = b V c .  Dropping B from f ,  w e h a v e f f = a A d A e ,  w h i l e a h s  d r  a n d e r  

R e m a r k .  This proposi t ion implies tha t  if a is identified as a reduct  a t t r ibute ,  all the a toms in 
B may be dropped from f while keeping all the clauses nonempty.  This is the basis of the reduct ion 
algori thm presented in this paper.  

4 P r i m e  C N F  and D N F  

By applying the mult ipl icat ion (distributive) law, the discernibility funct ion represented by a CNF  
is t ransformed to a disjunctive normal form (DNF),  i.e., f = ql V- - .  V %, where each q~, i = 1 , . . . ,  s, 
is a conjunction of a toms and called an implicant of f .  

Then  the concept of subsume is extended to DNF. An implicant q is said to subsume an implicant 
q / i f  q /conta ins  all the a toms in q. An  implicant q is called a prime implicant of  f if no implicant of f 
subsumes q. A DN F is called prime if it only consists of prime implicants. Moreover,  the set opera tor  

and Proposi t ion  2 are also extendable f rom CNF to DNF. 
By applying the absorpt ion law, a DNF is t ransformed to a prime DNF, f = ql V - �9 �9 v qk. In  fact, 

each qi, i = 1 , . . .  ,k, is a reduct  of the information system, and { q t , . - - , q k }  is the reduct  set of the 
given information system[31]. 

Denote the prime CNF of f by F ,  and the prime DNF o f f  by G. P and Q are the a t o m  sets 
of F and G, respectively. A question arises, whether  P = Q or not? If  the answer is yes, then for 
every a tom in F ,  there mus t  exist a prime implicant (reduct) in G including the atom. T h a t  means,  
to compute  a reduct,  we m a y  start  from any clause in F ,  and select one of  its a toms as a reduct  
at tr ibute.  Furthermore,  we may select the first one in the a t t r ibute  order as a reduct  a t t r ibute .  This 
is why we base our discussion on prime CNF of a discernibility matrix,  bu t  not  on the discernibility 
matr ix  itself. Before answering the above question, we first introduce atom order (attribute order). 

Given a CNF f with a tom set C, the atom order, denoted by S, is an order  over C. Given an 
a tom order S, each clause of f may  be rearranged according to S so tha t  the a toms in the clause 
appear  in the same order with S. For example, f = (a v c v b) A (d V b) A (c V e), C = {a, b, c, d, e}, 
and S = a > b > c > d > e. Rearrange f according to S, f = (a v b v c) A (b V d) A (c V e). After the 
rearrangement,  each clause is said to satisfy S. 

When  each clause satisfies S, we define an equivalence relation L(S)  over f :  

{~ : a E f ,  where a takes ak as the first atom, i.e., c~ = akB}  

where ak E C and B C C. By L(S) ,  f is par t i t ioned into equivalence classes, i.e., f / L ( S )  = 
( [ e l ] , . . . ,  [an]} ---- { [1] , . . . ,  [n]}, where ai locates before ai+l  in S, i = 1 , . . .  , n  - 1. Consider 0 5s [k] e 
f / L ( S ) .  Select a E[k]  and c~-- a k V B ,  then for e v e r y a p  E B, ap is located behind ak in S. ak is 
called the labeled atom of [k]. Sometimes we write ~ = ak V B as a = akB. 

The following proposi t ion is about  clauses in the equivalence class [k]. 
P r o p o s i t i o n  3. Given a CNF f and an atom order S, [k] E f / L ( S )  with labeled atom ak, and 

[k] = { a l , . . . ,  c~n}. Transform c~1 A . . .  A an to DNF, denoted the result by ~k. There must exist an 
implicant {ak} in f~k. 

R e m a r k .  This  proposi t ion suggests that ,  {ak} is an implicant of t2k. Then,  if the absorpt ion law 
is applied to gtk, all the implicants in f~k containing ak will be absorbed. T h a t  means,  in the prime 
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DNF of t2k, there must exist a prime implicant {ak}, and all the other prime implicants exclude the 
atom ak. Especially, if there is just one clause in [k], for example, a V b V c, then all the atoms in the 
clause, a, b, and c, are implicants in ~k- In addition, the proposition must still hold for a DNF. 

Ezample3. f = ( a V d )  A ( a V e ) A ( b V c )  is a CNF  and S = a > b > c > d > e. [a] = [1] = 
{(a V d), (a V e)}. Transforming [a] to DNF, we get f~, = a V (a A d) V (a A e) V (d A e). Then {a} is 
an impticant of ~1o Applying the absorption taw to ~1, ~1 = a V (d A e). {a} is a prime implicant of 
~tt and (d A e) excludes the a tom a. 

In fact, what we are looking for is an algorithm that  can obtain a reduct including those at tr ibutes 
the user preferred. According to Proposition 3, for each [k], if its labeled atom, ak, is selected as an 
redact at tr ibute,  all the clauses in [k] can be dropped from the CNF of the discernibility function. 

Let F be the prime CNF of discernibility function f ,  and G be the prime DNF of f .  The a tom 
sets of F and G are both subsets of C, and are arranged according to the a tom order S. 

