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T H E  F R A T T I N I  S U B L A T T I C E  

D I S T R I B U T I V E  L A T T I C E  

M. E. ADAMS 

O F  A 

1. Introduction 

The Frattini sublattice of  a lattice L is defined to be the intersection of  all its 
maximal proper sublattices and will be denoted ~ (L). Koh [6] considers the problem 
of  characterisations of lattices L such that ~ ( L ) =  0 and proves that for every lattice L 
there exists a lattice L 1 such that L-~ ~(L1). In this paper we consider the Frattini 
sublattice of a distributive lattice in the category of  distributive lattices. Our ap- 
proach is from a topological point of view. 

We prove that for any distributive lattice L there exists a distributive lattice Lt 
such that L ~ 4~(L1). Further consideration of  the method employed enables us to 
answer questions that developed from work by Koh [6]. 

The topology used is that introduced by H. A. Priestley [7]. We restate the Repre- 
sentation Theorem. 

DEFINITION.  A topological space S with a partial order (<  *) defined on it is 
said to be totally order disconnected provided that for x, y e S  x~:*y there exists dis- 
joint clopen sets X, Ysuch that x e X ,  y s  Y, X'is decreasing and Yis increasing. 

REPRESENTATION THEOREM. Every (0, 1) distributive lattice L has a topo- 
logical dual space L ' which is a compact totally order disconnected space. The elements 
of L are isomorphic with the clopen decreasing sets in L ' .  Conversely every compact 
totally order disconnected space is homeomorphic and "order isomorphic with the dual 
space of some (0, 1) distributive lattice. 

I would like to thank my supervisor Dr. Brian Rotman and the referee for his 
remarks concerning the first draft. 

2. The topology 

Any (0, 1) distributive lattice L has a topological representation as a compact 
totally order disconnected space L ' ,  the elements of L being isomorphic with the ctopen 
decreasing sets in L' .  Thus we may think of L as being the collection of  clopen 
decreasing sets in L ' ,  denoted L, and any proper sublattice L 1 of L as a proper subset 
L 1 c L (sublattices are by definition allowed to be void). We begin by showing that 
for any sublattice L1 of L a separating set S can be uniquely defined over the topo- 
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logical space L ' ,  after which we consider how S behaves for a maximal sublattice. 
We remark that the essence of Lemmas 2 and 3 is contained in Section 9 of J. Hashi- 

moto [5]. However our presentation in terms of the Priestley topology is quite different. 
Because of this and for completeness we give proofs. 

We denote topological duals with a prime symbol. 

DEFINITION 1. (a) For a (0, I) distributive lattice L with a sublattice L~ we may 
associate three sets St ie  {a, fl, y}, viz. 

S, = {x x = (a> for a e L '  and aeA for all AeL1} 
Sa = {x x = ((a)) for a e L '  and aCA for any AeL 1 } 
S~ = {x x = (a, b> where a, be L ', a ~ * b and for any A e L 1 (ae A --+ be A)}. 

Let the separating set be S = S~ ~a Sp u S r 
(b) A subset X of L' is said to be compatible with a separating set S providing (i) 

( a )  e S implies ae  x, (ii) ((a)) e S implies ar X and (iii) (a, b>e S and a e X  implies be X. 

LEMMA 2. Let L be a (0, 1) distributive lattice having a sublattice L i with separat- 

ing set S. Then for a clopen decreasing set A ~ L '  we have A e L  i iff A is compatible with 

S. Thus for sublattices Li,  L z with separating sets Si, $2 respectively, L l r L z implies 

Si r  
Proof. Given a clopen decreasing set A that is not compatible with S then by 

definition A e L  i. 
Conversely suppose A is compatible with S. When there exist x, y e L '  such that 

x e A  and y e L ' - A  we must have x ~ * y .  But then by compatibility x ~  *y implies the 
existence of  BxeLx such that xeBx  and yCBx. For a given y we can form an open 
cover {B~ [ x e A }  for A, which by compactness has a finite subcover B . . . . . .  , Bx.. Set 
By=l,_Jl_<~_< . B~,. Then By~_A, yCBy and ByeL 1 since L1 represents a sublattice. 
But (-'ly~L,-a By=A.  Hence by compactness again we have a finite subset such that 
(")i <~, ,  By, =A.  Since L 1 is a lattice AeLt .  If  A is empty then just choose By such 
that ByeL 1 and yCBy, or if A = L '  then simply cover A with B~eL 1 such that xeB~; 
and then treat as before. 

