
Vol.10 No.2 J. of C o m p u t . Sci. & Technol . March 1995

Translational Semantics for a Conceptual
Level Query Language

Hock C. C h a n

Department o/Information Systems and Computer Science, National University of
Singapore, Lower Kent Ridge Road, Singapore 0511

(Email: chanhcOiscs.nus.sg)
Received June 1, 1993; revised November 5, 1993.

Abstract

A conceptual level database language for the entity relationship (ER) model
implicitly contains integrities basic to ER concepts and special retrieval seman-
tics for inheritances of attributes and relationships. Prolog, which belongs to
the logical and physical level, cannot be used as a foundation to directly define
the database language. It is shown how Prolog can be enhanced to under-
stand the concepts of entities, relationships, attributes and is-a relationships.
The enhanced Prolog is then used as a foundation to define the semantics of a
database query language for the ER model. The three basic functions of model
specification, updates and retrievals are defined.

Keywords: Conceptual level, query language, semantics, logic, entity-
relationship model, abstraction level, ER calculus.

1 I n t r o d u c t i o n

The entity-relationship (ER) model has become widely used for database design,
accompanied with many proposed query languages. It is i m p o r t a ~ to provide a
precise definition of ER language~ for the purposes of comparison and implemen-
tation. A formal logic-based definition of ER languages is, however, quite elusive
because the semantics is situational. It depends on the actual data values and the
constraints existing in the database. Consider the case where the ER statement
is to delete a supplier. The meaning can be simply to delete that supplier if that
supplier is not linked to other entities. If the supplier is linked to other entities, then
these linkages (relationship instances) will also have to be deleted. The situation
can be complicated by constraints on the cardinalities of relationships. For example,
if every part must be supplied by at least one supplier, and ~t the time the supplier
is to be deleted, then the parts that are supplied only by him must also be deleted.
This can, in turn, lead to other deletions.

It is advantageous to use Prolog as the foundation to define ER languages. Since
implementations of Prolog are widely available, Prolog-based definitions of ER lan-
guages can be easily checked and tested. However, Prolog belongs to the physical
and logical level of abstraction, without any understanding of entities and relation-
ships. In contrast, the ER model belongs to the conceptual level where there is no

176 J. of Comput. Sci. & Technol. Vol. 10

need to specify logical level details such as foreign keys for relationshipsll,2]. How
the entity instances are traced to their relationship instances should be left to the
particular implementation - - whether by keys, pointers or surrogates. If the Prolog
foundation uses keys for the relationship, this will bound the ER language to the use
of keys as well, which is an unnecessary restriction. Hence, certain additions must
be made to Prolog to allow the direct definition of conceptual level information.

The enhancement of Prolog is described in Section 2. Section 3 illustrates the
definition of an ER language based on the enhanced Prolog. Section 4 summarizes
the advantages of this approach of language definition.

2 Conceptual Level for Prolog

2.1 A b s t r a c t i o n L e v e l s

Abstraction levels axe used to focus on the desired level of information. For
example, users of information systems will not want to know how the systems are
implemented, what are the various modules and the data structures normally. On
the other hand, maintenance programmers will need to know the modules and exact
codes. Three levels of abstraction are commonly used in information systems and
database research. These are the physical, logical and conceptual levels [1'3'4] as
shown in Fig.1.

Conceptual Level
Details of the Real World

Logical Level
Details of the Logical Data

Physical Level
Details of Computer Memory and Storage

Fig.1. Abstraction levels.

The physical level is the closest to the computer, dealing with computer mem-
ory and storage. Its information is about data structures in the computer memory,
the physical pointers, indexes and files. Prolog's need to distinguish the order of
arguments is an example. If a predicate has ten arguments, then the user must re-
member the correct order. Some Prolog systems also allow access to other physical
level details such as hash tables and B-trees. The logical level has information about
logical data. A good example is the relational model {2,sl where the physical imple-
mentation of relational tables is of no significance (except for runtime efficiency).
Linkages among data are made logically through keys and foreign keys instead of
physical pointers. Prolog is also good at the logical level. In fact, some Prolog pred-
icates are very similar to relations. For example, if supplier and part information is
stored in the following predicate structures:

supplier(name, sno, address, industry)

No. 2 Translational Semantics for a Conceptual Level Query Language 177

part(name, pno, description)
supplier_part(sno, pno, price)

then retrieval of the suppliers of, say, tyres can be done with the following predicates:

part(tyre, P, _), supplier_part(S, P, _), supplier(Name, S, _, _).

