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Implication Algebras are 3-Permutable and 3-Distributive

ALEIT MITSCHKE

In this note we give some examples to a question of G. Gritzer [3] about Mal’cev-
type conditions. In Universal Algebra there are several results of the following form.

THEOREM 1. For any equational class U the statements in each of the following
pairs are equivalent to each other.

Permutability ([3], [6], and [7])

(Pa) The congruence relations of every algebra of W are n-permutable (of @-type n—1).
(Pb) There exist (n+1)-ary algebraic operations p,, ..., p, of U satisfying the following
identities:
.ﬁo(xo: AR xu)=x0
Pi-1(Xgs Xg5 X2y X2,...)=P;(Xq, Xo, X3, X3,...) (ieven)
Di-1 (X0, Xy, X1y X3, X3,...) =P; (X, X1, Xy, X3, X3,...)  (iodd)
Pa(Xoyeees Xg) =Xp.

Distributivity ( B. Jonsson [5])

(Da) The congruence lattice of every algebra of Wis distributive.
(Db) There exist a natural number n and ternary algebraic operations py, ..., P, of U
satisfying the following identities:
Pi(xo, x1, X0)=%, (1<i<n)
Po (o, X1, X2)=Xo
Pi—1 (%0, Xo, X2)=P;(Xo, X0, X)  (io0dd)
Di-1(x0, X2, X2)=Pi(xo, X2, ;)  (ieven)
DX, X1, X3)=X.
Modularity (A. Day [2])
(Ma) The congruence lattice of every algebra in W is modular.
(Mb) There exist a natural number n and 4-ary algebraic operations pq, ..., Py of U
satisfying the following identities:
Bi(xq, X1, X3, Xo)=%q  (1<i<n)
Bo(xg, Xy, X3, X3)=Xg
Fi— 1 (xg, Xgy X2y X2)=P; (X0, Xo, X2, X3)  (iodd)
ﬁi- 1 (xO’ X1, X15 X3) =pi (x03 Xy X1, x3) (l even)
Pa(x0, X1, X3, X3)=x3.
For a general theory of this type of theorem see R. Wille [8].
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We define an equational class to be n-permutable for some natural number » if
there exist (n+1)-ary algebraic operations p, ..., 5, of U which satisfy the identities
of Theorem 1 (Pb). Analogously we call an equational class W n-distributive (n-mod-
ular) for some natural number # if there exist ternary (4-ary) operations of ¥ satis-
fying the identities of (Db) ((Mb)). It is known that an n-permutable (n-distributive,
n-modular) equational class is m-permutable (m-distributive, m-modular) for every
natural number m greater than z.

In [3] G. Griitzer asks for examples of equational classes which show that #n-
permutability and (n 4+ 1)-permutability are not equivalent and poses the same question
for n-modularity, n-distributivity and other results of this form. The following theorem
gives an answer to this question for n=2.

THEOREM 2. The equational class of all implication algebras is

(P) 3-permutable, but not 2-permutable.
(M) 3-modular, but not 2-modular.
(D) 3-distributive, but not 2-distributive.

Remark: E. T. Schmidt has shown that for every natural number n>2 there exists
an (n+1)-permutable equational class, which is not n-permutable (preprint, Bonn
1970).

B. Jénsson gave in [5] an example of a 3-distributive equational class, which is not
2-distributive.

The referee shortened my proof of (D) by giving another counter-example, which I
shall use in the following proof.

For the following definition and properties of implication algebras see J. C. Abbott

(1.

An implication algebra is a pair {I,-) consisting of a carrier set I closed under a
binary operation - (we write ab instead of a- b) satisfying the identities

(1) (ab) a=a
(12) (ab) b= (ba)a
(13) a(bc)=b(ac).

From the definition follows the existence of a unique element 1 with the properties
aa=1,al=1, la=a for every ael. Furthermore every implication algebra {I,-)
determines a partially ordered set I, <) with greatest element 1 by: a<é iff ab=1.
With respect to the partial ordering I is a join semi-lattice, where (ab) b is the least
upper bound for @ and b. Every principal filter of this semi-lattice is a boolean algebra.
Conversely, every join semi-lattice, in which every principal filter is a boolean algebra,
determines an implication algebra under ab= (avb),, where (avb), is the com-
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plement of av b in the principal filter [5). In particular any boolean algebra with 0
deleted is an implication algebra.

Proof of theorem 2:

®)

M)

3-permutable:
If we define algebraic operations j(x, y, z, u)=(zy) x and §(x, y, z, u)=(yz) u
we get:

(%, y, 3, 2)=(yy) x=1x=x,

B(x, x, z, z)=(zx) x=(xz) z by (12),
G(x, x, z, z)=(xz)z and
g(x,y,3,2)=(yy)z=z2

satisfying the identities of condition (Pb) of theorem ! for n=3.

not permutable:

We consider the implication algebra

7

2 b

Then @={{a, 1}, {b}} and &={{b, 1}, {a}} are congruences, if we denote con-
gruences by the partitions they induce. We get (a, 5)e@.® and (g, b)¢P.0,
while the condition that ©,.0,=0,,0, holds for every pair of congruences
is equivalent to 2-permutability.

3-modular:

By properties of congruences one can show that 3-modularity follows from
3-permutability (see Jonsson [4], theorem 1.2.). Another way to show this is
by using results of theorem 1. If 5, § are 4-ary algebraic operations of an equatio-
nal class with the properties p(x, ¥, 3,2)=x,4(x,y,5,2)=2, p(x,%,¥,y)
=¢(x, x, y, ) then the class is 3-permutable.

If we define 4-ary algebraic operations 7, § by

Flx, y, z, u)=p(x, B(x, y, z, u),4(x, y, z, u), u)
and
5(x, ¥, z, w)=4{(x, 4(u, z, y, x), B {u, z, y, x), u)

then 7 and § satisfy the identities for 3-modularity. In particular, for implication
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algebras we get the operations

F(x, v, z,w)={(zp)[((rz) u) x]} x
and

5(x, y, 2, w)={(y2) [((z) x) ul} u.

not 2-modular:

In [2, theorem 2] Day has shown that an equational class is 2-modular if and
only if it is permutable. For the class of implication algebras we have shown
that it is not permutable, it follows that it cannot be 2-modular.

(D) 3-distributive:
We consider the ternary algebraic operations
p(x,y, 2)=(y(zx)) x and 4(x,,2)=(xy)z
Then we get the following identities
p(x, x, 2)=(x(zx)) x=(z(xx)) x=2x,
p(x, 3, x)=(y1) x=x,
p(x, z, 2)=(z(2x)) x=(2x) x=(xz) z
because z (zx)=((zx) z) (zx)=zx by (11),
§(x, z,2)={(xz) z,
g(x, x,z)=(xx) z=z,
g(x, y, x)=(xy) x=x.
not 2-distributive:

Let ©(a, b) be the least congruence relation collapsing @ and b and [a] @ (a, b)
the congruence class of © (a, b) containing a. For any equational class 2 condi-
tion (Db) of theorem 1 for n=2 holds if and only if for every algebra 4e¥ and all
a,b,ced [a]O(a, b)n[b]O (b, c)n[c]O(a, c)* (sec Wille [8], theorem 6.6.).
Now we consider the implication algebra

and the congruences O (a, b), © (b, ¢), @ (a, ¢). Then it is easily seen (see the
definition of - on page 80) that [a] @ (a, b)={a, b, ¢}, [6] O (b, c)={b, ¢, a’} and
[c]©(a, ¢)={a, c, b'}, which completes the proof.
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