LEMMA 3. I f  a (0, 1) distributive lattice L has a maximal proper sublattice L 1 with 
separating set S, then S consists of  one element of the form 

(i) (a> where ae L ' is a f ixed  element and a < * x for all x e  L ' 
(ii) ((a)) where ae L' is a f ixed  element and a > * x for all x e  L ' 

o r  

(iii) (a, b> a f i x e d p a i r  a, beL' ,  a:k * b such that (al > * a ~ a l  >_* b) and 

(b I < * b  "-~ b I _ *a ) .  

Conversely a set containing an element of  the form (i), (ii) or (iii) is the separating set 

of  a maximal proper sublattice. 



218 M.E. ADAMS ALGEBRA UNIV. 

Proof. First suppose that L,  is a maximal proper sublattice so that S is not empty. 
Then there are three cases to consider (a)3(a)eS, (13)3((a))eS and (y)3(a,  b)eS. 

(ct) If  (a)eS and a$*x for some xeL', then (x, a)eS since aeA for all AeL~. 
But since x~:*a there is a ctopen decreasing set C such that xeC and aq~C; Cq~L~. 
Consider the sublattice of  L given by {0} u L~. This is a proper extension of  L1 since 
by hypothesis 0~L~. However Cr {0} u L 1 contradicting the maximality o f L  r 

Thus ( a ) e  S implies a is minimum (>  *) and hence {x)  e S implies x = a. 
Suppose in additon to ( a )  there are points ((x)) or (x, y)eS. Then the sublattice 

{0} w L 1 is again a proper extension of L1 that omits L' in the case ((x))eS, or a clopen 
decreasing set C with xe  C and y r  C in the case (x, y)eS. Either of  these cases con- 
tradicts the maximality of L~. 

Hence (a)eS implies a is minimum ( < * )  and ~ =  1. 
(13) If  ((a))eS we can use similar arguments to those in case (~) to show a is a 

maximum ( <  *) and S =  1. 
(7) If there is a pair (a, b)eS then by (ct) and (13) the only other elements of S are 

of the form (x,  y) .  
We begin by showing that ifx~= 1 then the conditions in (iii) are satisfied. Suppose 

there exists a different ordered pair (al, bl) such that al ~*b l ,  al > * a  and bl <*b.  
Then a clopen decreasing set C with a~e C and b 1 ~ C certainly exists. However for 
any such C we have al e C implies ae C, and b~ ~ C implies b~ C. Thus C is incompatible 
with (a,  b) and is not a member of L 1. Thus (as, b~) is compatible with every C e L r  
We deduce the following statement: 

(A) ((a,b)eS^at~*bl^a~>*a^bl  <*b)-*(al, b~)eS. 
Hence we have that if S =  ((a,  b)} for a given pair a, beL ' ,  then a 1 > * a  implies 

al > * b, and b 1 < * b implies bl < * a. 
If  S contains at least two different pairs (a,  b), (a l ,  b~) then for one pair, say 

(al ,  b~), we must have either a~*a 1 or b:~*b r Suppose a~k*a~. Then there is a set 
C~eL such that aeC~ and al~C1. There is also a C2eL such that aeCz and b~Cz. 
Setting C =  6'1 c~ Cz we see that a e C  while a~, bq~C. Thus we consider the lattice L z 
generated by C and L~ and see that (a, b) is not an element of  its separating set. 
However (aleX~bleX) is preserved under finite joins and meets of members of 
{C}uL r Thus (al ,  b l )  is a member of the separating set of L2 contradicting the 
maximality of  L r Similarly for b ~ * b r 

This shows that for a maximal proper sublattice S is of the form described. Next 
suppose a separating set S consists of one element of the form (i), (ii) or (iii). 

If  the set consists of a single pair (a, b) that satisfies condition (iii) then to prove 
the Lemma we must show that for any C~eL that is incompatible with (a,  b) together 
with all CeL  that are compatible with (a, b) we can generate L. 

Let X be the member of  L we elect to generate. For xe  X and ye  L ' - X  we must have 
x ~ *y and by condition (A) if (x ,  y )  :~ (a, b)  then either x ~k * a or y ~ *  b. Thus by the 
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argument given above there is a C s L  such that x~C, y r  but aEC implies bsC. I f  
(x,  y )  = (a,  b)  then we take C1. Hence for a fixed y we may cover X with allowable 
elements none of which contain y. By compactness this has a finite subcover the union 
of  which, say Xy, is suitable generated. Now as y varies we have ("}y~L'-X Xy=X. 
Choose a finite subcover by compactness. Thus Z i s  finitely generated by C~ and allow- 
able members o fL .  I f X i s  0 or L'  then it is automatically compatible with (a, b). 

