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Abstract  

A conceptual level database language for the entity relationship (ER) model 
implicitly contains integrities basic to ER concepts and special retrieval seman- 
tics for inheritances of attributes and relationships. Prolog, which belongs to 
the logical and physical level, cannot be used as a foundation to directly define 
the database language. It is shown how Prolog can be enhanced to under- 
stand the concepts of entities, relationships, attributes and is-a relationships. 
The enhanced Prolog is then used as a foundation to define the semantics of a 
database query language for the ER model. The three basic functions of model 
specification, updates and retrievals are defined. 

Keywords:  Conceptual level, query language, semantics, logic, entity- 
relationship model, abstraction level, ER calculus. 

1 I n t r o d u c t i o n  

The entity-relationship (ER) model has become widely used for database design, 
accompanied with many proposed query languages. It is i m p o r t a ~  to provide a 
precise definition of ER language~ for the purposes of comparison and implemen- 
tation. A formal logic-based definition of ER languages is, however, quite elusive 
because the semantics is situational. It depends on the actual data  values and the 
constraints existing in the database. Consider the case where the ER statement 
is to delete a supplier. The meaning can be simply to delete that  supplier if that  
supplier is not linked to other entities. If the supplier is linked to other entities, then 
these linkages (relationship instances) will also have to be deleted. The situation 
can be complicated by constraints on the cardinalities of relationships. For example, 
if every part  must be supplied by at least one supplier, and ~t the time the supplier 
is to be deleted, then the parts that  are supplied only by him must also be deleted. 
This can, in turn, lead to other deletions. 

It  is advantageous to use Prolog as the foundation to define ER languages. Since 
implementations of Prolog are widely available, Prolog-based definitions of ER lan- 
guages can be easily checked and tested. However, Prolog belongs to the physical 
and logical level of abstraction, without any understanding of entities and relation- 
ships. In contrast, the ER model belongs to the conceptual level where there is no 
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need to specify logical level details such as foreign keys for relationshipsll,2]. How 
the entity instances are traced to their relationship instances should be left to the 
particular implementation - -  whether by keys, pointers or surrogates. If the Prolog 
foundation uses keys for the relationship, this will bound the ER language to the use 
of keys as well, which is an unnecessary restriction. Hence, certain additions must 
be made to Prolog to allow the direct definition of conceptual level information. 

The enhancement of Prolog is described in Section 2. Section 3 illustrates the 
definition of an ER language based on the enhanced Prolog. Section 4 summarizes 
the advantages of this approach of language definition. 

2 Conceptual  Level for Prolog 

2.1 A b s t r a c t i o n  L e v e l s  

Abstraction levels axe used to focus on the desired level of information. For 
example, users of information systems will not want to know how the systems are 
implemented, what are the various modules and the data structures normally. On 
the other hand, maintenance programmers will need to know the modules and exact 
codes. Three levels of abstraction are commonly used in information systems and 
database research. These are the physical, logical and conceptual levels [1'3'4] as 
shown in Fig.1. 

Conceptual Level 
Details of the Real World 

Logical Level 
Details of the Logical Data 

Physical Level 
Details of Computer Memory and Storage 

Fig.1. Abstraction levels. 

The physical level is the closest to the computer, dealing with computer mem- 
ory and storage. Its information is about data structures in the computer memory, 
the physical pointers, indexes and files. Prolog's need to distinguish the order of 
arguments is an example. If a predicate has ten arguments, then the user must re- 
member the correct order. Some Prolog systems also allow access to other physical 
level details such as hash tables and B-trees. The logical level has information about 
logical data. A good example is the relational model {2,sl where the physical imple- 
mentation of relational tables is of no significance (except for runtime efficiency). 
Linkages among data are made logically through keys and foreign keys instead of 
physical pointers. Prolog is also good at the logical level. In fact, some Prolog pred- 
icates are very similar to relations. For example, if supplier and part information is 
stored in the following predicate structures: 

supplier(name, sno, address, industry) 
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part(name, pno, description) 
supplier_part(sno, pno, price) 

then retrieval of the suppliers of, say, tyres can be done with the following predicates: 

part(tyre, P,  _), supplier_part(S, P,  _), supplier(Name, S, _, _). 