Consider a E [k], a = akB. Let F '  = F -  [k], G' = {01 V -..  v 0q} be the prime DNF of F ' .  For 
the donvenience of discussion, move away the subscript k and write a = akB as a = aB. Applying 
the multiplication law to a A G ~, we have the following formula. 

a A G'  = { ( a l  A 01) V . . -  V (a A Oq)} V { ( B  A 01) V . . .  V ( B  A Oq)} 

Obviously, all the (a A 0i), i = 1 , . . . ,  q, are implicants of a A O'. Then two questions arise: (1) 
does every (a A 0i) definitely keep prime in a A G'? Clearly, the answer is no. (2) is there any (a A 0{) 
keeping prime in c~ A G'? This is an important  question that  has to be answered before the algorithm 
is designed. If the answer is no, it is not possible for a to work as a reduct at tr ibute,  so tha t  any 
algorithm should not identify a as a reduct at tr ibute.  The following proposition answers this question. 

P r o p o s i t i o n  4. (a A 0,~) is a prime implicant of a A G' if and only if  for all b E B C a, b fl 0,~ 
holds, where 1 < m <_ q. 

Proof. By the definition of G ~, a d 0,~ holds. 
( ~ )  Assume that  (a A 0,~) is a prime implicant of a A G'. Suppose there is b C B C a and b E 0,~. 

Since b E 0,, and a ~ 0~, we have b A 0,~ = 0m and (b A 0,~) C (a A 0,,), that  is, (a A 0,,) can be 
absorbed by (b A 0,~) (or (B A 0,0) .  Thus, (a A 0,,) is not a prime implicant of (~ A G' ,  which contradicts 
the assumption. 

( 0 )  Assume that  for all b E B C a, b q20~ holds. Since b ~ 0m and a ~ 0m, and a ~ b, we have 
(aAO,~) r (bAO~)  and (bAOm) r (aAO,~). Thus, ( a A 0 m )  cannot be absorbed by any (bAOm) 
(or (B A 0m)). And obviously, (a A 0,~) cannot be absorbed by any other (B A Or) either, 1 < t < q, 
t r rn. Therefore, (a A 0~) is prime in a A G'. [] 

R e m a r k .  Since only multiplication and absorption laws are employed in the above proof, the 
proposition must hold for DNF, that  is, we can prove in the same way that  the proposition holds 
when transforming a DNF to CNF. 

Proposition 4 implies an algorithm that  is complete for reduct. 
Ezample4. F =  ( a V b V c )  A ( b V d ) A ( c V e )  is a p r i m e C N F  a n d S = a > b > c >  d > e .  [a] = 

{ (avbvc)} .  F'  = F-[a]  = (bVd)A (cVe). a = aVbVc = a V B  and B = bVc. Applying multiplication 
and absorption laws to (b V d) A (c V e), we have its prime DNF G'  = (b A c) V (b A e) V (d A c) V (d A e). 
Then applying the multiplication law to (a V b V c) A G', we have 

a AG' = (aAbAc)  V (aAbAe) V (aAdAc)  V (aAdAe) ,  
b A G ' =  ( b A b A c )  V ( b A b A e )  V ( b A d A c )  V ( b A d A e ) ,  

cA G'  = (cA bA c) V (cA b A e) V (cA dA e) V (cA dA e). 

The p r i m e D N F o f ( a V b V c )  A G ' i s  ( a A d A e )  V ( b A e ) V ( b A e ) V ( d A c ) .  
Note that  in G', only (d A e) does not contain b or c. Therefore, (a A d A e) is a prime implicant of 

a A G',  and none of (a A b A c), (a A b A e), (a A d A c) is. The result validates Proposit ion 4. 
Now, we can answer the question, whether P = Q or not, put forward at the beginning of this 

section. 
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Let F be a prime CNF and S be an a tom order. Let [k] < F/L(S) ,  oe e [k], and c~ = aB. Applied 
multiplication and absorption laws, F is t ransformed to prime DNF G. P and Q are a tom sets of F 
and G, respectively. 

P r o p o s i t i o n  5. P = Q. 
Pro@ First, we prove that  P C_ Q holds. 
Since c~ = a B C  F, a E P. For any 7 E F,  by Proposition 2, 7 ~ B # 0 holds. Applied 

multiplication and absorption laws to F,  there must exist an implicant /3 = a A A in G, such that  
A N B  = 9. Then according to Proposition 4,/3 = aAA is a prime implicant of G, i.e., a E Q. Because 
of the liberty of c~, for any a E P,  we have a C Q. Then P C_ Q holds. 

Because Propositions 2, 3, 4 hold for CNF and DNF, in the same way, we can prove Q c_ P .  
P = Q holds. [] 
This proposition implies that  any a tom in a prime CNF must be included in an implicant of a 

prime DNF. Since the discernibility function of an information system can be expressed in the form 
of prime CNF, and the prime DNF is just the reduct set, for any a tom of the prime CNF, there must 
exist a reduct containing that  atom. This is the necessary condition of the algorithm presented in this 
paper. 

5 R e d u c t  

Reduct is one of the most important  contributions Of Pawlak to machine learning theory. It  can be 
regarded as a goal between minimal reducts and trivial reducts, with the computat ional  complexity 
of O(n2). This concept is originally defined on the positive region of the information system (low 

approximation) (9 
D e f i n i t i o n  2 ( R e d u c t ,  P a w l a k ) .  Given an information system (U,C U D), and R C C. If 

POSR(D) = ROSa(D) and for any r e R, POSn(D) ~ ROSR_(~}(D), then R is a reduct of 
(U, CUD) .  

Roughly speaking, for a subset of condition attributes,  the positive region is the maximal subset 
of the universe U, in which all the objects are consistent with each other. To make it dear,  we give a 
direct explanation following Pawlak's definition. 