The only remaining cases are when the given set consists of  a minimum ( <  *) ele- 
ment ( a ) ,  or a maximum ( < * )  element ((a)). These automatically correspond to 
proper maximal sublattices that hold all of  L except a meet irreducible zero or a join 
irreducible unit respectively. This completes the proof  of  Lemma 3. 

We point out that although Lemmas 2 and 3 are in terms of (0, 1) distributive 
lattices this restriction is not essential. For  example if the distributive lattice lacks 
a zero then we add one in order to obtain a topological representation. This is equiv- 
alent to a minimum ( < * )  point m in the space, so that the elements of  the lattice 
are clopen decreasing sets that contain m. Thus separating sets for sublattices in 
Lemma 2 all contain (m) ,  and in Lemma 3 we adapt  by considering only cases 
(ii) and (iii). The case when L consists of a single point must be dealt with separately. 
However it presents no real problem. 

3. The Frattini sublattice 

The Frattini sublattice of  a lattice L is the intersection of  all its proper maximal 
sublattices and is denoted by �9 (L). I f  we let 4~ 2 ( L ) =  qB (~(L))  we can inductively 
define ~ + 1  ( L ) =  ~ ( ~ ' ( L ) )  for successor ordinals a +  1 and 4 ~ ( L ) =  ("la<, ~P(L) for 
limit ordinals. This means that for each lattice L we have a sequence: 

L ~_ ~ ( L )  ~ 4 2 ( L ) . . - ~  ~ ( L )  ~_-.- 

In [6] Koh asks whether there is always an ordinal c~ sflch that ~ ( L )  = 0. This is equiv- 
alent to showing that there exists a lattice with no maximal proper subalgebras, 
which with the aid of Lemma 3 we are now in a position to do. 

We remark that Birkhoff [2] conjectured that every sublattice of  a distributive 
lattice could be extended to a maximal proper sublattice. This problem was solved in 
1951 by Takeuchi [9] with a counter-example, namely the sublattice {(x, 0) I xso)*} of 
the lattice o9" x 2. Hashimoto [5] points out that o9" can be replaced by any distributive 
lattice L that has no proper maximal filter. 

T H E O R E M  4. There is a distributive lattice with no maximal proper sublattices. 
Proof. We consider the chain co + 1 with its interval topology. This is a compact 

totally disconnected space C on which we will impose a ( <  *) relation in the following 
manner. 
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For a proper initial segment I =  {0 ....  , n} of  o9 + 1 with a ( <  *) relation defined on it 
we let Pl , . . . ,  P, be a list of  pairs (a, b) a, be I such that a ~  * b. I f  (a ,  b ) = p j  then set 
x < * n  + j  for x< *a, xeL This gives us a new initial segment R ( I ) =  {0,..., n, n + 1,..., 
n + r} with an extended ( <  *) relation defined on it. 

Let Io = {0, 1 }. I o is trivially ordered under ( <  *). 

In+ t=R( I . )  for O _ < n < c o .  

Since x <_ *y x, yeI ,  implies x_< *y in Im m _> n we have a well defined (_< *) relation on 
o9. We let this, together with x < *o9 for all x < o9, be the (N *) relation on C. 

We must show that ( _  *) is a partial order and is totally order disconnected. 
Since (_< * ) ~  (_<) we have (_<*) is reflexive and anti-symmetric. To see that it is 

transitive consider x<*y and y<*z. We take an induction on n and let n<o9 be the 
induction stage such that zeI,. At this stage we must have x, yeI ,_ 1 and a pair 
(a ,  b)  for which we set z>*k all k<_*a. But y<_*a implies x<_*a by transitivity in 
In_ I and thus x <  *z. I f z  =o9 then x <  *z all x by definition. 

To show that C ( < * )  is totally order disconnected we have two cases. First 
m < * n, in which case {x I x <rn} will serve. Second m) (*n, which implies m, n < co). Say 
m is to be a member of a clopen increasing set. Then {x [ x_> *m or x>_n + 1} will do. 

I f  C(__*) represents the lattice L we take L - { 1 }  as our example. For  suppose 
L - { 1 }  has a maximal sublattice. Our construction together with Lemma 3 implies 
that its separating set must be a pair (a ,  b)  of  type (iii), a, b < co. Choose I~ such that 
a, bEI~. Since a ~ * b  there is celn+~, e>*a and c ~ * b  which contradicts maximality. 

We now prove that every distributive lattice can be obtained as the Frattini 
sublattice of  some other distributive lattice. 

T H E O R E M  5. For a distributive lattice L there is a distributive lattice L 1 such 
that L = @ (Lt). 

Proof. Suppose to begin with that L is a (0, 1) distributive lattice. We build on the 
topological space L '  a new topology that is a mixture of  product topology and com- 
pactification. This new space (with slight modification in certain stated cases) will be 
the topological interpretation of  an L~ satisfying the Theorem. 