The above example illustrates the close similarity between Prolog and the rela- 
tional model. Relationships are defined based on the collection of the keys of the 
entities. Retrieval is done using the same Prolog variable in two predicates to per- 
form the relational join. This is similar to the normal relational joins that have to 
be specified in relational query languages such as SQL or QUEL. 

The conceptual level's information is about objects (or entities) in the real world. 
Relationships are not specified based on keys and foreign keys, but are naturally 
specified between entities, such as John marries Jane or Company employs employ- 
ees. More advanced concepts are possible at the conceptual level. These include 
is-a relationships,, aggregation, and relationship among relationships. At the con- 
ceptual level, attribute and relationship inheritances are implicit. It is possible to 
say, e.g., employee's address instead of the address of persons who are employees, 
assuming that person is the super-entity of employee. At the conceptual level, in- 
tegrity maintenance regarding entities and relationships should be automatic. For 
example, deleting an entity should lead to deletion of its relationships. This level of 
abstraction is not present in Prolog. Prolog does not understand entities, relation- 
ships, or inheritance. A programmer has to convert conceptual level information 
into logical and/or  physical level information and code that in Prolog. Integrity 
rules that are implicit in the conceptual level information must be explicated and 
separately coded. 

Fig.1 also indicates with the bigger rectangles that the lower levels contain more 
details than the higher levels. This is so if no information from the higher level is 
lost. Then more information about logical keys/foreign keys or physical pointers 
and indexes must be added. 

2 .2  E n h a n c e d  P r o l o g  ( E R L O G )  

The additional predicates needed to make Prolog understand the meaning of 
entities and relationships are described below. The resultant product (Prolog plus 
these additional predicates), called ERLOG, contains ER knowledge so that  it can 
maintain ER integrities and perform inheritances automatically. Conceptual infor- 
mation can be directly defined based on ERLOG. Furthermore, implicit integrities 
at the conceptual level need not be explicated. One characteristic of ERLOG is the 
emphasis on atomic facts of the ER model, i.e., the instances, attribute values and 
relationships. Unlike other systems, there are no complicated operations whereby, 
e.g., a group of instances becomes an attribute value of an instance. 

The predicate notation follows that of Prolog. Briefly, a "+" in front of an 
argument means an instantiated argument, " - "  means an uninstantiated argument, 
and "?" means either of them. The descriptions for the predicates show the primary 
intention. However, with automatic maintenance of integrities, secondary actions 
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may occur. For example, d_i is a predicate to delete an instance. This delete is 
the primary intention. Deletion of one (entity or relationship) instance can lead to 
deletion of other instances in order to maintain integrity. These secondary actions 
are described in the subsection on ER integrities. 

M o d e l  P r e d i c a t e s  

The following predicates are used to define and modify the concepts in an ER 
model. These include concepts of entity type, relationship type, enti ty attribute,  
relationship attribute, is-a relationship, cardinalities and roles. Predicates to query 
the ER model are included so that  programmers can ascertain what  has been speci- 
fied. There are many versions of the ER model [6'7]. The specific concepts of the ER 
models that  are supported are described in this section. 

The following predicates beginning with a_ are used to assert specific ER con- 
cepts, such as an entity supplier, a relationship supply, or an at t r ibute  qty of rela- 
tionship supply. 

a_e(+T) - -  assert an entity type T, e.g., a_e(supplier). 

a_a(+T, +A) - -  assert attr ibute A for the type T, which can be an entity or a 
relationship, e.g., a_a( supplier, name). 

a_key(+T, +KeyList) - -  assert the key for the entity T. The key can be com- 
posite. This is used to check that  no two instances have the same key values. 
The relationships are formed by the system using surrogates rather than  these 
defined keys. 

