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R E S I D U A L L Y  S M A L L  V A R I E T I E S  

WALTER TAYLOR 1) 

In this paper we consider the question of when a variety ~" of  algebras may be 
written as ~r = I S P  K (the class of algebras isomorphic to a subalgebra of  some direct 
product of  members of  K) for some set Kc_ :~'. Of course there always exists a single 
algebra 9.Ie~e" such that ~e-=HSP{9.I} (the class of homomorphic images of  algebras 
in SP{9I}); g[ may be taken as the "//'-free algebra on N O generators, or more generally, 
any algebra which is generic (alias functionally free) in ~" [34] [11]. Moreover G. 
Birkhoff proved [9] that ~e-=ISP K, where K is the class of  subdirectly irreducible 
algebras in ~,". Thus the above question is equivalent to the question of  when the 
isomorphism types of  subdirectly irreducible algebras in ~/" form a set, or equivalently, 
of when there exists an upper bound on the cardinalities of subdirectly irreducible 
algebras in ~e'. If  such an upper bound exists, then we call ~/" residually small. 

An algebra 9/is equationally compact [30] [38] iffit satisfies the following condition: 
if Z is any set of  equations (possibly with uncountably many unknowns) with con- 
stants from 9/, and if every finite subset of Z can be satisfied in 9/, then 2; can be 
simultaneously satisfied in 9I. J. Mycielski asked in [30] which varieties ~e- have the 
property that every algebra in ~/" can be embedded in an equationally compact 
algebra in ~". I proved in [36] that if ~/" has this property, then each subdirectly 
irreducible algebra in ~ is of  power ~< 2" (where rt is N O + the number of  operations 
in the algebras of  ~'~). In our principal result (Theorem 1.2), we prove a strong con- 
verse, namely, that if there exists any upper bound on the size of  subdirectly irre- 
ducible algebras in ~e" (i.e. if  ~e" is residually small), then every algebra in ~e" can be 
embedded in an equationally compact algebra in ~e'. Hence we answer at the same 
time this question of  Mycielski and the question o!( the first paragraph above. As 
a corollary we deduce that the Hanf  number for subdirect irreducibility in a variety 
is (2") +. Theorem 1.2 also gives several refinements of these ideas which we do not 
mention in this introduction. 

In w we make some remarks about injective algebras in a variety ~/'. No deep 
new theorem is proved, but several known results are explained from the viewpoint 
of Theorem 1.2. In particular, we give in Theorem 2.10 a much simplified proof of 
our theorem [36] that the injective hull of an algebra 9Ie~ r has power ~<2 "+ lal (if 
it exists). 

In w 3 we discuss the notion of pure subalgebra, which has played a central r61e 
in the theory of  equational compactness. 9/ is  a pure subalgebra of  ~3 iff 92[_ ~3 and 
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every finite set of equations with constants from 92 which is satisfiable in ~ is satis- 
fiable in 92. We prove the following counterpart of the above mentioned subdirect 
representation theorem of G. Birkhoff (see Theorem 3.6). Every algebra is a pure 
subalgebra of a product of algebras ~ i ( i e l ) ,  where each ~ is pure-irreducible in 
the sense that whenever ~3~ is a pure subdirect product of algebras ~ ,  then for some 
~j  the projection of ~ i  onto ~j is an isomorphism. We then prove a theorem (see 
3.12) similar to Theorem 1.2 (mentioned above), stating that every algebra in ~ is 
a pure subalgebra of an equationally compact algebra if and only if there exists an 
upper bound to the size of pure-irreducible algebras in yr. 

The author wishes to acknowledge helpful conversations with R. McKenzie and 
J. Mycielski and valuable correspondence with P. D. Bacsich and D. Higgs on topics 
related to this paper. B. Banaschewski and E. Nelson have written a shorter proof 
of the main theorem (Theorem 1.2), which will appear elsewhere. 

O. Prdiminafies 

We mainly deal with algebras 92= <A, F,>~s, but in w 3 we also deal with struc- 
tures 1I = <A, R t, F~>t~ r ~ s  having both relations Rt and operations F,. A structure or 
algebra is denoted by a capital German letter, with the corresponding Roman letter 
denoting its universe. 

We assume knowledge of the following elementary notions from first order logic 
(see e.g. [19]): terms; (formal) equations [possibly with constants from an algebra 92], 
written o'~z, where a and z are terms; atomic formulas [possibly with constants from 
a structure 92]; satisfiability in 92 of a set of  equations [or atomic formulas] with 
constants in 92; validity of a set of equations in an algebra 9~. Thus, in particular, 
if 9.I is a structure (or algebra), ao, ..., aneA, and cp is a formula in a vocabulary 
applicable to 9.I whose free variables are among Xo, ..., x~, then 92~ ~o [ao, ..., an] 
means that q~ holds in 92 under the assignment ofai  for xi (O<~i<~n). And 271- q~ means 
that the sentence q~ follows logically from the set X of formulas. 92 is a pure substructure 
of a structure ~ iff 92_~ ~ and every finite set of atomic formulas with constants from 
92 which is satisfiable in ~3 is satisfiable in 92. 

The definition of equational compactness of algebras is stated in the introduction. 
More generally, a structure 1I is atomic-compact iff the following is true: if 2 is a set 
of atomic formulas (possibly involving uncountably many unknowns) with constants 
from 92 such that every finite subset of �9 is satisfiable in 92, then X is simultaneously 
satisfiable in 92. For this and related notions of compactness, consult [30], [38] and 
[36]. In our proofs of 1.2 and 3.12 we use some results of [36]; familiarity with [38] 
will also help the reader. 

A variety is a class of algebras (or structures) (all of the same similarity type) 
closed under the formation of products, subalgebras and homomorphic images. G. 
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Birkhoff proved in 1933 that a class ~ of algebras of the same type is a variety if 
and only if there exists a set 27 of equations such that ~/" consists exactly of  models 
of  • (i.e. algebras 9 / in  which all equations of 27 are valid) [8]. 

An algebra 9Is~ r is an absolute retract in ~e" iff whenever 9~_~ ~s~/ ' ,  there exists 
a homomorphismfre t rac t ing  ~ onto 9~, i.e. f :  ~-~9~ which is the identity on 9/. An 
algebra 9~ ~ Y/" is ~"-injective iff whenever ~ ~ ~ e "  and h: ~ ~9~ is a homomorphism 
there exists a homomorphism f :  ~ extending h. It is not hard to check (see e.g. 
[38]) that every Y/'-injective algebra is an absolute retract in ~/', that every absolute 
retract in ~e" is equationally compact, and that the converse statements are false. 

The notion of injectivity comes from category theory, but we do not state here 
the definition within category theory. The interested reader may consult e.g. [2], [5], 
[12] or [13] and check that the category theorist's definition reduces to ours in the 
category consisting of  all homomorphisms between algebras of  a given variety Y/'. 
The same is true of  the notion of essential extension: ~ is an essential extension of 
9 / i n  this category if and only if 9~_~B and every proper congruence on ~B must 
identify two points of  9/. Since this definition does not mention ~e', we will say simply 
that ~ is an essential extension of 9/. 