Given an information system (U, CUD}, R C_ C and E _C U. For R, U - E  is the positive region of 
the information system, if and only if for all x, y E U - E,  if R(x) = R(y), then D(x) = D(y), and for 
any z E E,  there exists a z '  E t77, such that  R(z) = R(z') but D(z) r D(z'). And, {y :  R(z) = R(y) 
but D(z) r D(y), z E E and y E U -  E} = 0. 

R e m a r k .  In fact, the original definition of positive region given by Pawlak has considered the 
inconsistent case of an information system. Although it is significant for prediction tasks, it loses 
essentiality in description ones, because we only need to consider the case ROSa(D)  = U for reduction. 
If the given information system is inconsistent, according to Pawlak's definition, the reduction is 
accomplished on the positive region for decision at tr ibute D. Tha t  is, the reduct on (U, C tO D) is 
replaced by the reduct on (U - E,  C tO D). 

By this remark, reduct may be defined in another way. 
D e f i n i t i o n  3 ( R e d u c t ) .  Given an information system (U, C tO D}, t~ C C is a reduct, if and only 

if (1) for every x, y E U with D(x) 7 s D(y), R(x) # R(y) holds and (2) for any r ~ R, P = R -  {r}, 
there exist x, y e U, such that D(x) # D(y), R(x) # R(y), but P(x) = P(y). 

R e m a r k .  Definition 3 is closely related to the discernibility matrix. 
In the principle of discernibility matrix, reduct is related to core attributes. 
P r o p o s i t i o n  6. R is a reduct of (U, C U D) if and only if l~ is the core attribute set of (U, R O D). 

(9 In Pawlak's  papers,  reduct is defined with and without  decision at tr ibutes,  respectively. Since we can t ransform 
the latter case to the former case, it is only necessary to consider reducts in an information sys tem with decision 
at tr ibutes,  which is based on the positive region (Iow approximation).  
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R e m a r k .  By this proposition, the information system (U, { R - { r } }  u D) is constructed by moving 
out a core attribute r from (U, R U D), which must cause a change of the positive region. 

In this paper, we use another definition of reduct that is based on the principle of discernibility 
matrix. The new definition is equivalent to Definition 3. 

Let ~ be the discernibility matrix of the information system. 
Def in i t ion  4. Given an information system (U, C U D), and R C C. For r E R, if there is an 

a E r such t h a t R N a  : r ,  t henr  is said to be independent i n R .  R is a redact of the information 
system, if and only if (1) R n a 7s ~ for any a E ~ and (2) any r E R is independent in R. 

P r o p o s i t i o n  7. Given an information system (U, C U I)) and POSc(D)  = U, Definition 4 is 
equivalent to Definition 3. 

Proof. Let R C C ,  r E R a n d P = R - { r } .  
By Definition 3, (1) for every x, y E U with D(x) # D(y), R(x)  # R(y)  holds. Then a, the 

discernibility element of x and y, satisfies R n a r 0. (2) For any r E R, P = R - {r}, there 
exist x, y E U such that D(x)  # D(y), R(x)  # R(y)  but P(x)  = P(y) .  Hence, by the principle of 
discernibility matrix, a satisfies r E a but P ~ a. Then R c1 a = r. Thus, the two conditions of 
Definition 3 correspond to those of Definition 4 respectively. 

By Definition 4, (1) R n a 5s (~ for any a E (I>, i.e., for every x, y E g with D(x)  7s D(y),  there 
is some difference between them on a subset of R, i.e., R(x)  ~ R(y).  (2) For any r E R, there is an 
a E ~, such that R n a  = r. That  is, for any r E R, there is an a E ~, such that R N a  r 0 and 
P n a = ~. By the principle of discernibility matrix, there exist x, y E U satisfying D(x)  r D(y) and 
R(x) 7s R(y),  but P(x)  = P(y).  That is just Definition 3. [] 

We close this section by defining free attributes. In fact, the algorithm we will present tries to drop 
non-redact-attributes from the discernibility matrix. That  is different from traditional algorithms, 
where it is the redact attributes that would be dropped. The non-redact-attributes are called free 
attributes. 

There are two sorts of free attributes. First, free attributes for the information system, which are 
free for all the redacts. Second, free attributes for a reduet, which are free just for that redact. 

Given an information system (U, C U D), by Proposition 5, the attribute set of redact set (prime 
DNF) is the atom set of prime CNF of its discernibility function, denoted by P. 

Def in i t ion  5 (Free  A t t r i b u t e ) .  For any a E C, if  a f~ P, it is called free attribute of the 
information system. Let R C_ C be a redact. Any b E C - R is called free attribute of the redact R.  

6 T h e  A l g o r i t h m  B a s e d  o n  F r e e  A t t r i b u t e s  

Some reduction algorithms based on the principle of discernibility matrix take the following reduc- 
tion rule. 

P r o p o s i t i o n  8 ( R e d u c t i o n  Ru le  B a s e d  on  D i sce rn ib i l i t y  M a t r i x ) .  Let r be the discernibility 
matrix of an information system. I f  ~ ~ R C_ C is a redact, then ~ N R r 0 holds for any a E q~. 

The reduction method implied by Proposition 8 is based on dropping entries from the discernibility 
matrix. Although various strategies may be embedded in the above rule, it has been proved that not 
all the strategies are complete for redact [ls]. Also in [18], a strategy based on attr ibute order is 
proposed, and the corresponding algorithm is proved to be complete for redact. However, since the 
strategy replies on the nonempty equivalence class with maximum subscript in F/L(S), it meets some 
difficulty in supporting uscr requirement. 