The above example illustrates the close similarity between Prolog and the rela-
tional model. Relationships are defined based on the collection of the keys of the
entities. Retrieval is done using the same Prolog variable in two predicates to per-
form the relational join. This is similar to the normal relational joins that have to
be specified in relational query languages such as SQL or QUEL.

The conceptual level's information is about objects (or entities) in the real world.
Relationships are not specified based on keys and foreign keys, but are naturally
specified between entities, such as John marries Jane or Company employs employ-
ees. More advanced concepts are possible at the conceptual level. These include
is-a relationships,, aggregation, and relationship among relationships. At the con-
ceptual level, attribute and relationship inheritances are implicit. It is possible to
say, e.g., employee's address instead of the address of persons who are employees,
assuming that person is the super-entity of employee. At the conceptual level, in-
tegrity maintenance regarding entities and relationships should be automatic. For
example, deleting an entity should lead to deletion of its relationships. This level of
abstraction is not present in Prolog. Prolog does not understand entities, relation-
ships, or inheritance. A programmer has to convert conceptual level information
into logical and/or physical level information and code that in Prolog. Integrity
rules that are implicit in the conceptual level information must be explicated and
separately coded.

Fig.1 also indicates with the bigger rectangles that the lower levels contain more
details than the higher levels. This is so if no information from the higher level is
lost. Then more information about logical keys/foreign keys or physical pointers
and indexes must be added.

2 .2 E n h a n c e d P r o l o g (E R L O G)

The additional predicates needed to make Prolog understand the meaning of
entities and relationships are described below. The resultant product (Prolog plus
these additional predicates), called ERLOG, contains ER knowledge so that it can
maintain ER integrities and perform inheritances automatically. Conceptual infor-
mation can be directly defined based on ERLOG. Furthermore, implicit integrities
at the conceptual level need not be explicated. One characteristic of ERLOG is the
emphasis on atomic facts of the ER model, i.e., the instances, attribute values and
relationships. Unlike other systems, there are no complicated operations whereby,
e.g., a group of instances becomes an attribute value of an instance.

The predicate notation follows that of Prolog. Briefly, a "+" in front of an
argument means an instantiated argument, " - " means an uninstantiated argument,
and "?" means either of them. The descriptions for the predicates show the primary
intention. However, with automatic maintenance of integrities, secondary actions

178 J. of Comput. Sci. & Technol. Vol. 10

may occur. For example, d_i is a predicate to delete an instance. This delete is
the primary intention. Deletion of one (entity or relationship) instance can lead to
deletion of other instances in order to maintain integrity. These secondary actions
are described in the subsection on ER integrities.

M o d e l P r e d i c a t e s

The following predicates are used to define and modify the concepts in an ER
model. These include concepts of entity type, relationship type, enti ty attribute,
relationship attribute, is-a relationship, cardinalities and roles. Predicates to query
the ER model are included so that programmers can ascertain what has been speci-
fied. There are many versions of the ER model [6'7]. The specific concepts of the ER
models that are supported are described in this section.

The following predicates beginning with a_ are used to assert specific ER con-
cepts, such as an entity supplier, a relationship supply, or an at t r ibute qty of rela-
tionship supply.

a_e(+T) - - assert an entity type T, e.g., a_e(supplier).

a_a(+T, +A) - - assert attr ibute A for the type T, which can be an entity or a
relationship, e.g., a_a(supplier, name).

a_key(+T, +KeyList) - - assert the key for the entity T. The key can be com-
posite. This is used to check that no two instances have the same key values.
The relationships are formed by the system using surrogates rather than these
defined keys.

a_r(+RT, +ETRoleCardList) - - assert a relationship type T and a list of partic-
ipating entity types with given roles and given lower and upper caxdinalities.
The cardinalities show the minimum and maximum relationship instances that
the entity instance can have. An example is a_r(supply, [[supplier, supplies,
[0, n]], Oaart, supplied_by, [1, n]]]), which states that a relationship supply exists
between supplier and part. The roles of supplier and part are respectively sup-
plies and supplied_by. A supplier can supply 0 or more parts, while a part must
be supplied by at least 1 supplier.

a_isa(+E1, +EList, +CharList) - - assert an is-a relationship with a set of char-
acteristics in CharList. The characteristics are t (total), p (partial), o (over-
lapping) and d (disjoint). Anis-a relationship cannot be both total and partial,
or both disjoint and overlapping. A total condition means that every instance
of the supertype (El) must appear in at least one of the subtypes (a member
of EList). A partial condition does not impose this restriction. A disjoint con-
dition means that any instance of the supertype cannot be a member of more
than one subtype. On the other hand, an overlapping condition allows that.
An example is a_isa(employee,[full- time, p a r t - time], [d,p]), which states
that employee is the supertype of two subtypes fall-time and part-time. This
is-a relationship is disjoint and partial.