We now state some simple propositions about subdirect irreducibility (and some 
related facts about essential extensions) which are essentially well known and will 
be useful in what follows. Recall that an algebra 9~ is subdirectly irreducible iff any 
family of  homomorphisms defined on 9/which separates points of  9.[ must contain 
a homomorphism which is one-to-one. 

DEF INI TI ON 0.1. The algebra 9/ is (a, b)-irreducible iff a#b ,  a, b~A, and 
f ( a )  = f ( b )  whenever f i s  a homomorphism defined on 9 / a n d f i s  not one-to-one. 

PROPOSITION 0.2. 9~ is subdirectly irreducible i f  and only i f  there exist a, b~A, 
a 4: b such that A is (a, b)-irreducible. 

PROPOSITION 0.3. Let 0 be the smallest congruence on the algebra 9.[ containing 
(c, d)sA 2. Then for any (a, b)eA 2, (a, b)sO if  and only i f  there exists a formula 
~o ( . , . , . ,  �9 ) in the first order language of 9~ with the following properties: 

(i) q3 is positive; 
(ii) I- Vyz [3xq~ (x, x, y, z ) ~ y ~ z ]  ; 

(iii) 9/~ ~o [-c, d, a, b]. 
Proof. It is easy to check that the existence of  such a formula ~o implies that 

(a, b)~ 0. Conversely if  (a, b)E 0, then a result of Mal'cev [28] (or see [19, w 10, Theor- 
em 3]) states that there exists a sequence of terms z0, ..., z,_ 1 whose variables are 
among say x o . . . .  , x,, such that if r is 

[ ))] 3Zo.. .z .  Zo~X2 ^ z . ~ x ~  ^ A 3 x ~ . . . x ~ ( z ~ z ~  ^ z~+~ ~ ( e  
i = O  
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(where a is the substitution interchanging Xo and xl), then q~ satisfies condition (iii) 
above. Clearly this q~ also satisfies conditions (i) and (ii). 

COROLLARY 0.4. The algebra 91 is (a, b)-irreducible i f  and only i f  a, beA, 
a # b  and for all c, d~A with c # d  there existz a formula q~ satisfying (i), (ii) and 
(iii) of O.3. 

COROLLARY 0.5. ~ is an essential extension of 91 if  and only i f  91~_~3 and for 
each c, deB with c#d,  there exist a, b~A with a # b  and a formula q~ satisfying (i), 
(ii) and (iii) of  0.3. 

Any ordinal is the set of smaller ordinals; ordinals are denoted a, fl, Y and 6. 
A cardinal is an ordinal equipotent with no smaller ordinal; infinite cardinals are 
denoted m, ft. The cardinality of X (the least ordinal equipotent with X) is denoted 
IXI. 2" is the cardinality of the set of subsets of ft. The least infinite cardinal is N o, 
alias co. If  A is any set, then A cz) denotes the set of pairs {a, b} ___A such that a#b.  
We will use the following theorem of combinatorial set theory due to P. Erdrs [16] 
(or see [17, Theorem 4 (i)]). For a model-theoretic proof, see [33]. 

THEOREM 0.6. (P. Erdrs). I f  [A I > 2 "  and A(2)= I,_)~ where 1~I ~ m ,  then there 
exists D E~  and B ~_ A with IBI > m such that B (2) ~ D. 

COROLLARY 0.7. Let fB be an essential extension of  9i, IBI>2 '~, where m =  
=(No +IAt +the number of  operations of 91). Then there exist a, beA,  a#b ,  and a 

positive formula ~o ( . , . , . ,  �9 ) in the language of 91 such that ~- Vyz [3x9 (x, x, y, z ) ~  
~ y ~ z ]  and such that 

(,) D (91) Eq (x,, a, b): i < j  < co} 

is consistent. (Here Eq(~)  is the set of equations holding in ~3, and D(91) is the 
atomic diagram of 9i, i.e. the set of atomic sentences and negations of atomic sen- 
tences with constants from 91 which hold in 91.) 

Proof. Let A be the set of all 2 = (~0, a, b), where ~o is a positive formula satisfying 
kVyz[3xq~(x, x ,y ,  z)~y---z], a, beA, and a#b.  Let -< be a strict linear ordering 
of B. For each 2=(q~, a, b)sA, we define 

Cx = {{c, d}~S(2):c < d, fB ~ ~o[c, d, a, b]}. 

It follows from Corollary 0.5 that B(2)= U (Cx:2EA}. Since [A] =m,  we may apply 
Theorem 0.6 to see that there exists infinite Cc_B and 2=(r a, b)eA such that 
CC2)___ C~. But clearly ( ,)  is consistent for this q~, a and b. 

The following lemma was known to many people and was perhaps first stated in 
[14]. 
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L E M M A  0.8 Let v be ~ variety, and let ~ ~ze" be an essenttalex tension ofg~. Then 
~3 is an absolute retract in ~/" if and only if no proper extension of ~ in ~" is an essential 
extension of g~. 

C O R O L L A R Y  0.9. I f  9 ~ "  has (within isomorphism) only a set of essential 
extensions which are in ~r then some essential extension of 9~ i~ an absolute retract 
in~/'. 

Proof Follows immediately f rom 0.8, Zorn 's  Lemma and the fact tha t  the union of  
a chain o f  essential extensions of  ~ is an essential extension of  1~. 

The following representat ion theorem from [36] will be used in the p roo f  of  our  
main  Theorem (1.2). 

T H E O R E M  0.10. [36, Corollary 5.8]. Let K be a class of algebras of the same 
type closed under the formation of products and retracts. Let 1t = N  o + the number of 
operations of algebras of K. Then there exists a set K o ~_K such that 

(i) IKol ~<2"; 
(ii) each member of Ko is equationally compact and of power <~ 2"; 

(iii) for each 9~K,  9~ is equationally compact if  and only if 9~ is a retract of a 
product of members of Ko. 

1. Residual smallness 

D E F I N I T I O N  1.t. A variety "//" is residually small if  and only if ~e" satisfies any 
(and hence all) o f  the eleven conditions o f  the following theorem. 