The algorithm to be presented in this paper adds another reduction rule to Proposition 8, which 
in fact identifies the free attributes. 

P r o p o s i t i o n  9 ( R e d u c t i o n  Ru le  Based  on  Free A t t r i b u t e s ) .  Let �9 be the discernibility 
matrix. For a reduct ~ 7~ R C_ C, there must exist kb ~ C q~, such that for any a E ~Y, where a = aB, 
U ~ a  = R and B c2 R = ~ must hold. 

Proof. Let (D r R C_ C be a reduct. By Definition 4, for any a E R, there is an a E r) satisfying 
R A n  = a. Written a as a = a/3, t 3 N R  = ~ holds. Construct ~ by including all these a. Then 
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'~=c~a = R holds. .~ 
P ropos i t ion  9 ex tends  the  reduc t ion  rule in P ropos i t ion  8. The  key po in t  lies in the select ion of 

B. Since the a t t r i bu t e s  in B are free for R, t hey  can be d r o p p e d  from discern ib i l i ty  m a t r i x  before the  
reduc t ion  rule in P ropos i t ion  8 is appl ied.  

Example 5. �9 = {abe, ab, ad, bd, be, ce, cf} and  R = {a,b,c}. 
r = {ad, bd, ce}. Note tha t  {d, e} n R = 0. 
Let  F be the C N F  of the d iscernibi l i ty  funct ion,  S be the given a t t r i b u t e  o rder  and  R = 0. 
Algorithm 1. (Reduc t ion  A lgo r i t hm Based  on Free At t r ibu te s )  

(1) If F = 0, stop. 
(2) Apply the absorption law to F and transform it to prime CNF. 
(3) F/L(S) = {[al] . . . . .  [a,~]}. R = RU {al}. Select an c~ E jail, c~ = alB. 
(4) F = F - [al]. 
(5) Va E F,  a = a ~ B. 
(6) Goto (1). 

W h e n  the a lgor i thm stops,  R is a reduct .  
Example 6. F =  ( a v b V f )  A ( a V c V f ) A ( a V c ) A ( a V d ) A ( b V d ) A ( b V e ) A ( c V e ) A ( c V f ) .  

S = a > b > c > d > e > f .  
To have a clear view, wri te  F as �9 --: {abf, acf, ac, ad, bd, be, ce, cf}, and  replace  using the algo- 

r i t h m  on F wi th  using it on O. Bo th  the  process  and resul t  are the same. 

(t) since r # ~, go to (2). 
(2) Apply the absorption law to ~5. acfis absorbed by ac. So @ = {abf, ac, ad, bd, be, ce, cf}. 
(3) ~/L(S) = {[al,[b],[c]}. [a] = {abf, ae, ad}, [b] = {bd, be}, [c] = {ce, cf}. R = {a}. Select c~ = abI, 

c~ = aB, where B = {b,f}. 
(4) ~ -=-- ~ -- [a] = {bd, be, ce, cf}. 
(5) Drop B = {b,f} from ~5. ~5 _- {d, e, ce, c}. 
(6) Goto (1). 
(7) Since r r O, go to (2). 
(8) Apply the absorption law to ~. ce is absorbed by c. So q5 = {d, e, c}. 
(9) r = {[c], [d], [e]}. 

W h e n  the a lgo r i thm stops,  R = {a, c, d, e} is a reduct .  
Note tha t  in Step (3), since [al] usual ly  conta ins  more than  one entry, how to select a E [al] is 

a s t ra teg ic  p rob l em tha t  must  be considered carefully. Different s t ra tegies  usual ly  lead to different 
result .  For the  above example ,  [a] -- {abf, ac, ad}. If c~ = abf, the  resul t  is {a, c, d, e}; if c~ = ac, 
the resul t  is {a, b, e , f};  i r a  = ad, the resul t  is {a,  b, c}. Obviously  {a, b, c} is the  bes t  r educ t  for the 
user because  i t  conta ins  the first three a t t r i b u t e s  in S. The  deta i l s  of s t ra tegies  will be discussed in 
Sect ion 8. 

The  a lgo r i t hm is based on forming the d iscern ib i l i ty  ma t r i x  of an in format ion  sys t em t h a t  has  a 
t ime complex i ty  of O(n2), where n is the  number  of objects  in the in format ion  sys tem.  As to the  
a lgo r i thm itself, since the  absorp t ion  law is used, the  t ime complexi ty  becomes O(Card(O)2), wkere  
Card(O) is the  en t ry  number  of d iscernibi l i ty  mat r ix .  

7 T h e  C o m p l e t e n e s s  o f  A l g o r i t h m  1 f o r  R e d u c t  

To prove t h a t  the  a lgor i thm based on free a t t r i bu t e s  is comple te  for reduct ,  we need the  following 
p ropos i t ion  t h a t  is p roposed  by Skowron [31]. 

Proposition 10 ( R e d u c t  S e t ) .  The prime DNF of the information system is its reduct set. 
Each irnpIicant of the prime DNF is a reduct. 

By this p ropos i t ion ,  to prove the a lgo r i t hm ' s  completeness  for reduct ,  it only needs to prove tha t  
the o u t p u t  of the  a lgor i thm is one of the impl icants  of the pr ime D N F  of the  in fo rma t ion  sys tem.  

P r o p o s i t i o n  10 has a useful corollary, which may  be regarded as another  def ini t ion of reduct .  
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C o r o l l a r y  1 ( R e d u c t ) .  For an information system, F is the prime CNF of the discernibility 
function, and G is the DNF ofF.  For ~ E G, t3 is a reduct, if and only if for any v E G, ~ ~ 13 holds. 