The following predicates beginning with d_ are used to delete parts of the ER
model, such as deleting an entity supplier or an attribute name of entity part.
d_t(+T) - - delete a type T.

No. 2 Translational Semantics for a Conceptual Level Query Language 179

d_a(+T, +A) - - delete an a t t r ibute A tha t belongs to type T.

The following predicates beginning with q_ are used to query the ER model, such
as confirming the existence of enti ty supplier or an a t t r ibute name of enti ty part.
q_e(, ?T) - - query the existence of an enti ty type.
q_r(?T) - - query the existence of a relationship type.
q_a(?T, ?A) - - ask for a type and the a t t r ibutes of that type, including the inherited

attributes.
q_ro(?RT, ?ET, ?Role) - - ask about relationship participation.
q_isa(?Charlist, ?E, ?E2) - - ask if E2 is a subtype of E, where CharLis t is the

characteristic list.
q_isalinked(?E1, ?E2) - - ask if E1 and E2 are is-a related, i.e., if E1 and E2 are

within the same is-a hierarchy.

I n s t a n c e P r e d i c a t e s

Once an enti ty 9r a relationship type is specified, its instances can be added,
modified or deleted. The following predicates beginning with a_ are used to assert
new instances and details'of existing instances, either ent i ty or relationship instances.

a_i(+T, - I) - - assert an instance of T, which can only be an entity.
a_v(+I, +AV) w assert an at tr ibute-value pair for the instance I which can be

an enti ty or a relationship. An example is: a_v(I, [name, torn]). I should
be already instemtiated. No a t t r ibute values can be given to uninstantiated
instances.

a_re(+RI, +EIRoleLis t) - - assert participation of ent i ty instances with given roles
in the relationship instance.

The following predicates beginning with d_ are used to delete existing instances
or their details.

d_i(+I) - - delete the instance I, which can be an enti ty or a relationship.
d_v(+I, +A) - - delete an at t r ibute value of an instance.

The following three basic predicates beginning with q_ are used to retrieve in-
stances of entities or relationships.

q_i(?T, ?I) - - with at least one argument instantiated.
q_v(+I, ?A, ?V) - - confirm that a t t r ibute A of I has value V.
q_re(+RI, ?EIRoleList) - - confirm tha t R I involves EIs with the s ta ted roles,

e.g., q_re(R,[[Pl, father],[P2,m.other]]) queries ff P1 is a father and P2 is a
mothe r in the relationship instance R.

More complex queries are formed by combining these basic predicates with other
Prolog predicates. These will generally involve comparison operators and list ma-
nipulations.

ER Integrities
The EB. model has a set of inherent integrity constraints, which are automatical ly

mainta ined b y this logic system. The specific constraints are as follows.

�9 Ent i ty and relationship names are unique. This is maintained by a_e and a_r
predicates.

180 J. of Comput. Sci. &: Technol. Vol. 10

�9 The a_r predicate checks that multiple roles of an entity in a relationship are
named differently.

�9 Attribute names are unique within an entity, a relationship, and an is-a hierarchy.
�9 The a_v predicate checks that key values are not duplicated.
�9 A relationship instance cannot exist without the existence of the involved entity

instances. The predicates that maintain this integrity are a_re and d_i.
�9 A relationship type cannot exist if the involved entity types do not exist. The

predicates to maintain this constraint are a_r (asserting a relationship type) and
d_t (deleting a type).

�9 All instances can exist only if the type exists. This is maintained by the a_i

(asserting an instance) and d_t (deleting a type) predicates.
�9 All subtype instances must exist in the supertype. The a_i and d_i predicates

ensure this.
�9 Cardinality constrains an entity instance to participate a minimum and maximum

n-tuber of times in a relationship. The predicates for this constraint are a_i, a_re
and d_i.