a_r(+RT, +ETRoleCardList) - -  assert a relationship type T and a list of partic- 
ipating entity types with given roles and given lower and upper caxdinalities. 
The cardinalities show the minimum and maximum relationship instances that  
the entity instance can have. An example is a_r(supply, [[supplier, supplies, 
[0, n]], Oaart, supplied_by, [1, n]]]), which states that  a relationship supply exists 
between supplier and part. The roles of supplier and part  are respectively sup- 
plies and supplied_by. A supplier can supply 0 or more parts, while a part  must 
be supplied by at least 1 supplier. 

a_isa(+E1, +EList,  +CharList) - -  assert an is-a relationship with a set of char- 
acteristics in CharList. The characteristics are t (total), p (partial), o (over- 
lapping) and d (disjoint). Anis-a  relationship cannot be both total  and partial, 
or both  disjoint and overlapping. A total condition means that  every instance 
of the supertype (El )  must appear in at least one of the subtypes (a member 
of EList). A partial condition does not impose this restriction. A disjoint con- 
dition means that  any instance of the supertype cannot be a member  of more 
than one subtype. On the other hand, an overlapping condition allows that.  
An example is a_isa(employee,[full- time, p a r t -  time], [d,p]), which states 
that  employee is the supertype of two subtypes fall-time and part-time. This 
is-a relationship is disjoint and partial. 

The following predicates beginning with d_ are used to delete parts  of the ER 
model, such as deleting an entity supplier or an attribute name of entity part. 
d_t(+T) - -  delete a type T. 
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d_a(+T, +A) - -  delete an a t t r ibute  A tha t  belongs to type T. 

The following predicates beginning with q_ are used to query the ER model, such 
as confirming the existence of enti ty supplier or an a t t r ibute  name of enti ty part. 
q_e(, ?T) - -  query the existence of an enti ty type. 
q_r(?T) - -  query the existence of a relationship type. 
q_a(?T, ?A) - -  ask for a type and the a t t r ibutes  of that  type, including the inherited 

attributes.  
q_ro(?RT, ?ET, ?Role) - -  ask about  relationship participation. 
q_isa(?Charlist, ?E, ?E2) - -  ask if E2 is a subtype of E,  where CharLis t  is the 

characteristic list. 
q_isalinked(?E1, ?E2) - -  ask if E1 and E2 are is-a related, i.e., if E1 and E2 are 

within the same is-a hierarchy. 

I n s t a n c e  P r e d i c a t e s  

Once an enti ty 9r a relationship type is specified, its instances can be added, 
modified or deleted. The following predicates beginning with a_ are used to assert 
new instances and details'of existing instances, either ent i ty or relationship instances. 

a_i(+T, - I )  - -  assert an instance of T, which can only be an entity. 
a_v(+I, +AV)  w assert an at tr ibute-value pair for the instance I which can be 

an enti ty or a relationship. An example is: a_v(I, [name, torn]). I should 
be already instemtiated. No a t t r ibute  values can be given to uninstantiated 
instances. 

a_re(+RI, +EIRoleLis t )  - -  assert participation of ent i ty instances with given roles 
in the relationship instance. 

The following predicates beginning with d_ are used to delete existing instances 
or their details. 

d_i(+I) - -  delete the instance I, which can be an enti ty or a relationship. 
d_v(+I, +A) - -  delete an at t r ibute  value of an instance. 

The  following three basic predicates beginning with q_ are used to retrieve in- 
stances of entities or relationships. 

q_i(?T, ?I)  - -  with at least one argument  instantiated. 
q_v(+I, ?A, ?V) - -  confirm that  a t t r ibute  A of I has value V. 
q_re(+RI, ?EIRoleList)  - -  confirm tha t  R I  involves EIs  with the s ta ted roles, 

e.g., q_re(R,[[Pl, father],[P2,m.other]]) queries ff P1 is a father and P2 is a 
mothe r  in the relationship instance R. 

More complex queries are formed by combining these basic predicates with other 
Prolog predicates. These will generally involve comparison operators and list ma- 
nipulations. 

ER Integrities 
The EB. model has a set of  inherent integrity constraints, which are automatical ly 

mainta ined b y  this logic system. The specific constraints are as follows. 