Since the algorithm based on free at tr ibutes identifies one reduct from the reduct set, it will be 
complete for reduct if its output  is actually one/3 in Corollary 1 for every information system. 

By Proposition 1, F is unique for the given information system. Let S be an a t t r ibute  order, and 
[k] E F/L(S) ,  whose labeled at t r ibute is 'a ' .  a : a B E  F, ~ E G. We have the following statements 
prepared for the proof of the completeness of the algorithm.. 

(1) By Proposition 5, a C ~. There must be an implicant in G that contains attribute a (Step 3). 
(2) By Proposition 3, if a is selected as a reduct attribute, all the clauses in [k] may be dropped (Step 4). 

(3) By Proposition 2, select a clause a ---- aB, for any 7 C F, V ~" B r ~. We get the new CNF H (Step 
5). 

(4) Assume 5 , r  S C r 1 6 2  T h e n a A S A r  (Step2). 

Let R be the output  of the algorithm. It must be an implicant of the DNF of F,  but may not 
be prime. To prove the completeness of the algorithm for reduct, we must prove  that  R is a prime 
implicant. 

P r o p o s i t i o n  11. The algorithm based on free attributes is complete for reduct. 
Proof. Let R be the output  of the algorithm. 
Let a E F,  a = aB. Drop B from F-[a], and then transform it to prime DNF O' .  O' = 81V" -V0k. 

Applying the multiplication law to a A G', we have 

aAG'= (aA01) V'--V(aASk)V(BA81)V-''V(BASk). 

Consider 8~ E G'. By Proposition 4, (aAS,~) is a prime implicant of a A G '  if and only ifb ~ 8~ for 
all b E B. Since B has been dropped before G' is formed, that  condition is satisfied. By Proposit ion 
2, for any ~/E F,  we have V ~ B ~ 0. Therefore, G' ~ 0 holds, so that  there must exist an 8~. Thus, 
the output  of the algorithm, R = a A 8,~ is a prime implicant of a A G'. According to Proposit ion 10, 
R is a reduct. [] 

8 T h r e e  Kinds  of  A t t r i b u t e  Orders  

In the above sections, the at t r ibute order is supposed to have a unique form, S = al > a2 > 
�9 �9 - > an, which implies that  the user can distinguish each couple of at tr ibutes clearly in terms of their 
importance for him. But  that  is a rather  strict condition, which may make a user feel difficult when, 
for example~ some at tr ibutes are equally important  for him. 

An alternative is to develop different forms of a t t r ibute  orders for different situations. In this 
section, three kinds of at t r ibute orders are developed, i.e., total  order, group order and balance order. 
In addition, a problem still remains in Algorithm 1, that  is, how to identify the part icular  a from [all 
at Step (3)�9 Since that  strategy closely concerns with user requirement, it will be discussed within 
the three kinds of a t t r ibute  orders, respectively. In the following, the a is called free entry, for all its 
at t r ibutes will become free at tr ibutes except the label one. 

In this section, the discussion is made on the discernibility matrix. 

8.1 T o t a l  O r d e r  

The total  order over the a t t r ibute  set C i s  denoted by S = al > a2 > " "  > an. A user sets a 
total  order when he can distinguish each couple of attr ibutes by their importance for him. Below, we 
discuss the strategy of identifying the free entry. The idea is to make the free a t t r ibutes  contained in 
the free entry as posterior in S as possible. 

Let c be the current reduct at tr ibute.  /3 E [c]. Let r(/~,c) be the position of c in/3, 1/31 be the 
number  of attr ibutes of ,N. Let Apos(fl, i) be the position of the i-th at t r ibute of /3  in S. Then 
mini=l ..... IZl##=(Z,c)(Apos(~,i)) represents the position of the most anterior a t t r ibute  of fl except c 
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in S, which is called secondary attribute of/3.  Obviously, the more posterior the position is, the 
more un impor tan t  the free a t t r ibutes  implied by /3  are. Therefore, among  all fl C [e], the one with 
maxz~[~l(min~=l ..... IN,i#~(~,~)(Apos(/J,i))) should be selected as the free entry. The  a t t r ibute  taking 
position maxze[r 1 ..... I~l##,-(~,c)(Apos(/3, i))) in S is called the maximal secondary attribute of 
[c]. 

Example 7. q? = { ab , ac, adf , be, cf , dg }. S = a > b > c > d > e > f > g. 
The current reduct  a t t r ibu te  is a. [a] = {ab, ac, adf}. 
For/3 = ab, min(Apos(ab, i)) = min(Apos(ab, 2)) = 2. (The posit ion of b in S is 2) 
For/3  = ac, min(Apos(ac, i)) = min(Apos(ac, 2)) = 3. 
For/3  = adf, min(Apos(adf, i)) = min(Apos(adf, 2), Apos(adf, 3)) = 4. 
Thus,  max(min(Apos(fl, i))) = max(2, 3,4) = 4. Therefore, /3 = adf is selected as the free entry, 

and d, f become free at tr ibutes.  The  final redact  is {a, b, c, g}. 
Consider the example about  soybean product ion  ment ioned in Section 1. ~5 = {ab, ac, de, bd, acd, 

ade, ce, abce, abcd, be, abde}. For user A, S = a > b >  c > d >  e. The  f ina l r educ t  is { a , b , e } .  For 
user B, S = e > d > c > b > a. The f ina l r educ t  is { e , d , a } .  Bo th  of them include the first two 
at t r ibutes  in their corresponding S .  