These predicates for ERLOG have been implemented with Arity Prolog on the
microcomputer. Implementat ion details are given in [8]. The source codes, together
with the help facilities, take less than 60K of disk space.

3 An ER Database Language KQL

One ER language, the knowledge level query language (KQL), is now defined
based on ERLOG. The user-friendliness of KQL retrievals has been empirically
tested against the standard relational language SQL [91. The results showed that
KQL users were 38% more accurate than SQL users. Learning time needed for KQL
was also much shorter than that for SQL.

Semantic de6nition of KQL is syntax driven. Every syntactic construct has a
semantic correspondence. The main features of KQL include: a high-level knowl-
edge level user-database interaction with little requirement for data structures, is-a
inheritance, automatic inheritance of attributes and relationships, full preservation
of entity identity, and an English-like syntax.

The syntax is given in extended BNF. A string within quotes denotes the string
itself. Others without quotes will be defined by further EBNF rules. Any construct
within { } can be repeated 0 or more times. Any construct within [] is optional.
In some cases, the subscribed notation x l , x 2 , . . . , x , is used in place of the { and
} notation. This is to enable references to particular x's. The semantics of a KQL
command is defined based on ERLOG. Let the semantics of a KQL term K be
denoted by S (K) .

The following basic terms are defined first.
�9 name: this is a particular string that sta~. s with a letter, consists of letters and

digits, and can be of any length, depending on the machine implementation.

No. 2 Translational Semantics for a Conceptual Level Query Language 181

�9 enti ty-type-name: this is the name of an enti ty type. For simplicity, we may use
e l , e 2 , . . , in place of ent i ty- type-namel, entity-type-name2, The lowercase
letter e is used instead of the more common capital letter to avoid confusion
with Prolog's naming of variables.

�9 relationship-type-name: this is the name of a relationship type. For simplicity,
we may use r in place of relationship-type-name.

�9 type-name: this is either an ent i ty-type-name or a relationship-type-name.

�9 at tr ibute-name: this is the name of an at tr ibute, which can belong to an enti ty
or a relationship. For simplicity, we may use a in place of at t r ibute-name.

�9 datatype-name: this is the name of a data type. For simplicity, we may use d in
place of datatype-name.

�9 role-name: this is a name to specify the role tha t an enti ty plays in a relationship.
It is optional and used only in cases where the same entity type has multiple
roles in a relationship.

�9 instance-identifier: this is a variable used to denote a particular i.nstance of a
particular enti ty or relationship type. A variable is a name. For simplicity, we
may use I in place of instance-identifier.

�9 attribute-value: this refers to the value of an a t t r ibute of an instance. The BNF
syntax is attribute-value ::= instance-identifier a t t r ibute :name. For simplicity,
we may use avl , a v 2 , . . , in place of attribute-value1, attribute-value2,

�9 value: this is a value, e.g., an integer, a string, an attribute-value, or an expression
tha t returns a value. For simplicity, we may use V l , V 2 , . . . in place of value1,
v a l u e 2 ,

In general , a KQL command is defined as:
KqL ::= model-command " ." I instance-command

M o d e l C o m m a n d s

A model-command is used to change the ER model.
model-command ::= new-entity-type [new-relationship-type [new-isa [

delete-type I delete-attribute I add-attribute

An enti ty type has a name and 0, 1 or more attr ibutes. Each at t r ibute is as-
sociated with a datatype. An entity may have a key tha t consists of one or more
at tr ibutes. A key is not necessary as system surrogates will be generated to keep
track of the instances.
new-entity-type : :="NEW ENTITY" e "," ["ATTRIBUTE:DATATYPE"al" :"dl,

a2" :"d2 a . r , " :"d~] ["KEY" a k l , ak2 a n]

The meaning of this command, writ ten as S (n e w - e n t i t y - t ype) , is:
a _ e (e) , a _ a (e , [a l , d l]) , a _ a (e , [a 2 , d 2]) , a . . a (e , [a ~ , d ~]) ,

a_key (e , [a k l , ak2 akin]) .

The key at t r ibutes a~l, ak2,. �9 �9 ak,~ can be found in al , a 2 , . . . , a,,. When rn > 1,
the key is a composite key. Where there are no keys or no attr ibutes, the appropriate
predicates (a_key or a_a) will be omitted.