�9 Ent i ty  and  relationship names are unique. This is maintained by a_e and a_r 
predicates.  
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�9 The a_r predicate checks that  multiple roles of an entity in a relationship are 
named differently. 

�9 Attribute names are unique within an entity, a relationship, and an is-a hierarchy. 
�9 The a_v predicate checks that  key values are not duplicated. 
�9 A relationship instance cannot exist without the existence of the involved entity 

instances. The predicates that  maintain this integrity are a_re and d_i. 
�9 A relationship type cannot exist if the involved entity types do not exist. The 

predicates to maintain this constraint are a_r (asserting a relationship type) and 
d_t (deleting a type). 

�9 All instances can exist only if the type exists. This is maintained by the a_i 

(asserting an instance) and d_t (deleting a type) predicates. 
�9 All subtype instances must exist in the supertype. The a_i and d_i predicates 

ensure this. 
�9 Cardinality constrains an entity instance to participate a minimum and maximum 

n-tuber of times in a relationship. The predicates for this constraint are a_i, a_re 
and d_i. 

These predicates for ERLOG have been implemented with Arity Prolog on the 
microcomputer. Implementat ion details are given in [8]. The source codes, together 
with the help facilities, take less than 60K of disk space. 

3 An ER Database  Language KQL 

One ER language, the knowledge level query language (KQL), is now defined 
based on ERLOG. The user-friendliness of KQL retrievals has been empirically 
tested against the standard relational language SQL [91. The results showed that  
KQL users were 38% more accurate than SQL users. Learning time needed for KQL 
was also much shorter than that  for SQL. 

Semantic de6nition of KQL is syntax driven. Every syntactic construct  has a 
semantic correspondence. The main features of KQL include: a high-level knowl- 
edge level user-database interaction with little requirement for data  structures, is-a 
inheritance, automatic  inheritance of attributes and relationships, full preservation 
of entity identity, and an English-like syntax. 

The syntax is given in extended BNF. A string within quotes denotes the  string 
itself. Others without quotes will be defined by further EBNF rules. Any construct 
within { } can be repeated 0 or more times. Any construct within [] is optional. 
In some cases, the subscribed notation x l , x 2 , . . .  , x ,  is used in place of the  { and 
} notation. This is to enable references to particular x's. The semantics of a KQL 
command is defined based on ERLOG. Let the semantics of a KQL term K be 
denoted by S ( K ) .  

The following basic terms are defined first. 
�9 name: this is a particular string that  sta~. s with a letter, consists of letters and 

digits, and can be of any length, depending on the machine implementation.  
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�9 enti ty-type-name: this is the name of an enti ty type. For simplicity, we may use 
e l ,  e 2 , . . ,  in place of ent i ty- type-namel,  entity-type-name2, . . . .  The lowercase 
letter e is used instead of the more common capital letter to avoid confusion 
with Prolog's naming of variables. 

�9 relationship-type-name: this is the name of a relationship type. For simplicity, 
we may use r in place of relationship-type-name. 

�9 type-name: this is either an ent i ty-type-name or a relationship-type-name. 

�9 at tr ibute-name: this is the name of an at tr ibute,  which can belong to an enti ty 
or a relationship. For simplicity, we may use a in place of at t r ibute-name. 

�9 datatype-name:  this is the name of a data type.  For simplicity, we may use d in 
place of datatype-name.  

�9 role-name: this is a name to specify the role tha t  an enti ty plays in a relationship. 
It is optional and used only in cases where the same entity type has multiple 
roles in a relationship. 

�9 instance-identifier: this is a variable used to denote a particular i.nstance of a 
particular enti ty or relationship type. A variable is a name. For simplicity, we 
may use I in place of instance-identifier. 

�9 attribute-value: this refers to the value of an a t t r ibute  of an instance. The BNF 
syntax is attribute-value ::= instance-identifier a t t r ibute :name.  For simplicity, 
we may use avl ,  a v 2 , . . ,  in place of attribute-value1, attribute-value2, . . . .  