T H E O R E M  1.2.2) Let ~e" be the variety of algebras defined by the set I of equations, 
and let rt = (N O + the number of operations of algebras in ~f'). Then the following 
eleven conditions are equivalent: 

(i) there exists a cardinal m such that every subdirectly irreducible algebra in 
haspower ~<rrt; z) 

(ii) every subdirectly irreducible algebra in ~g" has power <~ 2"; 
(iii) there are <<, 22" non-isomorphic subdirectly irreducible algebras in ~t/'; 
(iv) there exists a set K such that " / / ' _ I S P K ;  
(v) there exists a set K~g"  with IKI~<2" and IAl<~2" for all 9~eK, such that 

~e" = I S P  K; 

(vi) each 9~7b" has (within isomorphism) only a set of essential extensions in zr 

3) Announced in [37]. 
3) Condition (i) of Theorem 1.2 contrasts strongly with the condition that subdirect irreducibility 

be a first order property relative to the variety ~ .  This latter condition has been investigated by K. 
Baker [3l. 
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(vii) i f  ~ e~e" is an essential extension o f T ,  then [BI ~<2n+l'al; 
(viii) every algebra 9 ~ "  is a subalgebra of some equationally compact algebra; 

(ix) every algebra ~ q / "  is a subalgebra of some equationally compact algebra eze'; 
(x) every algebra ~ / "  is a subalgebra of  some absolute retract in "If; 

(xi) for every positive formula go ( . , . , . ,  .) in the language of  ~e" such that 
k Vyz [3xgo (x, x, y, z)~y-"-z], there exists a finite number n such that 

z Vyz  [ 3 x l . . .  x ,  /x go (x,, x j, y,  z)  - ,  y - . -  z ] .  
l <~i< j ~ n  

Proof. The proof  proceeds via 

(i) =*- (xi) ~ (vii) =.- (vi) =~ (x) ~ (ix) ~ (viii) =, (iv) % 
(i). 

(v) ~ (ii) =~ (iii) 

(i)=~(xi). Suppose that (xi) fails and that ra is as in (i). Let U be a set (of variables) 
of power m + with y6 U and z~ U, and let -~ be a strict linear ordering on U. The 
failure of (xi) implies that for some positive go satisfying }-Vyz [3xgo (x, x, y, z)-*y-'-z], 
the set of formulas 

(.) Z u {go (u, v, y, z): u, ve U, u -~ v} w {-'a y " -  z} 

is consistent. Thus there exists an algebra 9I~f/" and an assignment f :  Uw {y, z}--}A 
satisfying the formulas (*) in 9/[. Let 0 be a maximal congruence on 9/[ separating 

f ( y )  and f ( z ) .  Thus 9.I/0 is subdirectly irreducible. Now let u, veU, u-~v. Since 
9.I~go [ f ( u ) , f ( v ) , f ( y ) , f ( z ) ]  and go is positive, it follows that 9g/O~go [ f  (u)/O,f (v)/ 
O,f(y)/O,f(z)/O]. Since f (y ) /O~f(z ) /O,  it follows that f (u ) /O#f (v ) /O.  Thus the 
subdirectly irreducible algebra 93[/0 has power ~>lUI > m ,  in contradiction to (i). 

(xi)=*(vii) by Corollary 0.7. 
(vii)=~(vi) is clear. 
(vi)=~(x) by Corollary 0.9. 
(x)=~(ix) since every absolute retract in f," is equationally compact (see w 

(ix)=~(viii) afortiori. 
(ix)=~(v) and (viii)=~(iv) by Theorem 0.10. 
(v)=~(ii)=~(iii)=}(i) and (iv)=}(i) are immediate. Q.E.D. 

Remarks 1.3. Varieties (and more generally, categories) satisfying condition (vi) 
of Theorem 1.2 were studied by B. Banaschewski (see Theorem 2.3 and its accom- 
panying remarks below)A) 

~) D. Higgs has given a direct proof that conditions (i) and (vi) of Theorem 1.2 are equivalent 
[22]. 
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1.4. The varieties of Abelian groups, Boolean algebras, distributive lattices, and 
semilattices are all residually small, as is essentially well known. Moreover, it is an 
immediate corollary of [23, Corollary 3.4] that it K is a finite set of  finite lattices, 
then H S P K  has only finitely many subdirect irreducibles (each of  which is finite), 
and hence that H S P K  is residually small. A variety of  commutative rings with unit 
satisfying an additional law of the form x " ~ x  is residually small (see 2.7 below). 
Any variety of unary algebras is residually small, since any unary algebra may be 
embedded in a compact topological algebra [40], e.g. in its Stone-(~ech compactifica- 
tion. 5) 

1.5. The varieties of groups, modular lattices and commutative rings with unit 
all have arbitrarily large simple algebras, and so are not residually small. There also 
exist varieties which have only two non-isomorphic simple algebras, and yet are not 
residually small, as has been shown by R. McKenzie [private communication]. 

1.6. Notice that the equivalence of conditions (viii) and (ix) of  Theorem 1.2 
follows immediately from the stronger result of W~glorz [39, Theorem 3.1 ] that if 2[ 
has an equationally compact extension, then 2[ has an equationally compact extension 
in HSP {2[}. But one cannot deduce W~glorz' result directly from Theorem 1.2, as 
the next remark shows. 

1.7. An algebra 2[ may be equationally compact (in fact even a compact topological 
algebra) and still not be a member of any residually small variety. Such is the case 
for 2[ = S O  (3), the group of all rotations of the 2-sphere. This follows from the fact, 
essentially due to Hausdorff (see [15] and [4]), that SO (3) has a subgroup isomorphic 
to the free group on No generators, and the fact that the variety of  all groups is 
not residually small (1.5). 

1.8. If  ~/" is residually small and 2[e"//" is written as a subdirect product of sub- 
directly irreducible algebras ~ " f "  (i~I), then an equationally compact extension 
of 2[, whose existence is asserted in 1.2 (viii), clearly may be constructed by finding 
an equationally compact extension of each ~i- One easily checks (by Lemma 0.8) 
that an (a, b)-irreducible (0.1) algebra ~3 is an absolute retract in "//" if  and only if 

is (~/', ~)-maximal with respect to the property of being (a, b)-irreducible. We 
will call such algebras ~ 3e%maximal irreducible; their isomorphism types in a given 
residually small ~ form a set, and every subdirectly irreducible algebra has a "//'- 
maximal extension, which is equationally compact. In the variety "//" of Boolean 
algebras, semilattices or distributive lattices, the 3r irreducibles are the 
two-element algebras. In the variety ~/" of Abelian groups, the "//'-maximal irredu- 
cibles are the Priifer groups Zp=. 

1.9. It follows from Corollary 0.7 that any 3e'-maximal irreducible algebra has 

s) D. Higgs has given a direct proof that any variety of unary algebras satisfies condition (ii) 
of Theorem 1.2 [22]. See Banaschewski [5, 2(5)] for yet a third reason. 
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power ~< 2" (even if  "//" is not necessarily residually small). According to a general 
theorem of S. Shelah, in the case of a countable number of' operations, a "V-maximal 
irreducible algebra has power ~<No or exactly =2 ~~ (see [29]). 