For example, the following KQL command to create a new enti ty type supplier
NEW ENTITY supplier, ATTRIBUTE :DATATYPE name : string, id: string, KEY id.

has the following semantics:

][82 J. of Comput. Sci. & Technol. %Iol. 10

a_e(supplier), a_a(supplier, [name,strlng]), a_a(supplier, [id,strin El) ,
a_key (supplier, id).

A relationship has zero or more attr ibutes. It must have at least two enti ty
types, not necessarily distinct. If the enti ty types are not distinct, then their roles
must be. A new relationship type is defined by the following command.

new-relationship-type ::= "NEW ~EIATIONSHIP" r
["ATI~IBUTE:DATATYPE" a1":"d] ,a2": "d2 a.":"d.]
"ENTITY:ROLE: CARD" el" : "role-name!" : "card I ", " e2" : "role-name2" : "card2 ", "

II l' " �9 , e. : "role-name." : "card.
card ::ffi "[" lower-degree "," upper-degree "] "
lower-degree ::= digit {digit }
upper-degree ::= diEit {digit } I "*"

digit : := ' ,o , , I , , t . l ' ,2" l"3"l"4"l"s"l"6"l"7"l"8" 1"9"
S(new-relationship-type)= a_r(r, [[e] ,role-name,, cardl], [e2 ,role-name2, card2],

.... [e., role-name., card.]]), a_a (r, [al, dl]), a_a (r, [a2, d2]),

.... a_a(r, [a. ,d"])

The definkion of is-a relationship requires the superentity and the list of suben-

tities. In addition, the properties (part.ial, total, disjoint, overlap) of the is-a rela-
tionship can be specified.

new-isa: := "NEW" "ISA" "SUPERF2~ITY:" el,
"SUBENTITY:" e2 ,e3, �9 �9 - ,en, "PROPERTY: "isa-properties

isa-properties::ffi "total" i "partial" I "disjoint" I "overlap" ["total" ","
,,disjoint,, I ,,total,, ,,,,, ,,overlap,, I -partial ,,
"disjoint" I "partial" "," "overlap"

S (new-isa) =a-isa(el, [e2, e3,. �9 e.], lisa-properties])

The last three model commands are described below.

delete-type : : = "DR-r wrE TYPE" type-name
type-name: := entity-type-name I relationshlp-type-name
S (delete-type) = d_t (type-name).
delete-attribute: := "D~LETE ATTRIBUTE" attribute-name "OF" type-name
S (delete-attribute)ffi d_zf(type-name, attribute-name).
add-attribute: :- "ADD ATTRIBUTE" attribute-name ": " datatype-name

"TO" type-name
S(add-attribute) ffi a_a(type-name, [attribute-name, datatype-name]).

I n s t a n c e Commands

Instance commands are used to change or retrieve the instances of the ent i ty and
relationship types. The commands can add new instances, delete existing instances,
modify the a t t r ibute values, or retrieve the instances and values. A single command
is allowed to do all these.

instance-command: :ffi instance-clause database-action-clause
[result-action-clause] [where-clause]

The result-action-clause performs further actions on the retrieved results, such
as sorting, renaming, subtotals, or other report instructions. The result-action-
clause is not fur ther discussed since it is more of a report formatt ing than database
operations.

No. 2 Translational Semantics for a Conceptual Level Query Language 183

Since ERLOG returns one set of answers at a time whereas a KQL instance
command applies to all the possible sets of answers. Hence, the semantics of KQL
must enclose the predicates of ERLOG with suitable Prolog structures to return all
the possible results.

S (instance-command) = S (instance-clause), S (where-clause),
S(database-action-clause), fail.

S (instance-command).

The syntax and meaning of instance-clause are as follows:

i n s t ance -c lause : :=instance {, instance}
ins tance : : = i n s t a n c e - i d e n t i f i e r "IS" type-name
S (ins tance-c lause) =S (:~nstancel) , S (instance2) S (i n s t a n c e .)
S (instance) =q_i (type-name, instance-identif ier)

The database-action-clause can contain any one, two, three or all of the four

clauses: insert-clause, delete-clause, change-clause and select-clause. The insert-
clause adds new instances, the delete-clause deletes chosen instances, the change-
clause changes the attribute values of chosen instances, and the select-clause shows
the attribute values (with possible computations) of chosen instances. The instances
are those specified in the instance-clause which meet the conditions specified in the
where-clause.

database-action-clause: := insert-clause delete-clause change-clause select-
clauseldelete-clause change-clause select-clause I
chanEe-clause select-clause Iselect-clause

S (database-act ion-clause) =S (insert-clause), S (delet e-clause),
S (change-clause), S (select-clause).