Sometimes more than  one ~ E [c] takes the maximal  secondary a t t r ibu te  of [c] as its own secondary 
at tr ibute.  For instance, [c] = {cde, cdf} and S = c > d > e > f .  Here, d is the maximal  secondary 
a t t r ibute  of [c], and bo th  cde and cdftake d as the secondary at tr ibute.  In such a case, the Max-Min 
s t rategy should be refined to identify the free entry of [c]. A simple supplementa t ion may compare  
their third at t r ibute,  and then the forth at t r ibute,  . . . ,  until  the end of one entry. Since the absorpt ion 
law has been used, not  any two entries of [c] are exactly the same. So there must  be a time when the 
difference between the two entries appears. For example, in the above case, cdfwill be selected as the 
free entry since its third at t r ibute,  f ,  has a more posterior position in S than  e, the third a t t r ibute  of 
cde. 

8.2 G r o u p  O r d e r  

Sometimes it is difficult for a user to distinguish clearly among all the at tr ibutes,  for some of them 
are equally impor tan t  in his mind. In such cases, the user may  use a group order instead of a total  
order. 

For a group order, all the a t t r ibutes  are divided into some groups, A t , . . . ,  Ak, where At u . . .  u Ak = 
C, Ai ~ Aj = 9, i , j  = 1, . . .  ,k,  i # j .  The total  order relation is satisfied among  the groups, i.e., 
A1 > --- > Ak, which means all the a t t r ibutes  in Ai are more impor tan t  for the user than those in 
Ai+l, i = 1 , . . . ,  k - I. While in each group, all the at t r ibutes  are equally impor tant .  

The  s t ra tegy of identifying the free entry under a group order shares the same principle as in total  
order cases. It also tries to choose free a t t r ibutes  as posterior in S as possible, so tha t  the Max-Min 
principle still works in the group order. However, one of the differences between the two kinds of 
orders is tha t  no mat te r  how to refine the strategy, sometimes the group order cannot  identify a single 
free entry of [c]. See a simple example, ~5 = {ab, ac, bc}, S = {a} > {b, c}. Since b and c s tay in the 
same group, they  have the identical posit ion in S. Therefore, in [a], ab and ac are indistinguishable, 
and the free ent ry  cannot  be determined directly. To solve it, a simple solution constructs  artificially 
a quasi- total-order inside a group, for instance, following the alphabetic  order, which implies tha t  b is 
more impor tan t  than  c and ac should be selected as the free entry in this example. 

8.3 B a l a n c e  O r d e r  

A balance order is developed when the following real case is considered. 
H u m a n  development database  (HDD) is a large database including hundreds kinds of social, eco- 

nomic and na tura l  data.  Many researchers s tudy HDD to get knowledge about  the sustainabili ty 
of a country. Because the sustainability of a country is connected with not only population quality 
and economic level, but also social and economic structure, resource and environmental state, and 
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economic and ecological function,  it requires keeping balance in all the social, economic and environ- 
mental  aspects [32i. This  raises a special  k ind of user requi rement .  To meet  the  requ i rement ,  all  the  
a t t r i bu t e s  are d iv ided  into some groups,  and  the  a lgo r i t hm is invoked to find a r educ t  con ta in ing  
a t t r i bu te s  d i s t r i bu t ed  evenly among  all the groups.  

Here we define the ba lance  order.  All  the  a t t r i b u t e s  are d iv ided  into some groups ,  A 1 , . . . ,  Ak, 
where Ai  tJ . . .  tO Ak = C, Ai ~ A j  = @, i , j  = 1 , . . .  ,k ,  i # j .  All  the  groups are at  the  same  level of 
impor tance ,  while inside each group,  t i le to ta l  o rder  re la t ion  is satisfied, i.e., all the  a t t r i b u t e s  inside 
a group are t o t a l l y  ordered.  

Under  the  ba lance  order,  a s t r a t egy  is des igned following the  rules: 
1) Select r educ t  a t t r i bu t e s  in the following way. At  first, all the  groups  form a c a n d i d a t e  set. 

Then  the min ima l  group cont r ibu tes  a reduc t  a t t r i b u t e .  Since all the  a t t r i b u t e s  in each group are  
to t a l ly  ordered,  the  first a t t r i b u t e  in the  min ima l  group is identif ied as the  cur ren t  r educ t  a t t r i bu t e .  
Then  tha t  group quits  the  cand ida t e  set. In this  way, every group con t r ibu tes  a r educ t  a t t r i b u t e  and  
qui ts  the cand ida t e  set in turn .  This  process cont inues  unt i l  the  cand ida t e  set becomes  empty .  If the  
d iscernibi l i ty  m a t r i x  is not  empty,  all tile groups  form the  cand ida t e  set again  except  the  e m p t y  ones, 
and  the  above s teps  repea t .  

2) Select free a t t r i bu t e s  in the  free en t ry  under  the  following principles .  Let  c be  the  cur ren t  
reduct  a t t r i b u t e  and denote  i ts group by Ac. 

a) If  two a t t r i b u t e s  a and  b, a E Ar b ~ A~, select a as the  free a t t r i bu t e .  
b) If two a t t r i b u t e s  a and  b, a, b E A and  a > b in the  order ,  select b as the  free a t t r i b u t e .  
c) If two a t t r i b u t e s  belong to different groups  and  have the same pos i t ion  in the i r  own order ,  

select the  a t t r i b u t e  wi th in  the  larger  group.  