1.10. If  ~/" is residually small, then each algebra 9~e~/" has an essentially unique 
equational compactification, namely, there exists an algebla ~ ,  ~ ~ ~3 e~/', such that 
if  ~ is equationally compact and f:9~-~E is any homomorphism, then there exists 
a homomorphism g : ~ 3 ~ E  extending f,  and such that there exists no equationally 
compact algebra ~3o with 9.I___ ~o  ~ ~ .  Such ~3 is unique to within isomorphism fixing 
the points of 9.I [36, w In fact ~3 does not depend on ~r as may be seen e.g. from 
the theorem of W~glorz mentioned in 1.6 above. Notice that a maximal essential 
extension of ~ ,  although equationally compact, may not be a compactification of 
9.I in the above sense. Thus <Z, x + 1) is an essential extension of ( Z  +, x + I >, where 
Z (resp. Z +) is the set of all (resp. all positive) integers. But no maximal essential 
extension of  (Z,  x +  1> can be the compactification of <Z +, x + l ) ,  since this com- 
pactification is isomorphic to a disjoint union of ( Z  +, x + l >  with another copy of 
<Z, x + 1> [36, 2.19]. Notice also that 9~e~  may have two non-isomorphic maximal 
essential extensions, as is shown by 2.7 below, although this cannot happen if ~e" 
has enough injectives (see w 

1.11. There exist varieties ~ such that no proper variety ~e'o_~" is residually 
small. Let ~e" be the variety of algebras 

= (A, v ,  A, O, 1, ai>~`0, 

where <A, v ,  A, 0, 1) is a lattice with 0 and 1, and the as are nullary operations 
satisfying the laws a ~ ̂  aj-"-O, a~ v a j ~  1 (i < j  < co). Now suppose that q/'o -~ q/" is a proper 
variety, i.e. that there exists 9.Ie~o with [A[~>2. Clearly no law a~-aj  ( i# j )  holds 
in 9.I, for this law entails 0~-1 which in turn entails x-~y. Thus 9.I has a subalgebra 
9.Io with (infinite) universe {0, 1, ai}~`0. Clearly all elementary extensions of ~o are 
subdirectly irreducible, and so ~ o  is not residually small. Thus there exist equationally 
complete (i.e. minimal, see e.g. [19, w varieties which are not residually small. 
But if q/" is equationally complete and contains a primal algebra [19, w then q/" 
is residually small, by e.g. [19, Theorem 27.5] (of. 2.9 below). 

1.12. The upper bound 2" appearing in 1.2 (ii) is best possible. Let A be the Cantor 
set 2 ̀0 of countable sequences of O's and l 's and let 9~ be the unary algebra <A,f, g), 
where 

f(<ao, al,  ...>) = <al, a2 . . . .  > 
and 

g(<ao, al . . . .  ))  = (ao, ao . . . .  ) .  

This ~ is clearly subdirectly irreducible, and the variety of all unary algebras <A,f, g> 
is residually small (1.4). (Two unary operations are necessary, since all subdirectly 
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irreducible algebras with just one unary operation are countable [42].) For any 
infinite n a similar construction yields a subdirectly irreducible algebra of power 2" 
having rt unary operations. 

1.13. 1.12 and 1.2 ((i)=~(ii)) imply that the Hanf  number for subdirect irre- 
ducibility in varieties is (2")+; i.e. that any variety with a subdirectly irreducible 
algebra of power > 2" has arbitrarily large subdirectly irreducible algebras, and that 
2" is best possible. By related but subtler arguments, R. McKenzie and S. Shelah 
have shown that the Hanf number for simplicity in varieties is also (2a) + [29]. (Cf. 
Problem 1.22 below.) 

1.14. The upper bound 22" appearing in 1.2 (iii) is best possible. Let S be any 
subset of 2 ~ and define the unary algebra 92[ s - - (A,f ,  g, O, hs), where A, f and g are 
as in 1.12, and 

o (a) = (o, o . . . .  ;, 
= ,}'(1, 1, . . .)  if a s S ,  

h s(a) [ ( 0 , 0  . . . .  ) otherwise. 

Clearly distinct subsets S yield non-isomorphic subdirectly irreducible algebras 9.Is. 
For any infinite n a similar construction yields 22" non-isomorphic subdirectly 
irreducible algebras each having rt unary operations. 

1.15. Both upper bounds 2" appearing in 1.2 (v) are best possible. That the bound 
[AI~<2" is best possible follows immediately from 1.12. To show that the bound 
]K[ ~< 2" is best possible it suffices to exhibit 2" subdirectly irreducible algebras in q/" 
no two of which have a common isomorphic extension. We first do this for q/" the 
variety of unary algebras (A, fo , f l , f2 , f3)  defined by the l a w f  o (x)-"fo (y). For each 
subset S of co define the algebra 9.Is=(co, fo,f l , f2,f3s),  where 

fo (n) = 0 

A ( . ) = . + I  

{o n f2 (n) = - 1 otherwise, 

{01 (neS) 
f3s(n) = (n•S). 

It is easy to check that each ~s  is subdirectly irreducible and that 9~ s and ~[T have 
no common extension when S#T .  A similar construction may be used for arbitrary 
infinite n. 

1.16. Let ~e- be the variety defined in 1.15, and suppose that KoCh/" has the 
property that every equationally compact algebra in ~ is a retract of a product of 
members of K o. Extending each ~s  of I. 15 to a ~g'-maximal irreducible ~3s, which 
is equationally compact (1.8), we see that each ~[seISPKo, and thus as in 1.15 that 
[Ko[ i>2 ~~ (or similarly ]K01 >/2" for a variety of algebras with 1t unary operations). 
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This fact provides a positive answer to Problem 5.9 of [36], which asks whether the 
upper bound 2" of Theorem 0.10 (i) above is best possible. 

1.17. From 1.15 we see that there exists a residually small variety ~e" such that 
for no single algebra 92 is ~e" = ISP  {92} ; i.e. the category of all :e'-homomorphisms 
does not have a cogenerator. (Such a variety was previously discovered by S. Burris.) 

1.18. If  rt=No, then the upper bound 2 "+lal of 1.2 (vii) is best possible for any 
]A[. For let m be any cardinal, and let Xbe  a set of power m. Let 92 be the Boolean 
algebra of finite and cofinite subsets of X, and let 23 be the Boolean algebra of all 
subsets of X. It is known (and easy to check) that 23 is an essential extension of  92 
(see [1] or [7]), IA] =rrt and [BI =2" .  

Recall that a quasivariety [21] is a class of algebras defined by a set of implications 
VXt.. .X,[(pt-'-qtA"'^pk"-qk)"+(p~q)] (such a sentence is called an identical 
implication in [10, p. 148]). Equivalently [21], a quasivariety is a class of  similar 
algebras closed under formation of subalgebras, products, ultraproducts and iso- 
morphic images. 

THEOREM 1.19. I f  Y/" is a quasivariety, then the following implications hoM 
among the conditions of  Theorem 1.2: 

(x) =-(ix) =>(v)=~(vii)=~(ii)~ (iii)=~(i)=>(vi). 
Proof Similar to the above, except for (v)=~(vii) and (i)=~(vi), which are immediate 

from the following lemma. 