Insert-clause ::= "INSERT" new-instance {, new-instance}
new-instance : := new-entity-lnstance I new-relationship-instance
new-entity-instance ::= e "(" I ")"
new-relationship-instance : := r" ("If ,~2 [role2], I3 [roles] In [rolen] ")"

where n is one more than the degree of the relationship r.

S (ins err-clause) =S (new-instance I), S (new-inst ante2) S (new-inst ancen)
S(new-entity-instance) = a_i(entity-type-name, I),

where I will not have been instantiated before, but the predicate will instantiate I.

S (new-re la t ionsh ip - ins tance)=a_ i (r , Il) , a_re (I1, [[Is , r o l e s] , [I3 ,role3] ,
[I,, rolen]])

Again, I i is uninstant ia ted before. A new relationship instance involves existing
enti ty instances. These instances are specified in the instance-clause and conditioned
in the where-clause. The at tr ibutes of the new instances are added using the change-
clause.

delete-clause::= "DELETE" Ix ,, ,, I2"," ..."," In
S(delete-clause)= d_i(Ii), d-i(I2) d_i(In).
chanEe-clauae::= "CHANGE" Ii al "TO" v] "," I2 a2 "TO" vs ","..."," In a,

"TO" v .
S(change-clause)=Vl is Vl, a-v(Ii, al, VI), V2 is V2, a_v(I2, a2, V2)

V. is Vn, a . .v(I , , an, Vn)

184 J. of Comput. Sci. & Technol. Vol. 10

The Prolog is predicate is used here to evaluate the v's, which can be expressions, and
instantiate the results of the V's.

select-clause: := "SELECT" select-item {"," select-item }
select-item: := I a] I * I expression
S(select-clause)= S(select-item l) , S(select-item2) , S(select-itemn)

There are three cases for the semantics of the select-items. The first case displays
an a t t r ibute value of an instance: S(I a) = q_v(I,a,V), write(V). The second
case displays all the immediate a t t r ibute values of an instance: S(I ,) = S(I A1),
S(I A2), ..., S(I A,) where A's are from q_i(T, I), q_a(T, A). The third case displays:
S(expression) = V /s expression, write(V). This will be further described when
expression is defined.

where-clause: := "WHERE" condition-list
condition-list: := condition-andlist ["OR" condition-list]
condition-andlist: := condition ["," condition-andlist]
condition: := NOT (condition-list) I relationship-existence -condition I

expression-comparison-condition I membership-conditionl exists-condition I
isa-relationship-condition I entity-equality-condition I combination-
relationship-condition-1 I combination-relationship-condition-2

S (where-clause) = S (condition-list)
S (condition-andlist OR condition-list) =S (condition-andlist) IS (condition-list)
S(condition, condition-andlist)= S(conditlon), S(condition-andlist)
S (NOT (condition-list)) = not (S (condition-list))

relationship-existence-condition: :=Ii ["4" role-namei ") "] 12 ["("
role-names ")"] Is

S (relationship-existence-condition) =q_re (~2, [[II, role-namel], [Is, role-name2]])

As required in the q_re predicate, I2 must be a relationship instance while Ii and
/3 must be ent i ty instances.

expression-comparison-condition: := expression relational-operator expression
expression: := [sign] term { additional-operator term}
term: := factor {multiplication-operator factor}
factor=i alnumberIstringIlistl" ("expression")"lstatistical-expression
relational-operator::= "=" I "<>" I "<" I "<=" l ">" I ">--"
addition-operator: := "+" I "-"
multiplication-operator: := "*" l "/"

S(expressionl relational-operator expression2)= VI is expressionl,
V2 is expression2, comp(relational-operator, %'1, Y2)

where/s and comp are Prolog predicates.

statistical-operation: := instance-statistical-operation I attribute-
statistical-operation

instance-statistical-operation::= "COUNT" ["UNIQUE"] "(" i ["FOR EACH"
grouping-values] ")"

attribute-statistical-operation: := statistical-operator ["UNIQUE"] "("
I a ["FOR EACH" grouping-values])

statistical-operator: := COUNT [MAX] MIN I AVG [SUM
grouping-values : : - grouping-value {, grouping-values}