Let X={(n,p)[O<_n<o9 and peL'}w{m},  m here may be any symbol, not 
necessarily an integer. 

We define a topology z on X to have an open base given by sets of  the following 
forms: 

(i) {n} x Yfor  given n<o9 and Y c L ' ,  Yopen; 
(ii) {m} t_) U~ ({n} x L ' )  for all n such that N <  n < o9 for some given N. 

We claim that X together with the topology z is compact.  This is because for a given 
open cover X~ of  X one set must have m as an element. I f  this open set is K where 
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K =  {m} ~3 [,.3, ({n} x L ' )  for n >_ N we have X -  K =  [.3, ((n} • L ' )  n < N. But ( X ' -  K) c~ 
n X~ is an open cover of  X - K  with the product topology. This yields a finite sub- 
cover X~, ..., X~,, since the product topology of two compact spaces is compact. Thus 
X~,, ..., X~., Kis  a finite subcover for _Y. Hence (X, z) is compact. 

We now impose a ( < * )  relation on (X, v) by setting 
(o:) rn> *x, x e X - { m ) .  
(t3) (0, P l )  < *  (0, P2) ifpl  < *P2 in L'.  
(y) (O ,p )<*(n ,p ) forO <n<co .  

(5) I f  (0, p~) < * (0, P2) set (0, p~) < * (n, P2). 
Using (a). . .  (5) we show (<_*) is a partial ordering. The reflexivity is trivial. To see 
antisymmetry suppose x, yeX, x< *y and y <  *x. Then since m ~  *x any x e X w e  may 
suppose x=(n l , px )  and y=(nz ,  p2). But x < * y  implies n i=0 .  Similarly y < * x  
implies n2 =0 ,  a contradiction, since this reduces to case (~) which meansp~ <*p2 and 
P2 <*Pl  in L' .  Hence (_< *) is antisymmetric. Transitivity is secured by condition (5) 
and is also straightforward to verify since 0<n l ,  n 2 <co implies (nx, P2) and (n2, Pz)  
are (_< *) incomparable. 

In order to show (X, ~_< *) is the Stone space of a distributive lattice we must show 
that it is totally order disconnected. That is for dl, d2, d 1 zg *d2 we must find a clopen 
increasing set D such that dieD and dzr Since d i z~ *d2 we must have d2 = (nz, 
P2) for some n 2, Pz. We consider the various cases d 1 takes. 

(i) dl=m. 
Then O = (.3, ({n} x L') w {m}, n2 < n < co will serve. 

(ii) di = (ni,  P l ) ,  ni > 0. 
(a) n 1 r Set D = [,.).({n} x L ' )  w {m} where n = n 1 or nz < n < co. 
(b) n~ =n2 and p~ #Pz- Choose a clopen set C in L' such that p leC and 

P2 r C. Then set D = ({n l} x C) ~ {m} w [,3, ({n} x L ' )  where n 2 < n < co. 

(iii) di = (nl,  P l ) ,  nl = 0. 
By definition Pl s  Hence there is a clopen iricreasing set C in L', pi e C and 

P2 r C. Let D = (..), ({n} x C) w (..)k ({k} x L ' )  w {m} where n2 < k < co, 0_< n < co. 
We conclude that (X, v, <*)  is a compact totally order disconnected space and 

proceed to investigate its Frattini sublattice. 
We will show that a non empty clopen decreasing subset C of  X is a member of 

every maximal sublattice iff it is contained in {0} x L'.  There are three cases to con- 

sider. 
(i) C= X. 
By definition x e X  implies x<*m. Hence {((m))} represents a separating set of  a 

maximal sublattice that does not contain X. Thus Xr r ((X, ~, < *)). 
(ii) C ~  {0} x L '  and C#X.  
Since C *  {0} x L'  we must have (hi,  P l )  E C for some n i > 0. However C # X im- 

plies that me C. Consequently C clopen implies (n2, p l )  r C for some n 2 > n 1. But this 
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means (n l, P l ) ~ * ( n 2 , P l ) .  Suppose x>* (n l ,  p~) for some xeX. Then by definition 
x=m and it follows that x > *  (n2, Pl).  Alternatively suppose x <* (n2, Pl) .  Then by 
definition x _ * ( 0 , p l )  and it follows that x<*(nl,p~ ). Thus the pair ((ni,pl),  
(n2, P2)) satisfies condition (iii) of Lemma 3 and is the separating set of a maximal 
sublattice that does not contain C. 