LEMMA 1.20. Suppose that 23 is a subalgebra of  a product of  algebras each of 
power <.m and that 23 is an essential extension of 92. Then [Bl~<m jal2. 

Proof 6) Projection to a certain product of only [A[ a of the given factors must 
separate the points of  9~; since 23 is an essential extension of 92, this projection must 
also separate the points of 23. 

Remark 1.21. The implication (vii)=~(ix) among the conditions of Theorem 1.2 
does not hold for quasivarieties. We let ~ be the quasivariety of unary algebras 
(A , f ,  g) defined by the identical implication ( fx-"-gx~y"-z) .  ~ satisfies condition 
(vii) by 1.4. Let 92~/" be the algebra (co,f, g),  where fand  g are the two components 
of a bijection of co onto co2\{(k, k ) : k ~  co}. (This algebra, due to C. Ryll-Nardzewski, 
was used as an example in [41, Example 21], and later in [36, 3.13].) It may be checked 
that the equationfx~--gx is satisfiable in any extension in Y/" of ~ which is equationally 
compact. Thus ~ does not satisfy condition (ix). 

PROBLEM 1.22. What is the Hanf  number for subdirect irreducibility in a 
quasivariety? (See 1.13 above.) 

6) A similar argument is used by D. Higgs in [22]. 
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PROBLEM 1.23. Is every equationally compact algebra a subalgebra of some 
compact (Hausdorff) topological algebra? 

PROBLEM 1.24. Does every residually small variety ~/" have the property that 
every algebra in ~ is a subalgebra of  some compact (Hausdorff) topological algebra? 

The last two problems are related to J. Mycielski's question [30, Problem 484] 
whether every equationally compact algebra is a retract of a compact topological 
algebra. It is now known that there exists a residually small variety 9e" such that 
not every equationally compact algebra in ~e- is a retract of a compact topological 
algebra, namely the variety ~e" of all algebras with two unary operations (see 1.4 
and [35]). A negative answer to Problem 1.24 would be stronger than a negative 
answer to Problem 1.23, which in turn would be stronger than the above mentioned 
negative solution to the original problem of Mycielski. 

PROBLEM 1.25. For which residually small varieties does there exist n < co such 
that 1.2(xi) holds for this n for all ~o? 

1.26. There exist varieties such as are described in Problem 1.25. For  example, 
if there exists re<co such that each subdirectly irreducible algebra in r has power 
~m,  then n = m  + 1 is as required in Problem 1.25; the proof  is very similar to that 
of 1.2 ((i)=~(xi)). Thus the varieties of semilattices, distributive lattices and Boolean 
algebras have the property described in 1.25 with n =3. 

2. Injeetive algebras in varieties 

We say that the variety ~/" has enough injectives iff every aIgebra in ~" can be 
embedded in some "//'-injective. Following Bacsich [2], we say that injections are 
transferable in the variety ~/" if the following is true: if in the following diagram 9i, 
~3, f f ~ / ' , f i s  a homomorphism and u is an embedding, 

u 

9 1 ~ 3  
f~ ~g 

u 

then there exists fi)~r a homomorphism g and an embedding v such that v o f  = 
=gou. (This is referred to as property (E4) in [5].) 

We say the variety r has the congruence extension property iff the following is 
true: if 92[ ___ ~3 ~ r and 0 is a congruence on 91, then there exists a congruence 
on ~3 such that 0 =@c~A z. 

We say the variety r has the amalgamation property iff the following is true: 
whenever u and v are embeddings with the same domain, there exist embeddings i 
and j such that io u =jov.  
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PROPOSITION 2.1. [2]. Injections are transferable in ~ i f  and only i f  ~ has 
the congruence extension property and the amalgamation property. 

The following lemma was known to many people. 

LEMMA 2.2. I f  injections are transferable in ~ ,  then 9 ~ "  is ~r-injective i f  and 
only ifg~ is an absolute retract in ~k". 

THEOREM 2.3. For any variety q/', the following conditions are equivalent: 
(i) "//" has enough injectives; 

(ii) q/" is residually small and injections are transferable in ~ .  
Proof. (i)=~(ii) by standard arguments from category theory (see e.g. [2], [5], [12] 

or [13]). (ii)=~(i) by 1.1, 1.2(x) and 2.2. 
Remarks 2.4. Theorem 2.3 was first proved by B. Banaschewski [5], using in 

2.3(ii) the equivalent form 1.2(vi) of residual smallness: each 9 ~ / "  has (within 
isomorphism) only a set of essential extensions. 7) 

2.5. The two conditions of 2.3(ii) are independent. We first note that the variety 
~e" of pseudocomplemented distributive lattices is not residually small [25] (or 
implicitly [26]), but that injections are transferable in ~r [20]. s) (A distributive lattice 
(D, v ,  A ) is pseudocomplemented iff each element aeD has a pseudocomplement 
a*, which is the greatest element b such that b A a =0;  this property may be expressed 
by a finite set of lattice equations in the unary operation * [32]. Also see [26] or [25].) 

2.6. On the other hand there exist residually small varieties which do not have 
enough injectives (i.e. in which injections are not transferable). Such are in fact 
certain varieties of  pseudocomplemented distributive lattices (2.5). The lattice of 
proper subvarieties of the variety of pseudocomplemented distributive lattices is a 
chain of type o9 + 1 (whose first two elements are the varieties of Boolean algebras 
and of Stone algebras, and whose last element is the full variety of pseudocomple- 
mented distributive lattices) [26]. If  ~/" is any variety in this chain other than the first, 
second, third or last, then ~/" is residualy small [26] and the amalgamation property 
fails in ~e" ['20]. 

2.7. Another example of a residually small variety which does not have enough 
injectives is provided by B. Banaschewski [5]. We let ~r be the variety of commu- 
tative rings with unit satisfying the additional law x22~x.  Clearly no ring in this 
variety has non-zero nilpotent elements, and hence by a result of G. Birkhoff [9, 
Lemma 2], the subdirectly irreducible algebras in ~e" are fields, clearly having ~<22 
elements. One easily checks that the only such fields satisfying x22- ' -x  are GF(2), 

7) Several variants of Theorem 2.3 (e.g. for hypoinjectivity) have been announced by P. D. 
Bacsich [private communication]. 

a) The author is indebted to D. Higgs for suggesting the variety needed for 2.5. 
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GF(4), and GF(8). Thus r is residually small. Notice that if r had enough injectives, 
then GF(8), being S/'-maximal irreducible and hence an absolute retract in ~ by 
1.8, would itself be injective in r by 2.2. But GF(8) is not injective in r because 
GF(2)_ GF(4) and the identity embedding of GF(2) in GF(8) cannot be extended 
to GF(4), since GF(8) has no subfield of four elements. 