The  above pr inciples  consider  some s imple  cases of ident i fying free entry. In more  complex  s i tua-  
t ions,  some weights  of a t t r i bu t e s  have to be in t roduced .  

k 
Let e be the  current  reduc t  a t t r i bu te .  Denote  the  number  of a t t r i bu t e s  in Ai by rni. m = Y~i=1 mi .  

rnmax = max  (mi) .  For an a t t r i b u t e  b having pos i t ion  q in the  order  of the l - th  group,  
i----l,...,k 

1, if b c A~ 

Wl = 0.5, o therwise  

w2 =- q / m m a x  

W 3 : Tn / / r / 7 , rnax  

W b ~- W 1 * W 2 * W 3 

F o r / 3  E [c], /3 = cB, the  weight of/3, w z = ~ b e B  Wb. Then  t h e / 3  wi th  m a x ( w z )  is ident i f ied  as the  
~e[c] 

free entry. 

Example 8. �9 = {ab, af,  acg, aeg, a.qh, bef, beg, eefg, efgh}. S = {a > c}{b > g}{e  > f > h}. In  
t e rms  of S,  there  are three  ~ o u p s ,  A1 = {a > c}, Aa = {b > g}, A3 = {e > f > h}. rnl  = 2. m2 = 2. 
m 3 = 3. m r n a x  = m a x ( r e , ,  m 2 ,  m 3 )  = 3. 

A1 and A2 are the  min imal  groups.  Select  a t t r i b u t e  a in AI as reduct  a t t r i b u t e .  T h e n  select  the  
free en t ry  of [a]. 

For  ab, w~b = wb = wl  * w2 * w3 = 0 . 5 .  (1 /3)  * (2 /3)  = 2/18 
For  af, w~.f = wf  = 0.5 * (2/3)  �9 (3/3)  = 6/18 
For  acg, w ~ j  = w~ + tug = 1 .  (2/3)  * (2/3)  + 0.5 * (2/3)  * (2/3)  = 12/18 
For aeg, w~,r = we -r-w9 = 0.5 * (1/3)  * (3/3)  + 0.5 * (2/3)  * (2/3)  = 7/18 
For agh, w,~gh = w~ + w,, = 0.5 * (2/3)  * (2/3)  + 0.5 * (3/3)  * (3/3)  = 13/18 
Because agh has the  biggest  weight, it is ident if ied as the  free entry, while g and  h become free 

a t t r ibu tes .  The  final reduct  is {a, b, f}. I t  selects one a t t r i b u t e  from each group,  and  among  the 
a t t r ibu te s ,  a and  b are  bo th  the first one in their  own group,  while f is the second one in its group.  
In  fact, t ha t  is the  bes t  result  under  the balance  order ,  for {a, b, e}, consis t ing of" the  first a t t r i b u t e  
of each group,  is not  a reduct  of ~.  



No.5 A Reduction Algorithm Meeting Users' Requirements 591 

Note  t ha t  the  above weight compu t ing  m e t h o d  is an  app rox ima te  s t r a t egy  to keep ba lance  among  
the a t t r i b u t e  groups.  We cannot  ensure to r ema in  in the  result  even one a t t r i b u t e  from each group.  
F i r s t ,  such a reduc t  m a y  not  exist.  Second,  even if the re  is such a reduct ,  it  m a y  be  missed because  
the  s t r a t egy  is ac tua l ly  heuris t ic  r a the r  t h a n  de te rmin is t ic .  

9 Experimental  Results  

In this  section, we present  three  expe r imen t s  to  tes t  the  per formance  of A l g o r i t h m  1. The  exper i -  
ments  are t aken  on a compute r  wi th  A M D  1GHz processor  and  256M memory.  

Example 9. The  exper imen t  is t aken  on DATA1,  which is a d a t a  set m a d e  ar t i f ic ia l ly  and  has 
10,000 records,  20 condi t ion  a t t r ibu te s ,  and  one decis ion a t t r i bu te .  The  a t t r i b u t e s  are labe led  by 
thei r  index,  i.e., 1,2, . . . ,  21. Among  them,  a t t r i b u t e  1 is the  decision a t t r i b u t e ,  and  2, . . . ,  21 are 
condi t ion  ones. The  discernibi l i ty  m a t r i x  conta ins  131,048 different entries.  No core exists  in DATA1.  
T h e  following tab le  shows the results  of  nine expe r imen t s  taken  on DATA1 u n d e r  different  a t t r i b u t e  
orders.  Each  expe r imen t  takes abou t  76 seconds (The  t ime  is t ha t  of A l g o r i t h m  1 bu t  does not  include 
tha t  of genera t ing  the  d iscernibi l i ty  ma t r ix ) .  

Table 3. Experiments Taken on the DATA1 
Co~e 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Attribute order Results 
2, 3 , . . . ,  21 2, 3, 4, 5, 6, 7, 8, 9 
21, 20, . . . ,  2 21, 20, 19, 18, 17, 16, 15, 14 
3, 5 , . . . ,  21, 2, 4 , . . . ,  20 3, 5, 7, 9, 13, 15, 17, 4 
2, 4 , . . . ,  20, 1, 3 , . . . ,  19 2, 4, 6, 8, 10, 12, 14, 16 
3,8,7,12,15,2,18,14,6,10,11,21,5,17,4,16,9,13,19,20 3,8,7,12,15,18,14 
13,3,18,16,7,5,14,9,19,17,11,8,21,4,15,6,20,2,12,10 13,3,18,16,7,5,14,9 
14,10,17,2,16,3,7,8,18,4,19,6,21,13,12,15,5,9,20,11 14,10,17,2,16,3,7,9 
10,3,8,7,13,17,19,12,4,20,15,16,11,18,6,21,14,5,2,9 10,3,8, 7, 13, 17,20 
8,7,10,13,14,4,15,2i, I1,16,12,3,19,17,18,20,6,9,2,5 8,7,10,13,14,4,21,17 