(iii) C ~  {0} x L'. 
Since C # 0  by Lemma 3 any maximal sublattice not containing C must be of the 

type (iii) with separating set {(a, b)}. Suppose (a, b) is such an ordered pair. Then 
with C not a member of this maximal sublattice we have ae C and b r C. Thus a is of 
the form (0,p> for somepeL' .  We show that for br it is not possible for (a, b) to 
satisfy condition (iii) in Lemma 3 and thus Ce 4)((X, z, < *)). Firstly we cannot have 
b = m because < 1, p> > * (0, p> but < 1, p> ~ * m. Secondly we cannot have b = <ni, Pl >, 
h i > 0  since <ni+l,p>>*<O,p> but <nl+l,p>~k*<ni,Pl >. Finally we consider 
b=<O, pl>. <0,p>~*<0, pl> implies P~:*Pl in L', thus by definition < l , p > ~ *  
<0, Pl > although < 1, p> > * <0, p>. 

Thus we have shown, providing there is no xeL' such that x_<*y for all yeL', that 
the Frattini sublattice of (X, z, _<*) is precisely the clopen decreasing sets contained 
in {0} x L' which by definition is homeomorphic and order isomorphic with L'. So let 
L1 be the lattice represented by (X, ~, _<*). In the case that a minimum (<*)  point 
x exists in L' we would have 0 r 4) (Ll) with 0 meet irreducible. But 4) (co x 2) = {<0, 0>} 
(Koh [6]) and 4)(Ll + L 2 ) =  4)(L1)+ 4)(L2) (Koh [6]) where + denotes ordered sum. 
So that in order to obtain L as the Frattini sublattice we let Lx=(Cox 2)+Latt ice 
(x, ~, _<*). 

If  the given distributive lattice L lacks either a zero or a unit we add a meet irre- 
ducible zero or join irreducible unit respectively in order to obtain a topological 
representation which will have a minimum (_<*)point or maximum (<*)  point. If  
only a zero is lacking we let L~ = (X, ~, < *). The fly in the ointment is when L lacks a 
unit. Then we must ensure that {0} x L'r 4) ((X, ~, <*)). To do this we add new ele- 
ments to the (<  *) relation with the following clause: 

(~) (1, mL)<* (rt , mL) 1 <n<o~wheremLeL' andx<_*mL forallxeL'. 
Similar arguments to those used above give that the new (_< *) relation is a partial 

order that is totally order disconnected over (2", ~:). We now want to determine when 
a clopen decreasing set C is in 4)((2, ~, _<*)). If C=X or (0, rnt.>r then the same 

arguments apply. Thus we have two main cases. 
(i) C =  {0} x L'. 

Consider the pair (0, m L ) ~ * ( 1 ,  mz). Then x > * ( 0 ,  mz> implies x > * ( 1 ,  mL) 
by (a) and x < * ( 1 ,  mz) implies x < * ( 0 ,  mz). That is to say {((0, mL), (1, mz))} is 
the separating set of a maximal lattice that omits C. 

(ii) ( I ,  mz)~C, C#Z.  
Since L has no unit m L is a maximum (<*)  that is an accumulation point of 
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L' - {mL}. Thus ( 1, mL)e  C implies (1, p ) ~  C for some p c  L'  - {mL). This reduces to 
the previous case (ii), giving a maximal sublattice that omits C. 
Koh ' s  example q~(o9 x 2 )={ (0 ,  0)} deals with the case when L is a single element. 
This concludes Theorem 5. 

In Theorem 5 the distributive lattice L~ that we construct is such that [Lt[ = ILl +o9. 
Koh ' s  theorem in the category of lattices is such that for infinite L we have [L~I = ILl 
while for 1 < DL[ <co we have [LII <co. (By necessity if ILl = t and L =  ~(L1) we will 
have ILII >_o9.) We will show now that in general the cardinality for finite L cannot be 
reduced. 

T H E O R E M  6. Let L be a finite distributive lattice. The only members of ~ ( L )  to 
have complements are the zero and unit of q~ (L) itself. 

Proof. The unit of  �9 (L) will be the greatest join reducible element of  L and the 
zero of �9 (L) will be the least meet reducible one. We may assume these are the unit 
and zero of  L since ~ ( L I + L 2 ) =  ~ ( L a ) +  ~b(L2). Thus suppose contrary to the hy- 
pothesis of  the Theorem that there exists a finite lattice L with join reducible unit and 
meet reducible zero and an element p such thatpE ~b (L) has a complement. By Lemma 
3 every separating set of  a maximal sublattice is of  the form {(a, b)) .  Since p ' c L '  
and p has a complement L ' - p '  is clopen decreasing. Thus x~p'  and y ~ L ' - p '  im- 
plies x) (*y. Choose maximal ( <  *) x and minimal (_< *) y. Then (x,  y )  is the separat- 
ing set of  a maximal sublattice. But xep',  yCp'. Thus p is not a member  of  this sub- 
lattice. This contradictsp~ ~0(L) and concludes the proof. 