2.8. Another example of a residually small variety which does not have enough 
injectives is as follows. Let q/" be any variety of lattices other than the variety of 
distributive lattices or the trivial variety defined by the law x~y .  (Such varieties exist 
which are residually small, by 1.4) Then a theorem of A. Day [13] says that the 
only ~e--injective is the one-element lattice. (In fact the variety r of modular lattices 
does not have the amalgamation property [24].) 

2.9. A. Day has recently proved that every variety generated by a primal algebra 
has enough injectives [14]. 

If  ~e" has enough injectives and 9 J : ~ ,  then by 2.3 and 1.2, 9.I has only a set of 
essential extensions in r and by 0.9 and 2.2, there exist maximal essential extensions 
~3 of 9.I, and such ~3 must be r Any two such algebras ~B are isomorphic 
over 9J:, and any such ~ is called an injective envelope (or hull) of 9~. (In particular 
the injective envelope of a subdirectly irreducible 92[ ~ ~ is any C"-maximal irreducible 
extension of  9.L) Equivalently, an injective envelope of ~ is any __q-minimal r 
injective _9.I. (Consult [2], [5], [12], [13] or [14] for these and related facts.) The 
following theorem was proved in [36, Corollary 2.12], and is included here because 
these two proofs seem simpler and more direct. 

THEOREM 2.10. I f ~  is the $/'-injective envelope ofg.i, then IBI ~ 2 "+ IAI (1l =N o q- 
the number of operations of 92). 

First pro@ Suppose [B] > 2 "+ IAI; since ~3 is an essential extension of 9~, it follows 
from Corollary 0.7 that 

(,) D (92[) tg Eq (~)  u {(p (x~, xa, a, b): cr < fl < iBI + } 

is consistent, for some a # b e A  and positive formula q~ such that bVyz[3xqo(x, x, y, 
z ) ~ y ~ z ] .  Let ~ be a model of (*) and let 0 be a maximal congruence on ~ separating 
a and b. Thus if/0 is an essential extension of 9,I with IC/OI > IBI and ~/0e~e. Since 

is r there exists a homomorphism f :~/O~fB extending the identity 
function on ~.  The fact that ~/0 is an essential extension of 9.I implies then that f 
is one-to-one, which is a contradiction. 

Second proof. Since ~ is injective, and hence equationally compact, it follows 
from Theorem 0.10 that ~ is a subalgebra of a product of algebras each of power 
~<2". Since ~ is an essential extension of ~,  the result now follows immediately from 
Lemma 1.20. Q.E.D. 
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Remark 2.11. The upper bound on IBI in 2.10 is best possible, as the case of 
Boolean algebras shows (cf. 1.18 above). 

PROBLEM 2.12. Let r be the variety defined by the set 2~ of equations. Does 
there exist a necessary and sufficient (syntactic) condition on ~ for r to have enough 
injectives (e.g. a condition similar to 1.2(xi) or to 3.12(vii) below)? 

3. Pure representations 

In this section we deal with structures which may have both operations and 
relations (as mentioned in w 

DEFINITION 3.1. A pure representation of a structure 9/is a family of surjective 
homomorphisms f i : 9 2 ~ i  (i~1) such that the associated homomorphism f : 9 2 ~  
~I-Ii~x ~3i is a pure embedding. (1-I denotes product.) 

As in [36], by an (3, ^)-formula we mean a first order formula whose only logical 
connectives are 3, ^ (and -"-). 

LEMMA 3.2. The family of  homomorphisms f i : 9 2 ~  ( i~I)  is a pure representa- 
tion o f  92 i f  and only i f  the following holds: i f  q~ is an (3, ^ )-formula in the language 
o f  92, at, ..., a ,~A and 92~'~q~ [al, ..., a,], then there exists i~ l  such that ~i~-lq~ [ f i  

(al),--.,  f i  (an)]. 

DEFINITION 3.3. The structure 92 is pure-irreducible iff the following holds: if 
the family of homomorphismsfi  ( i e I )  is a pure representation of 92, then for some 
i~I, f~ is an isomorphism. 

LEMMA 3.4. 92 is pure-irreducible i f  and only i f  there exists an (q, A )-formula 
q~ and al, ..., a ,~A such that 92 ~-7 q~ [a 1 . . . .  , a,] and such that Y8 ~ qJ I f (a t )  . . . . .  f (a , ) ]  
whenever f :  9 2 ~  is a homomorphism which is not one-to-one. 

3.5. Any subdirectly irreducible algebra is pure-irreducible, but the converse is 
false. I f  92, for example, is a three-element lattice, then 92 is pure-irreducible, since 
the middle element has a complement in any proper homomorphic image; but 92 
is not subdirectly irreducible. 

The following theorem is a counterpart for pure embeddings to G. Birkhoff's 
subdirect representation theorem of 1944. 

THEOREM 3.6. Any structure 92 has a pure representation f i :9~- ,~ i  ( i~I)  with 
each ~ i pure-irreducible. 
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Proof For  each (3, ^ )-formula q~ and a, . . . .  , a,~A such that 92~-q q~ [a I . . . .  , a,], 
let 0 be a maximal congruence on 92 such that 92/0 ~-7 ~o [al/O, ..., a,/O]. Clearly the 
family of  homomorphisms 92~92/0, with 0 ranging over all possible 0 defined as 
above, is a pure representation of  92 via pure-irreducible structures. 

We turn now to our counterpart for pure embeddings of  Theorem 1.2 (see 
Theorem 3.12 below). The following notion extends the notion of  pure-essential 
extension in the theory of Abelian groups (see [18] and references given there). 

DEFINITION 3.7. ~3 is a pure-essential extension of 92 iff ~3 is a pure extension 
of  92, and for any proper congruence 0 on ~3, the natural homormophism 9 2 ~3 /0  
is not a pure embedding. 

LEMMA 3.8. Let ~3 be a pure-essential extension of  92, [B[ > 2  "~, where m =No + 
+ [A[ + the number ofoperationsandrelations of  92). Then there exists an (3, ^ )-formula 
~o in the language of  92 having v o and v 1 as its only free variables and having constants 

f rom 92, such that 92 ~-'13xq~ (x, x) and such that 

(,) D (92) u NE (92) (x,, xj): < j  < co} 

is consistent. (Here D(92) is the diagram of  92 and NE(92) is the set o f  negations of  
those (3, ^ )-sentence with constants from 92 which fail to be satisfied in 92.) 

The proof  is similar to that of  Corollary 0.7 and thus is omitted. 

COROLLARY 3.9. Let 92 and ~3 be as in 3.8 and let ~o be as supplied by 3.8. Then 

Th (92a) u {q~ (xi, xj): i < j < co} 

is consistent, where Th (92a) is the set o f  all sentences with constants from 92 which are 
true in 92. 

Proof  Follows immediately from Lemma 3.8 and the fact (due to C. Ryll- 
Nardzewski - see [38]) that if ~ is a pure extension of  92, then there is a homomor- 
phism g : ~ - ~ 3  such that g ~92 is an elementary embedding. (In fact one may take 
~) an ultrapower of  92, with g 1 92 the natural embedding of 92 into ~).) 