No. 2 Translational Semantics for a Conceptual Level Query Language 185

grouping-value: := I I I a

Statistical operations add considerable complexity to the direct correspondence
between KQL terms and ERLOG predicates. The most obvious effect is that a KQL
command cannot be transformed into Prolog's fail loop to retrieve all answers. Now,
all the sets of instances satisfying all conditions except the statistical conditions must
be retrieved and stored. The statistical operations are then applied to the sets of
instances. There are also case~ where the statistical conditions cannot be specified
with simple Prolog predicates. One such case is cyclic statistical condition, e.g.,
suppliers supply parts, the count of suppliers for each part > 3, and the count of
parts for each supplier > 2. Here, the query wants the suppliers who supply at least
3 parts that are supplied by at least 2 of these suppliers, without counting other
suppliers who are not supplying at least 3 of these parts. The answer requires a
cyclical evaluation until no more changes occur to the selected sets of suppliers and
parts. In general, KQL allows for any number of these cycles involving any number
of entities and relationships. The full treatment of this is left for another occasion.

membership-condition: := expression "IN" list
list : := " [" expression {, expression} "] "
list : := "(" instance-clause "SF-I.~CT" expression [where-clause] ")"
S(expression IN [expressionl ,expression2 expressionn])=V is expression,

VI is expressionl, V2 is expression2, ..., Vn is expression.,
member(V, IV1, V2 V~])

where m e m b e r is a Prolog predicate.

S(expression IN (instance-clause "S~.T.F.CT" expression1 where-clause))=
V is expression, [! S(instance-clause), S(where-clause), Vl is
expressionl, V == Vl !]

The construct [! ... !] is called the snip. When backtracking encounters a snip,
the goals within the snip are skipped. This is to refine the results. Otherwise if
the subquery has two values that equal V, then the goals will be true twice with
resultant duplication of results.

exists-condition: := "EXISTS" "(" instance-clause [where-clause] ")"
S(exists-condition)= [! S(instance-clause), S(where-clause) !]
isa-relationship-condition: := I "ISA" e
S(I ISA e)= q_i(T,I), q_isalinked(T,e)
entity-equality-condition: := I 1 "=" I2
S(II = I2) = II =I I2

combination-relationship-condition-l: :=I1 ["("role-name")"] r"-RELATED" I2
S (combination-relationship-condition-I) =q_i (r, I), q_re (I, [[I 1, role-name],

[I=,_]])
This is a condition t h a t / 1 a n d / 2 are related through the relationship r. The

particular instance of r that relates these two entity instances is not important in
the query.

combination-relationship-condition-2: := Ii ["(" role-name ")"] r"-RELATED"
number-spec e

number-spec: := ALL I NO I [relational-operator] number

186 J. of Comput. Sci. & Technol. Vol. 10

Depending on the choice of number-spec, the semantics of the three choices are,
respectively,

1. not (q_i(e, I), not (q_i(r, I2), q_re(I2, [[I1, rolename], [I, _]]))
2. not (q_i(r, I), q_re(I, [I1, rolename]]))
3. seto f (I , (q_i (e, I), q_i(r, Is), q_re(I=, [[Ii, rolermme] , [I, _]])), I set),

count(I set, N), comp(relational - operator, N, number)
In English, this condition says that 11 is related through the relationship r to

all of the instances of entity type e, none of the instances of entity type e, a certain
number of instances of entity type e, or greater than/less than/not equal to a certain
number of instances of entity type e.

4 C o n c l u s i o n

It is illustrated how the abstraction level of Prolog can be raised from its present
physical/logical levels to the conceptual level. The result, ERLOG, is then suitable
for being used as a foundation to directly define database languages that also belong
to the conceptual level. The advantages are that conceptual level information need
no longer be transformed into logical and physical level information, and the implicit
integrities at the conceptual level need not be tediously and repeatedly explicated.
This allows us to focus on conceptual details without digressing into lower levels. As
illustration, a database language designed for the entity relationship model is defined
based on ERLOG. This demonstrates a method that can be used to formally define
and compare many ER languages, including graphical ER languages.