Koh [6] asked whether for all distributive lattices L such that every sublattice can 
be extended to a maximal proper sublattice and cb(L)=0 it follows that L is a chain. 
And whether the only lattices for which every sublattice is the intersection of maximal 
sublattices are chains. The answer to both these questions is negative. By improvising 
on the method of proof  of  Theorem 5 we gain some insight as to how strong the answer 
for distributive lattices is. 

D E F I N I T I O N  7. (i) For an ideal I of  a distributive lattice define the congruence 
Oi by a = b (Ox) iff a v i=  b v i for some isL 

(ii) For  a filter F of  a distributive lattice define the congruence O r by a=b(OF)  iff 

a ^ f = b  ^ f f o r  somef sF .  
(iii) Let I be a relatively complemented ideal of  a distributive lattice L;  then I,, the 

maximal relatively complemented ideal exists. Similarly for F,, the maximal relatively 
complemented filter. Then we define the Boolean Congruence 6)s of L to be Oi., v 6)p,,; 
if either 1,. or F,. is undefined then 6)tin or 6) F., are replaced by the identity congruence. 

T H E O R E M  8. For a given (0, 1) distributive lattice L there is a distributive lattice 

L 1 such that: 
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(i) every sublattice of L i can be extended to a proper maximal one; 
(ii) Li /6 )B~L;  

(iii) �9 (L~) = 0. 
Proof. Suppose that L is a (0, 1) distributive lattice with representation L'.  We 

consider the set X 

X =  {(n,p> ]neco* +co + 1 +09* +co, p e L ' } u { m l } u { m 2 } .  

We give X a topology z defined to have an open base consisting of the sets: 
(i) Z x Y, where Z is an open set of the interval topology on (1 +co*+co+  1 + 

+ co* + co + l)  that does not contain end points, and Y is open in L' ,  
(ii) { m l } u U , ( { n } x L '  ), n > N f o r  some f i x e d N n ,  N e c o * + c o + l + c o * + c o ,  and 

(iii) {m 2 } u ~J, ({n} x L') ,  n < N for some fixed N n, Ne  co* + co + I + 09* + co. 
Since (1 +co*+co+  1 +co*+co+  1) is a compact space we have by similar arguments 
to those in Theorem 7 that (X, x) is compact. 

We now impose another ( < * )  relation on (2,  z). The set c o * + c o + l + c o * + c o  

partitions naturally into P1 +P2 +P3 with P1, P3 = co* + co and Pz = 1. We let: 
(ct) m 1 > *x for alI xE X -  {m x } 

m z < * x for all x e X -  {m2} 

(f~) (O, pl> < * (O, p2>, O~Pz i fpl  < * P2 
(7) (0, p> < * (n, p>, n~P 3 

(0, p> > * (n, p>, nePi 
(8) I f  x < * (0, p )  let x < * (n,  p>, nEP a 

I f x  > * ( 0 ,  p )  l e tx  > * ( n , p ) ,  n~P 1 
By similar arguments to those used before the relation (_< *) is a partial order (tran- 
sivity is secured by two applications of  (8)) that is totally order disconnected over 
(2,  z); and thus (2,  ~, ~< *) represents a distributive lattice Lx. 

Because of (ct) Lx has a join irreducible unit and a meet irreducible zero. Let 
Li = L x - { 0 ,  1}. We begin by showing that every proper sublattice K of  L 1 can be 
extended to a maximal one. We have that K u  {0, 1} is a proper sublattice in L x and an 
extension to a maximal proper sublattice of  Lx gives a maximal proper sublattice of  
L i. Accordingly Lemma 3 gives that the separating set of  K w  {0, 1} contains a pair 
(a ,  b),  with a ~ * b  and neither one equal to rn~ or m 2. We consider the values taken 
by a, b where a =  (n I, p~>, b = (n2, P2) and show that there is an associated maximal 

pair (a l ,  b 1 ).  
(i) a = (n l, P l ) ,  nl~Pa. 
I f  b = (n 2, P2>, n2~P3 and (0, P2 > < * (nt,  Pl ) we set a 1 = a and bl = b. I f  (0, P2> "~ * 

(nt ,pi> or n2=0,  choose n3eP 1 and set al=a,  b i =(n3,p2>. Finally in this case if 
n2eP 1 we leave at = a  and b~ =b .  