LEMMA 3.10 Let ~ be a pure-essentialextension of  92. Then ~ is atomic-compact 
i f  and only i f  no proper pure extension of  ~ is a pure-essential extension of  92. 

The proof  is similar to that of Lemma 0.8 and thus is omitted. 

COROLLARY 3.11. I f  92 has (within isomorphism) only a set o f  pure-essential 
extensions, then some pure-essential extension of  92 is atomic-compact. 

The proof  is similar to that of Corollary 0.9 and thus is omitted 9). 

~) The present proof of 3.11 is due to B. Banaschewski and E. Nelson, who also suggested 
Lemma 3.10. They pointed out a mistake in a previous proof. 
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T H E O R E M  3.12. Let ~ be an elementary class of  structures (i.e. the class of  
models of  a set F of  first order sentences), and let rt = (No + the number o f  operations 
and relations of  structures in ~ ) .  Then conditions (iv)-(vii) below are equivalent. I f  
in addition Jg" is a variety, then all seven conditions are equivalent. 

(i) There exists a cardinal rrt such that every pure-irreducible structure in ~ has 
power <<. m;  

(ii) every pure-irreducible structure in X has power ~<2n; 
(iii) there exists a set KG~t  ~ with IKI~<2" and IAl<.N2" for all ~ K ,  such that 

every structure in Of" is isomorphic to a pure substructure of  some product o f  members 

of  K; 
(iv) each 9 ~ X  has (within isomorphism) only a set of  pure-essential extensions; 
(v) i f  ~ is any pure-essential extension of  9.IE )F, then I BI ~< 2" + I AI ; 

(vi) every structure 9 2 s  is a pure substructure of  some atomic-compact structure; 
(vii) for every (3, ^ )-formula q) in the language of  ~s there exists a finite number 

n such that 

r k w 2 . . .  u ,  [ 3 x ,  ... x ,  A ~ (x,, x j, u2 . . . .  , u . )  -~ 3Xo~ (Xo, Xo, u2, . . . ,  u , ) ] .  
l <~i<j<~n 

Proof In case X is a variety, the proof proceeds via (i)=~(vii)=,-(v)=~(iv)=~(vi)=, 
=~(iii)=~(ii)=~(i). 

(i)=~(vii). I f  (vii) is false, then the set of  formulas 

( , )  r ~ {-~ 3Xo~ (Xo, ~o, a~ . . . .  , a~)} ~ {~ (x~, ~p, a~ . . . .  , a . ) :  ~ < ~ < ra +} 

is consistent. If  ~ is a model of  (*) and 0 is a maximal congruence on n,i subject 
to ~ /0  ~'7 3Xo~O ()co, xo, a2/O,..., a~/O), then by 3.4, 9~/0 is a pure-irreducible model 
of  F of  power > rrt, in contradiction to (i). 

(vii)=~(v) by Corollary 3.9. 
(v)=~(iv) is clear. 

(iv)=~(vi) by Corollary 3.11. 
(vi)~(iii) by [36, Corollary 5.81. 
(iii)=~(ii)=~(i) is easy. 

To complete the proof, we note that if ~ is not necessarily a variety, then we 
may prove (vi)=~(vii) as follows. Assume that (vii) is false for some (p. Thus every 
finite subset of  

(**) f {7  3Xo~ (Xo, Xo, b2 ....  , bin)} 
u { 3 x l  . . .  x~ A ~o (x i ,  x j ,  b2, . . . ,  b~ ) :  n < ~o} 

k 
l~ i< j<~n  

has a model in ~ .  Since ~ f  is elementary, there is a model 9~E~f" of (**). By [36, 
Theorem 3.8(ii)=-(v)], this ~ is not a pure substructure of any atomic-compact 
structure. Q.E.D. 
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Remarks 3.13. If  X is a variety, then the equivalence of conditions (iv) and (vi) 
of Theorem 3.12 follows from Proposition 5 of [5], together with the remarks in w 
of [5]. (One applies Banaschewski's more general version of our Theorem 2.3 above; 
one need only check that Banaschewski's condition (E4) is satisfied for the class of 
pure embeddings, i.e. that 'pure injections are transferable,' in the terminology of 
w above. This fact follows fairly directly from the ultrapower construction of Ryll- 
Nardzewski mentioned in the proof of Corollary 3.9 above.) Similar and related 
remarks occur in [2]. 

3.14. Both the variety of Abelian groups and the variety of Boolean algebras 
satisfy the equivalent conditions of  Theorem 3.12. J. Log in effect proved [27] that 
the pure-irreducible Abelian groups are precisely the groups Zp, (p prime, n = 1, 2,..., 
oo). The only pure-irreducible Boolean algebra is the two-element Boolean algebra, 
as follows from Stone's representation theorem and the fact that every embedding 
of  Boolean algebras is a pure embedding [36, 2.20] [2, w 

3.15. It has been proved by B. Banaschewski [6] that the equivalent conditions 
of Theorem 3.12 are satisfied for the variety ~/'a of permutation representations of 
an arbitrary but fixed group G. (Each member of r is a unary algebra of the form 
(A,g)g~a subject to the laws 

l ( x ) ~ x  (l = unit of G) 

r ( g ,h~G) .  

Members of ~r G are also called G-sets.) J. Mycielski has pointed out that from 
Theorems 1 and 5 of  [31] one may immediately deduce the stronger fact that every 
member of ~/'a has an equationaUy compact elementary extension. We remark that 
it is not difficult to directly verify the syntactic condition (vii) of Theorem 3.12 for 
F taken as the equational theory 2; a of ~/'a, as follows. If  ~o is any (3, ^ )-formula, 
then (p is logically equivalent to 3xl... 3x, (el A ... A era), where each ei is an equation. 
I f  no equation cq involves both x, and Xk (kv~n), then q~ is logically equivalent to 
the conjunction of a sentence and a formula of the form 3xt...3x,_l~k, where ~, is 
a conjunction of equations. The alternative is that some e~ is 2;a-equivalent to 
Xtl-"'g ~ (Xk) (k # n). If  we replace each occurrence of x, in each ej by g (Xk), we see 
that 9 is 2~a-equivatent to 3x~... 3x,_10, where 0 is a conjunction of equations. Thus 
by induction we see that every (3, ^)-formula is Za-equivalent to the conjunction 
of a sentence and an open (3, ^ )-formula. Thus we need to verify 3.12 (vii) only 
for open (3, ^ )-formulas, i.e. for conjunctions cq ^ - . - ^  cq of equations. The reader 
may easily check that if no cq is 2;a-equivalent to x o ~ ( x l ) ,  then 3.12(vii) holds with 
n =2. But if such an equation does occur, then 3.12(vii) holds with n =3, because 

zo ,, 
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The problem remains of making some other direct applications of  3.12(vii) (or of 
1.2{.xi) above). 