An important distinction for ERLOG, as compared to other ER calculuses [10-13],
other ER languages[14,151, or other object-based logic systems[16'lrl, is that the three
main tasks of database model specification, update and retrieval are aLl covered at
the conceptuaJ level. ERLOG and KQL cover definition, modification and query of
the ER model, as well as insertion, modification and retrieval of entity instances and
relationship instances. The inclusion of updates has meant the inclusion of automatic
maintenance of ER integrities into the system. Other differentiating features include
the implicit semantics of inheritance of attributes as well as relationships, the use
of system generated surrogates by the system to identify entity and relationship
instances, and the possibility of adding, deleting or modifying entity or relationship
types even after the instances have been added. ERLOG also serves as an executable
version of the Eft model. Any particular ER model can be easily defined, and the
data can be added and retrieved for verification of the model design.

R e f e r e n c e s

[1] Batinl C, Ceri S, Navathe S B. Conceptual Database Design, An Entity Relationship
Approach. The Benjamln/Cnmmlngs Publishing Co. Inc., USA, 1992.

[2] Vo~sen G. Data Models, Database Languages and DBMSs. Addison-Wesley, UK, 1991.

[3] Elmasri R, Navathe S B. Fundamentals of Database Systems. Addison Wesley, 1989.

No. 2 Translational Semantics for a Conceptual Level Query Language 187

[4] Olive Antoni. Analysis of conceptual and logical models in information systems design
methodologies. In Information Systems Design Methodologies, Olle T W, Sol H G, Tully
C J (eds.), Elsevier Science Publishers, IFIP 1983.

[5] Gray P M D, Kulkarni K G, Paton N W. Object-Oriented Databases, A Semantic Data
Model Approach. Prentice-Hall, USA, 1992.

[6] Chen P P. A preliminary framework for entity-relationship models. In ER Approach to
Information modeling and analysis, Chert P P (ed.), North-Holland, 1981.

[7] Hainaut J L. Entity relationship models: formal specification and comparison. In Entity
Relationship Approach, The Core of Conceptual Modelling, Kangassalo H (ed.), Elsevier
Science Pub. (North-Holland), pp. 433-444, 1991.

[8] Chan H C. An entity-relationship enhanced logic system. In The end Int'l Syrup.
Database Systems for Advanced Applications, Tokyo, April 1991, pp. 401-410.

[9] Chan H C, Wei K K, Siau K L. Conceptual level versus logical level user-database
interaction. In Proc. the 12th Int'l Conf. on Information Systems, DeGross J I, Benbasat
I, DeSantis G, Beath C M (eds.), New York, USA, Dec 16-18, 1991, pp. 29-40.

[101 Atzeni P, Chen P P. Completeness of query languages for the entity relationship model.
In Entity-Relationship Approach to Information Modeling and Analysis, Chen P P(ed.),
North-Holland, 1981. pp. 109-122.

[11] Chen P P. An algebra for a directional binary entity relationship model. In The First
lnt'l Conf. on Data Engineering, 1984,'pp. 37-41.

[12] Parent C, Spaccapietra S. An entity-relationship algebra. In The First lnt'l Conf. on
Data Engineering, 1984, pp. 500-509.

[13] Parent C, Rolins H, Yetongnon K, Spaccapietra S. An ER calculus for the entity-
relationship complex model. In Proc. of the 8th Int'l Conf. on Entity-Relationship Ap-
proach, Lochovsky F H (ed.), 1989, pp. 248-262.

[14] Hohenstein U. Automatic transformation of an entity-relationship query language into
SQL. In Proc. of the 18th Int'l Conf. on Entity-Relationship Approach, 1989, pp. 309-
327.

[15] Subieta K, Missala M. Semantics of query languages for the entity relationship model.
In Entity-Relationship Approach, Spaccapietra S (ed.), Elsevier Sciences Publishers,
1987, pp. 199-216.

[16] Abiteboul S, Grumbach S. COL: A logic-based language for complex objects. In Ad-
vance, in Database Programming Languages, Bancilhon F, Buneman P (eds.), ACM
Press, New York, 1990, pp. 347-374.

[17[BanciJhon F, Khoshatian S. A calculus for complex objects. In Proc. of ACM
SIGACTS/SIGMOD Syrup. on Principles of Database Systems, 1985.

H. C. Chart is with the Department of Information Systems and Computer Science
at the National University of Singapore. He obtained his B.A. and M.A. degrees from
the University of Cambridge, UK, and his Ph.D. degree from the University of British
Columbia, Canada. His research interests include database models, query languages, human-
computer interaction and information systems. He has taught courses in programming, data
structures, database and information systems.