�9 value: this is a value, e.g., an integer, a string, an attribute-value, or an expression 
tha t  returns a value. For simplicity, we may use V l , V 2 , . . .  in place of value1, 
v a l u e 2 ,  . . . .  

In general , a KQL command is defined as: 
KqL ::= model-command " ." I instance-command .... 

M o d e l  C o m m a n d s  

A model-command is used to change the ER model. 
model-command ::= new-entity-type [ new-relationship-type [ new-isa [ 

delete-type I delete-attribute I add-attribute 

An enti ty type has a name and 0, 1 or more attr ibutes.  Each at t r ibute  is as- 
sociated with a datatype.  An entity may have a key tha t  consists of one or more 
at tr ibutes.  A key is not necessary as system surrogates will be generated to keep 
track of the instances. 
new-entity-type : :="NEW ENTITY" e "," ["ATTRIBUTE:DATATYPE"al" :"dl, 

a2" :"d2 . . . . .  a . r , " :"d~]  ["KEY" a k l ,  ak2 . . . . .  a n ]  

The meaning of this command, writ ten as S ( n e w  - e n t i t y  - t ype) ,  is: 
a _ e ( e ) ,  a _ a ( e , [ a l , d l ] ) ,  a _ a ( e , [ a 2 , d 2 ] )  . . . .  , a . . a ( e , [ a ~ , d ~ ] ) ,  

a_key  ( e ,  [ a k l ,  ak2 . . . . .  akin ] ) .  

The key at t r ibutes  a~l, ak2,. �9 �9 ak,~ can be found in al ,  a 2 , . . . ,  a,,. When rn > 1, 
the key is a composite key. Where there are no keys or no attr ibutes,  the appropriate 
predicates (a_key or a_a) will be omitted.  

For example, the following KQL command to create a new enti ty type supplier 
NEW ENTITY supplier, ATTRIBUTE :DATATYPE name : string, id: string, KEY id. 

has the following semantics: 
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a_e(supplier), a_a(supplier, [name,strlng]), a_a(supplier, [id,strin El) , 
a_key (supplier, id). 

A relationship has zero or more attr ibutes.  It must have at least two enti ty 
types, not necessarily distinct. If the enti ty types are not distinct, then their roles 
must be. A new relationship type is defined by the following command.  

new-relationship-type ::= "NEW ~EIATIONSHIP" r 
["ATI~IBUTE:DATATYPE" a1":"d] ,a2": "d2 ..... a.":"d.] 
"ENTITY:ROLE: CARD" el" : "role-name!" : "card I ", " e2" : "role-name2" : "card2 ", " 

II l' " �9 , e. : "role-name." : "card. 
card ::ffi "[" lower-degree "," upper-degree "] " 
lower-degree ::= digit {digit } 
upper-degree ::= diEit {digit } I "*" 

digit : := ' ,o , , I , , t . l ' ,2" l"3"l"4"l"s"l"6"l"7"l"8" 1"9" 
S(new-relationship-type)= a_r(r, [[e] ,role-name,, cardl], [e2 ,role-name2, card2], 

.... [e., role-name., card.] ] ), a_a (r, [al, dl] ), a_a (r, [a2, d2] ), 

.... a_a(r, [a. ,d"] ) 

The definkion of is-a relationship requires the superentity and the list of suben- 

tities. In addition, the properties (part.ial, total, disjoint, overlap) of the is-a rela- 
tionship can be specified. 

new-isa: := "NEW" "ISA" "SUPERF2~ITY:" el, 
"SUBENTITY:" e2 ,e3, �9 �9 - ,en, "PROPERTY: "isa-properties 

isa-properties::ffi "total" i "partial" I "disjoint" I "overlap" [ "total" "," 
,,disjoint,, I ,,total,, ,,,,, ,,overlap,, I -partial .... ,, 
"disjoint" I "partial" "," "overlap" 

S (new-isa) =a-isa(el, [e2, e3,. �9 e.], lisa-properties] ) 

The last three model commands are described below. 

delete-type : : = "DR-r wrE TYPE" type-name 
type-name: := entity-type-name I relationshlp-type-name 
S (delete-type) = d_t (type-name). 
delete-attribute: := "D~LETE ATTRIBUTE" attribute-name "OF" type-name 
S (delete-attribute)ffi d_zf(type-name, attribute-name). 
add-attribute: :- "ADD ATTRIBUTE" attribute-name ": " datatype-name 

"TO" type-name 
S(add-attribute) ffi a_a(type-name, [attribute-name, datatype-name]). 