(ii) a = ( O ,  Pl>, 0 e P v  
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a :~ * b means (0, Pl> ~ *  (n2, P2) which implies the existence of n3eP3 such that 
(ha, Pi > ~ *  (n2, P2>. We now operate on this pair in the manner of  case (i) to obtain 

al, bl. 
(iii) a= @1, Pl>, nlePi. 
I f  (0, P l )  >- * @2, P2> then n2eP2 or P1. Either way let al = a and b 1 = (n 3, P2 > 

where n3EP i ; n 3 = n  2 if n2ePi, n 3 = n  1 q- 1 otherwise. For  (0, Pi> ~ * (n2, P2> we take 
this pair to case (ii) to find al, bl. 
Thus for (a ,b) ,  a~:*b we obtain a new pair (al, bl>, a i~*bl ,  x > * a  1 implies 
x>*b~ and x<*b~ implies x<*al.  This means that (a l ,  bl> represents a maximal 
proper sublattice in K. Since a~>*a and bx<*b statement (A) of  Lemma 3 shows 
that this is a proper extension of K. 

We now show that L~/Os~-L. In L~ O:m is represented topologically by U,({n} x 
x L ' )  u {me} neP~, a decreasing open set. This is because apart  from m 2 (which as a 
representation of L t is a member of  every clopen decreasing set) any two points are 
incomparable (_<*) while any other x e X  implies x > * y  for some y-Cm 2 in the set. 
Similarly OFm can be represented by the open increasing set U,({n} x L ' ) u { m l } ,  
neP 3. But then the dual space of L1/OrmvOFm is X - ( U , ~ p ~ { n } x L ' u { m 2 }  ) -  
- (~.J ,~  r'3 {n} x L'k)  {m 1 }). This is precisely the closed subset {0} x L'  with the induced 
topology which by definition is homeomorphic and order isomorphic with L'. It  
remains only to show that ~ (L~)=0 .  To see this consider any clopen decreasing set 
CeL 1. By definition rn2eC and mt~C. This implies that for some nl, nzeP ~ or for 
nl, n2eP 3. We have (ni,p>eC and (n2,p>(~C for some fixed peL'.  But then {((ni, 
p>, (n2, p))} is the separating set of a maximal sublattice excluding C. This concludes 
the proof. 

The proof  may be further generalised to give: 

T H E O R E M  9. For every (0, 1) distributive lattice L there is a distributive lattice Lx 
with a congruence 0 on it such that: 

(i) L1/O~-L; 
(ii) Every sublattice is the intersection of rnaximal sublattices. 

We omit the proof  and instead prove the following Theorem which illustrates some of 
the essential ideas. This Theorem may also be deduced from Hashimoto [5]. 

T H E O R E M  10. I f  L is a distributive lattice without zero or unit such that every 
proper ideal is the intersection of maximal proper ideals and dually for filters, then every 
sublattice is the intersection of maximal proper sublattices. 

Proof. Given such an L we add a zero and unit in order to obtain a topological 
dual L '  that has a maximum ( <  *) m 1 and minimum ( <  *) m 2. By Lemma 5 of Adams 
[1] the topology in such a space is such that for a given point x#rnl ,  m2 i f x  is not 
covered ( <  *) by m 1 then xe Closure {x,},~ R where x < * x,  and x,  is covered ( <  *) by 
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m 1. Similarly if x does not cover (_< *) m 2 then xe  Closure {x,}r~ R where xr < *x and 
x, covers ( <  *) mz. 

Suppose L~ is a sublattice of L. Then L 1 u {0, 1} has a separating set in which all 
members are pairs of the form (a,  b). Now consider a clopen decreasing set C e L  
which is not a member of the sublattice. Then for some pair (a, b),  a ~  *b we have 
aeC and br If  a is not covered (<  *) by ml then C clopen implies that there exists 
a~eC, a 1 > *a and a 1 covered ( <  *) by m~. I f a  is covered let al =a .  Similarly for b we 
can find bi <_ *b, b i6C and b i covers (__. *) m 2. However aiEC and b l6C implies 
a 1 :~ *b~ and (a~, bx) represents a maximal sublattice that by statement (A) of Lemma 
3 contains L i but omits C. Since this is true for any C we have every sublattice is the 
intersection of maximal ones. 

A special case of Theorem 10 is the following: 

COROLLARY 11. I f  L is a relatively complemented distributive lattice without 
a zero or unit then every subalgebra is the intersection of the maximal ones that contain it. 

We remark that Sachs [8] has shown that every subalgebra of a Boolean algebra is 
the intersection of maximal subalgebras. 