3.16. The variety of all algebras with two unary operations is residually small, 
but does not satisfy the equivalent conditions of Theorem 3.12. It is not hard to 
check, for example, that the algebra 9~ described in 1.21 above is not a pure subalgebra 
of  any equationally compact algebra [41, Example 21]. 

3.17. Another residually small variety not satisfying the equivalent conditions of 
Theorem 3.12 is the variety of distributive lattices. We present an example due to 
R. McKenzie to show that there exist pure-irreducible distributive lattices of ar- 
bitrarily large infinite power. Given infinite m we first define a partially ordered set 
(P, ~< ) as follows: P = {x~, y~, u~, v~: ~ < m}, y~ < x~, y~ + a < x~, v~ < u~, v~ + 1 < u~. Then 
define L as the set of  all subsets J~_P with the following five properties: 

(a) Y is an ideal, i.e. if xeJ  and y<~x then yeJ; 
(b) J1 ={~:x, eJ} is closed, i.e. i fK_~J  1 and UKerrt, then U K e J i ;  
(c) J2={~:u, eJ} is closed; 
(d) if XoeY, then there exists f l em such that u, eJ whenever /~<~<m;  
(e) if uoeJ, then there exists/~em such that x, eJ whenever /3<a<m.  

One easily checks that L is closed under finite union and intersection, and thus that 
(L,  u ,  n )  is a distributive lattice. Now we define A, B~L as A = {Yo} and B = {vo}. 
We first claim that (L,  w, c~) ~-~ ~0 [-~, P, A, B], where ~0 is 3XY(Xc~ Y ~ x  o ̂  Xu Y ~  
-"-x: ^ X ~ x z - ' x  2 ̂  Yc~x3-'-x3). For suppose that our claim is false. Since Yo cA ~_ X 
and Y is an ideal, we cannot have XoeY. Thus xoeX and similarly uoeY. By (d) there 
exists ~ such that u, eX, and thus we may let p be the smallest member of {c~:u, eX}. 
By (c)/~ cannot be a limit ordinal, and thus f l = v + l  for some y. Thus v~+l<~ur+leX 
and v~+ ~ ~< u~e Y, and thus v r+ ~ eXn Y. This contradiction establishes the above claim. 
We next claim that if f :  (L,  u ,  n ) ~ ( M ,  v ,  ^ ) is any homomorphism with [MI <2"1, 
then (M,  v ,  ^ ) ~ ~o [ f ( ~ ) , f ( P ) , f ( A ) , f ( B ) ] .  Notice first that there are 2" subsets 
of K={y,+l :c~<m} (each of which satisfies conditions (a)-(e)). Thus there exist 
J, ar~ K, J #  ] with f (J) = f  (]). Without loss of generality we assume that y~ + 1 e J, 
y r+ :~] .  And so f({yr+i})=f({yr+l}~J)=f({yr+l}c~Y)=f(;~ ). Likewise there 
exists 6 < m  such thatf({v~+i} ) = f ( ~ ) .  Now we let 

and 
x = { x . : ,  < r} { y . : .  < r + i}  { u . : ,  > { 0 . : ,  > 61 

It is not hard to check that X, YeL, X ~  A, Y ~ B  and X u Y = P .  One also easily 
checks that Xc~ Y= {Yr+l, v~+l } and so f (Xn Y) = f  ({yr+l}U {v~+l}) = f  ({yy+ a}) v 
v f  ({ va +l }) = f  ( ~ )  v f  ( ~ )  = f ( ~  ). And so we have checked the second claim above. 
Thus finally we see that if 0 is a maximal congruence on (L, u ,  c~> subject to <L, w, 
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n>lO ~ q~ [;~ I0, P/O, A/O, B/O], then <L, u ,  c~>10 is pure - i r reduc ib le  a n d  has  power  

>~T". 

3.18. Not ice  tha t  in cont ras t  to the  s i tuat ion descr ibed in R e m a r k  1.7 above,  there  

is a local  vers ion  o f  Theo rem 3.12. Name ly  one may  app ly  the t he o re m in case 

is the  class o f  s tructures e lementar i ly  equivalent  to a given s t ructure  9.I. The  result ing 

theo rem is the  same as [36, Theo rem 3.8(iii).~-(v)], wi th  the  a d d i t i o n  o f  condi t ions  

3.12(iv) and  3.12(v). 
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J. A. K a l m a n  has recently proved  that  the variety o f  distributive quasillattices is 
residually small [Fund.  Math .  71 (1971), 161-163]. 

W. Nemi tz  and T. Whaley have proved,  inter aha, that  the variety o f  implicative 

semilattzces is not  residually small, but  that  any  finite set o f  finite implicative semilat- 
tices generates a residually small variety [Pacific J. Math .  37 (1971), 759-769].  (Cf. 
the similar facts for  lattices ment ioned in 1.4-5 above.)  

See[7]  for  the fact  that  every non-trivial  lattice has arbitrari ly large essential ex- 
tensions which are lattices (and thus tha t  all injectives in the variety o f  all lattices are 

trivial). 
A detailed presenta t ion of  Simpson 's  model- theoret ic  p r o o f  [33] of  Erd6s '  Theo-  



Vol. 2, 1972 RESIDUALLY SMALL VARIETIES 53 

rem 0.6 above appears in Model Theory for Infinitary Logic, by H. J. Keisler, North- 
Holland, 1971, pp. 75-77. 

E. Fisher anct P. D. Bacsich have proved [private communication] that conditions 
(x) and (vi) of Theorem 1.19 are equivalent for quasivarieties r if essential extensions 
are understood as relative to (the category) r Thus in Example 1.21, the algebra 9~ 
has arbitrarily large extensions which are essential relative to ~r 

It is implicit in 2.5 and 2.6 above that varieties ofpseudocomplemented distributive 
lattices other than the first three do not have enough injectives. This was originally 
proved by A. Day, who also proved that the first three do have enough injectives; 
see G. Gr/itzer and H. Lakser, The structure ofpseudocomplemented distributive lat- 
tices. III: tnjectives and absolute subretracts (to appear). The existence of enough 
injective Stone algebras was proved by R. Balbes and G. Gr/itzer [Duke Math. J. 38 
(1971), 339-347]. 

We take this opportunity to mention some results in the literature related to results 
of [36]. The existence of a maximal compact representation of a topological group 
(i.e. [36, Theorem 6.1] for groups) was proved by E. M. Alfsen and P. Holm [Math. 
Scan& 10 (1962), 127-136]. The existence of enough injective semilattices, mentioned 
in [36, 2.14], was also proved by A. Horn and N. Kimura [Alg. Univ. 1 (1971), 
26-38]. The existence of enough injective distributive lattices, mentioned in [36, 2.14], 
is also implicit in R. Balbes [Pacific J. Math. 21 (1967), 405-420]. 