I n s t a n c e  Commands 

Instance commands  are used to change or retrieve the instances of the  ent i ty  and 
relationship types. The commands can add new instances, delete existing instances, 
modify the a t t r ibute  values, or retrieve the instances and values. A single command  
is allowed to do all these. 

instance-command: :ffi instance-clause database-action-clause 
[result-action-clause] [where-clause] 

The result-action-clause performs further actions on the retrieved results, such 
as sorting, renaming, subtotals, or other report instructions. The result-action- 
clause is not  fur ther  discussed since it is more of a report formatt ing than  database 
operations. 
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Since ERLOG returns one set of answers at a time whereas a KQL instance 
command applies to all the possible sets of answers. Hence, the semantics of KQL 
must enclose the predicates of ERLOG with suitable Prolog structures to return all 
the possible results. 

S (instance-command) = S (instance-clause), S (where-clause), 
S(database-action-clause), fail. 

S (instance-command). 

The syntax and meaning of instance-clause are as follows: 

i n s t ance -c lause :  :=instance {, instance} 
ins tance  : : = i n s t a n c e - i d e n t i f i e r  "IS" type-name 
S ( ins tance-c lause)  =S ( :~nstancel ) ,  S (instance2) . . . . .  S ( i n s t a n c e . )  
S (instance) =q_i (type-name, instance-identif ier) 

The database-action-clause can contain any one, two, three or all of the four 

clauses: insert-clause, delete-clause, change-clause and select-clause. The insert- 
clause adds new instances, the delete-clause deletes chosen instances, the change- 
clause changes the attribute values of chosen instances, and the select-clause shows 
the attribute values (with possible computations) of chosen instances. The instances 
are those specified in the instance-clause which meet the conditions specified in the 
where-clause. 

database-action-clause: := insert-clause delete-clause change-clause select- 
clauseldelete-clause change-clause select-clause I 
chanEe-clause select-clause Iselect-clause 

S (database-act ion-clause) =S ( insert-clause), S (delet e-clause), 
S (change-clause), S (select-clause). 

Insert-clause ::= "INSERT" new-instance {, new-instance} 
new-instance : := new-entity-lnstance I new-relationship-instance 
new-entity-instance ::= e "(" I ")" 
new-relationship-instance : := r" ("If ,~2 [role2], I3 [roles] ..... In [rolen] ")" 

where n is one more than the degree of the relationship r. 

S (ins err-clause) =S (new-instance I ), S (new-inst ante2 ) ..... S (new-inst ancen ) 
S(new-entity-instance) = a_i(entity-type-name, I), 

where I will not have been instantiated before, but the predicate will instantiate I. 

S (new-re la t ionsh ip - ins tance )=a_ i ( r ,  Il  ) ,  a_re (I1, [ [Is , r o l e s ] ,  [I3 ,role3] . . . .  , 
[I,, rolen] ] ) 

Again, I i  is uninstant ia ted before. A new relationship instance involves existing 
enti ty instances. These instances are specified in the instance-clause and conditioned 
in the where-clause. The at tr ibutes of the new instances are added using the change- 
clause. 

delete-clause::= "DELETE" Ix ,, ,, I2"," ..."," In 
S(delete-clause)= d_i(Ii), d-i(I2) ..... d_i(In). 
chanEe-clauae::= "CHANGE" Ii al "TO" v] "," I2 a2 "TO" vs ","..."," In a, 

"TO" v .  
S(change-clause)=Vl is Vl, a-v(Ii, al, VI), V2 is V2, a_v(I2, a2, V2) ..... 