Finally we give a characterisation of the Frattini sulattice of the direct product 
L 1 • t 2 of two (0, 1) distributive lattices. First a definition: 

DEFINITION 12. For  a (0, 1) distributive lattice L let: 
(i) Do(L) = {x xeL ,  x has a pseudo complement x* and x* =0} 

(ii) D~ ( L ) =  {x x~L, 3x* such that for all y e L  (x v y =  1 ~--~y>_x*) and x* = 1}. 

THEOREM 13. Let L = L l x L  2 where Li is a (0, 1) distributive lattice then 
(x .  x2)  r (L ) iff 

(a) x,e �9 (L,) ~ {0,, I,} i=  I, 2, 
and 

(b) One of the following holds 
(i) xieDo(L,)  i=  1, 2. 
(ii) x ,eD 1 (Li) i= 1, 2. 

Proof. The Stone space of L 1 x L2 is homeomorphic with the sum of  the Stone 
spaces L'I and L~; the ( < * )  ordering being the same within each component. But 
dleL'i, dzeL'2 implies d 1 incompatible (<  *) with dz. Thus an element of L is topolog- 
ically the sum of its components. 

We prove first that (a) and (b) hold if x = (xt, x2)e r (L). 
(a) Suppose xir �9 (Li). Then we must have a maximal sublattice of L~ that omits 

x~. If xi#01, 1 i Lemma 3 implies the existence of a pair (a, b), a, b,eL~. But in L' if 
at > *a or bl < *b we would have at, bieL'i. So (a, b) represents a maximal sublattice 
in L that omits x. 

(b) Consider a point xeA,  some (0, I) distributive lattice, with topological dual 
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x '  _ A ' .  Suppose x '  has a pseudo complement C, then C is a clopen decreasing set and 
C= { y l y s A '  Y~:* k for any k s x'}. This is true because if y > * k  for some k sx '  then 
ye  C implies k s  C, a contradiction, since kex'c~ C. I f  y ~ *  k any ks  x' then we can 
find a clopen increasing set Kk such that ksKk, yCK,. Covering x '  in this manner and 
choosing a finite subcover we have a clopen increasing set K such that x ' ~ K  and 
yCK. But then (A' - K) c~ x '  = 0 implies A' - K _  C, that is y s  C. 

Thus x '  has a pseudo complement iff {y [ysA',yTk *k for any kex'} is clopen and 
the pseudo complement is zero only if this set is empty. So we have: 

(I) x s  Do (A) i f fye A' - x '  implies 3ke x '  such that y > * k. 

Similarly 
(II) xeD1 (A) i f fysx '  implies q k s A ' - x '  such t h a t y <  *k. 
Suppose that neither (b) (i) nor (ii) are true and without loss of  generality let us 

say XlCDo(L O. Then there is yeL' l-x ' l  such that y~z*k for any kex'l. We may 
suppose without contradiction that y is minimal (<_*). 

IfxzCD1 (L2) then there is a maximal ( < * )  zex'z such that z~_*k any ksL'2-x'z. 
But since z is maximal ( <  *), y is minimal ( <  *) and z :~ *y we have (z, y )  represents 
a maximal sublattice. However zsx '  and yCx' implies x is not a member, contra- 
dicting xe~(L) .  Thus xzeDt (Lz). Since (b)(ii) fails XlCD ~ (LI) and there exists a 
maximal (<*)zsx' l ,  zzg*k any keL ' l -X '  1. But again ( z ,y )  represents a maximal 
sublattice that omits x. Contradicting xe  q5 (L). Thus we conclude that xe  ~b (L) im- 

plies (a) and (b). 
Suppose next that (a) and (b) hold. Since L'~ and L~ are not empty we have that 

any maximal sublattice is of type (iii) in Lemma 3. Suppose (a,  b)  represents a maxi- 
mal sublattice that excludes x; that is to say a ~k * b, a e x', and b ~ x'. Since x satisfies (a) 
we must have aeL' 1 and beL'2 or vice versa; suppose aeL'l. Consider when (b) (i) is 
satisfied. We have bCx', beL'z and xz~Do(Lz). But this implies the existence of 
k~x'z such that b > *k. Thus (a,  k )  is in any separating set containing (a,  b),  contra- 
dicting the maximality of the sublattice. Alternately suppose (b)(ii) holds. Then 
as  x'~ necessitates the existence of keL'~ -x'~, k > *a and k ~ * b. Once again we derive 
a new pair (k,  b)  that is in any separating set containing (a,  b) ,  a contradiction. 

Thus for any xeL  that satisfies (a) and (b) we may deduce that x is a member of  

~(L) .  
Theorem 13 is in terms of (0, 1) distributive lattices; no attempts has been made to 

investigate the cases where a zero or unit is missing. We point out however that although 
the situation is less natural it is still manageable from the topological point of view. 
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