In  the  a t t r i b u t e  order ,  the  symbol  ">"  is o m i t t e d  and a l , . . .  , an  means  a l  > " "  > an. In  the  
above nine exper iments ,  the  reducts  found by  the  a lgo r i thm are r a the r  sa t is factory.  For  example ,  in 
case 1, the  r educ t  {2, 3, 4, 5, 6, 7, 8, 9} remains  the  first eight  a t t r i bu t e s  of the  given order.  And  t h a t  
also happens  in case 2 and  case 4. In  fact,  the  a lgo r i t hm has a good  proper ty ,  t h a t  is, if the  first k 
a t t r i b u t e s  in the  order  h a p p e n  to make up a reduct ,  the  a lgor i thm surely finds t ha t  reduct .  In  case 
5, the  resul t  conta ins  the  first eight a t t r i bu t e s  in the  order  except  the  s ix th  a t t r i b u t e  2. A n d  in o the r  
cases, mos t  a t t r i b u t e s  in the  final resul t  take  an te r ior  pos i t ions  in the  a t t r i b u t e  order .  

Example 10. The  exper iment  is t aken  on DATA2,  which is also made  ar t i f ic ia l ly  and  has the  same  
number  of a t t r i b u t e s  wi th  DATA1 bu t  ten  t imes  of the  records in DATA1, i.e., 100,000 records.  The  
d iscern ib i l i ty  m a t r i x  conta ins  411,943 different entr ies ,  which is three  t imes  more  t h a n  tha t  of DATA1.  
The  expe r imen t s  take  abou t  216.96 seconds. Since in this exper iment  we only care  abou t  how the  
runn ing  t ime  goes up when the d a t a  set expands ,  no deta i l s  of exper iment  resul ts  are  shown. 

Table 
Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 i 

4. Experiments Taken on Data Set of Cars 
A t t r i b u t e  order  Resu l t s  

5, 3, 2, 8, 7, 6, 4, 9, 1 5, 3, 2, 8, 6, 4, 9 
2, 4, 9, 3, 1, 5, 8, 6, 7 2, 4, 9, 3, 1, 8 
4, 8, 5, 9, 2, 1, 3, 6, 7 4, 8, 5, 9, 2, 3, 6 
7,5,9,6,3,4,1,8,2 7,9,6,4,2 
4,1,5,7,3,2,8,6,9 4,1,5,9 
1,7,6,2,4,9,3,5,8 1,7,6,4,9 
1,3;2,9,4,7,8,6,5 1,3,2,9,4,8 
4, 9, 7, 5, 6, 2, 3, 8, 1 4, 9, 7, 6, 2 
8,7,1,9,2,6,5,3,4 8,1,9,2,3,4 
3, 4, 1, 9, 5, 2, 8, 7, 6 3, 4, 1, 9, 2, 8 

Example 11. The  exper iment  is taken  on the d a t a  set of cars [33], which includes  nine condi t ion  
a t t r i bu t e s ,  one decision a t t r i bu te ,  and  21 records.  T h e  a t t r i bu te s  are labeled by thei r  index,  i.e., 1,2, 
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. . . ,  10. Attr ibute 10 is the decision at tr ibute,  and 1 , . . . ,  9 are condition ones, among which at tr ibutes 
4 and 9 are cores. The discernibility matr ix  contains 104 different entries. The following table shows 
ten experimental results under different a t t r ibute  orders. 

Since the discernibility matr ix  contains only a few entries, the algorithm takes a short running time 
(less than 0.1 second). As in Example 9, most  at tr ibutes in the final results take anterior positions in 
the at tr ibute order (Table 4). 

10  C o n c l u s i o n s  

In data mining, there are two tasks, description and prediction. Prediction has little difference 
from machine learning in nature. Both of them try to find out model upon a data  set, while keeping 
their capability to other objects in the same domain, i.e., generalization. However, description has 
a rather different objective from them. It  regards the data  set as a closed world. Under a process, 
the data set is transformed to a more concise form, while keeping the possibility of explanation, i.e., 
reduction. Thus, compared with prediction, description is more distinct in da ta  mining. In this paper,  
we focus on description tasks. 

Generally speaking, a data  set contains several kinds of knowledge. In addition, a da ta  set is usually 
shared by several users. And different users may require different knowledge. So it is important  for a 
data  mining algorithm to provide users the knowledge they wanted, which we call requirement-oriented 
knowledge discovery (ROKD).  In this paper,  we present a new method to find customized reducts to 
meet the users' requirements, which is useful in a lot of applications because one reduct may  be bet ter  
in one sense than another. Thus, how to describe users' requirements, and then how to compute a 
reduct according to the requirements become the key point. This paper just regards a t t r ibute  ordering 
as a special kind of method. It  surely needs much more research to establish a general language for 
describing users' requirements. Some basic strategies are designed to describe a t t r ibute  order. Then 
ar~ algorithm supporting such description is proposed. 

We emphasize the completeness of the algorithm for reduct because reduct is an objective between 
minimal reduct and trivial reduct, with the computat ional  comple~ty  of O(n2). In the future, we will 
try to promote the efficiency of the algorithm based on free attributes. 
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