V. is  Vn, a . .v(I , ,  an, Vn) 
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The Prolog is predicate is used here to evaluate the v's, which can be expressions, and 
instantiate the results of the V's. 

select-clause: := "SELECT" select-item {"," select-item } 
select-item: := I a ] I * I expression 
S(select-clause)= S(select-item l) , S(select-item2) .... , S(select-itemn) 

There are three cases for the semantics of the select-items. The first case displays 
an a t t r ibute  value of an instance: S(I  a) = q_v(I,a,V), write(V). The  second 
case displays all the immediate a t t r ibute  values of an instance: S( I , )  = S(I  A1), 
S(I  A2), ..., S(I  A,) where A's are from q_i(T, I), q_a(T, A). The third case displays: 
S(expression) = V /s expression, write(V). This will be further described when 
expression is defined. 

where-clause: := "WHERE" condition-list 
condition-list: := condition-andlist ["OR" condition-list] 
condition-andlist: := condition ["," condition-andlist] 
condition: := NOT (condition-list) I relationship-existence -condition I 

expression-comparison-condition I membership-conditionl exists-condition I 
isa-relationship-condition I entity-equality-condition I combination- 
relationship-condition-1 I combination-relationship-condition-2 

S (where-clause) = S (condition-list) 
S (condition-andlist OR condition-list) =S (condition-andlist) IS (condition-list) 
S(condition, condition-andlist)= S(conditlon), S(condition-andlist) 
S (NOT (condition-list)) = not (S (condition-list)) 

relationship-existence-condition: :=Ii ["4" role-namei ") "] 12 [ "( " 
role-names ")"] Is 

S (relationship-existence-condition) =q_re (~2, [[II, role-namel], [Is, role-name2] ] ) 

As required in the q_re predicate, I2 must  be a relationship instance while Ii  and 
/3 must be ent i ty  instances. 

expression-comparison-condition: := expression relational-operator expression 
expression: := [sign] term { additional-operator term} 
term: := factor {multiplication-operator factor} 
factor=i alnumberIstringIlistl" ("expression")"lstatistical-expression 
relational-operator::= "=" I "<>" I "<" I "<=" l ">" I ">--" 
addition-operator: := "+" I "-" 
multiplication-operator: := "*" l "/" 

S(expressionl relational-operator expression2)= VI is expressionl, 
V2 is expression2, comp(relational-operator, %'1, Y2) 

where/s and comp are Prolog predicates. 

statistical-operation: := instance-statistical-operation I attribute- 
statistical-operation 

instance-statistical-operation::= "COUNT" [ "UNIQUE" ] "(" i [ "FOR EACH" 
grouping-values ] ")" 

attribute-statistical-operation: := statistical-operator [ "UNIQUE" ] "(" 
I a ["FOR EACH" grouping-values]) 

statistical-operator: := COUNT [ MAX ] MIN I AVG [ SUM 
grouping-values  : : -  grouping-value {, grouping-values} 
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grouping-value: := I I I a 

Statistical operations add considerable complexity to the direct correspondence 
between KQL terms and ERLOG predicates. The most obvious effect is that a KQL 
command cannot be transformed into Prolog's fail loop to retrieve all answers. Now, 
all the sets of instances satisfying all conditions except the statistical conditions must 
be retrieved and stored. The statistical operations are then applied to the sets of 
instances. There are also case~ where the statistical conditions cannot be specified 
with simple Prolog predicates. One such case is cyclic statistical condition, e.g., 
suppliers supply parts, the count of suppliers for each part > 3, and the count of 
parts for each supplier > 2. Here, the query wants the suppliers who supply at least 
3 parts that are supplied by at least 2 of these suppliers, without counting other 
suppliers who are not supplying at least 3 of these parts. The answer requires a 
cyclical evaluation until no more changes occur to the selected sets of suppliers and 
parts. In general, KQL allows for any number of these cycles involving any number 
of entities and relationships. The full treatment of this is left for another occasion. 

membership-condition: := expression "IN" list 
list : := " [" expression {, expression} "] " 
list : := "(" instance-clause "SF-I.~CT" expression [where-clause] ")" 
S(expression IN [expressionl ,expression2 ..... expressionn])=V is expression, 

VI is expressionl, V2 is expression2, ..., Vn is expression., 
member(V, IV1, V2 ..... V~]) 

where m e m b e r  is a Prolog predicate. 

S(expression IN (instance-clause "S~.T.F.CT" expression1 where-clause))= 
V is expression, [! S(instance-clause), S(where-clause), Vl is 
expressionl, V == Vl !] 

The construct [! ... !] is called the snip. When backtracking encounters a snip, 
the goals within the snip are skipped. This is to refine the results. Otherwise if 
the subquery has two values that equal V, then the goals will be true twice with 
resultant duplication of results. 

exists-condition: := "EXISTS" "(" instance-clause [where-clause ] ")" 
S(exists-condition)= [! S(instance-clause), S(where-clause) !] 
isa-relationship-condition: := I "ISA" e 
S(I ISA e)= q_i(T,I), q_isalinked(T,e) 
entity-equality-condition: := I 1 "=" I2 
S(II = I2) = II =I I2 

combination-relationship-condition-l: :=I1 ["("role-name")"] r"-RELATED" I2 
S (combination-relationship-condition-I) =q_i (r, I), q_re (I, [ [I 1, role-name], 

[ I=,_]]) 
This is a condition t h a t / 1  a n d / 2  are related through the relationship r. The 

particular instance of r that relates these two entity instances is not important in 
the query. 

combination-relationship-condition-2: := Ii ["(" role-name ")" ] r"-RELATED" 
number-spec e 

number-spec: := ALL I NO I [relational-operator] number 
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Depending on the choice of number-spec, the semantics of the three choices are, 
respectively, 

1. not ( q_i( e, I), not ( q_i(r, I2), q_re( I2, [[I1, rolename], [I, _]])) 
2. not (q_i(r, I), q_re( I, [I1, rolename]]) ) 
3. seto f ( I , ( q_i ( e, I), q_i( r, Is), q_re(I=, [[Ii, rolermme] , [I, _]])), I set ), 

count( I set, N),  comp( relational - operator, N, number) 
In English, this condition says that 11 is related through the relationship r to 

all of the instances of entity type e, none of the instances of entity type e, a certain 
number of instances of entity type e, or greater than/less than/not  equal to a certain 
number of instances of entity type e. 

4 C o n c l u s i o n  

It is illustrated how the abstraction level of Prolog can be raised from its present 
physical/logical levels to the conceptual level. The result, ERLOG, is then suitable 
for being used as a foundation to directly define database languages that also belong 
to the conceptual level. The advantages are that conceptual level information need 
no longer be transformed into logical and physical level information, and the implicit 
integrities at the conceptual level need not be tediously and repeatedly explicated. 
This allows us to focus on conceptual details without digressing into lower levels. As 
illustration, a database language designed for the entity relationship model is defined 
based on ERLOG. This demonstrates a method that can be used to formally define 
and compare many ER languages, including graphical ER languages. 

An important distinction for ERLOG, as compared to other ER calculuses [10-13], 
other ER languages[14,151, or other object-based logic systems[ 16'lrl, is that the three 
main tasks of database model specification, update and retrieval are aLl covered at 
the conceptuaJ level. ERLOG and KQL cover definition, modification and query of 
the ER model, as well as insertion, modification and retrieval of entity instances and 
relationship instances. The inclusion of updates has meant the inclusion of automatic 
maintenance of ER integrities into the system. Other differentiating features include 
the implicit semantics of inheritance of attributes as well as relationships, the use 
of system generated surrogates by the system to identify entity and relationship 
instances, and the possibility of adding, deleting or modifying entity or relationship 
types even after the instances have been added. ERLOG also serves as an executable 
version of the Eft model. Any particular ER model can be easily defined, and the 
data can be added and retrieved for verification of the model design. 
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