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The Category of Semilattices 1) 

ALFRED HORN and NAOKI KIMURA 

1. Introduction and Preliminaries 

In this paper, we will determine the injective and projective semilattices. Moreover 
explicit constructions will be given for the injective hull and projective cover (when it 
exists) of  a semilattice. Thus the category of  semilattices is seen to be unusually 
amenable and a good source of  illustrations for the concepts of  category theory. 

A semilattice is an algebra ( .4 , - )  with a binary operation which is associative, 
commutative and idempotent. Any partially ordered set in which any two elements 
have a greatest lower bound (meet) x ^ y is a semilattice under ^ .  Dually, a partially 
ordered set in which least upper bounds x v y  exist is a semilattice under v .  I f  A is a 
semilattice then A has a canonical ordering defined by x<.y if and only if x y = x .  In 
this ordering, x ^ y exists and is equal to xy. This ordering will always be used unless 
otherwise stated. 

For  future reference we name some particular semilattices. The two element 
semilattice {0, I } in which 0- 1 = 0 is denoted by 2. I f  A t is a set, S ( Z )  denotes the semi- 
lattice of  all subsets of  X under intersection. S ( X )  is of  course a direct product  of  
copies of  2. Subalgebras of  S ( X )  are called set semilattices. They are of  course fami- 
lies of  sets closed under finite intersections. S~,(X) denotes the semilattice under union 
of the family of  all nonempty finite subsets of X. 

The category of semilattices is denoted by 5:. An 5 :  morphism is a homomorphism 
of semilattices. I f f i s  an ~9 ~ morphism, then x ~ y  impl iesf  (x)~<f (y). I f  f is one-to-one, 
t h e n f  (x) ~<f (y) implies x ~<y. 

A semilattice in which x v y always exists (in the canonical ordering) is called a 
lattice. A lattice in which x.  (y v z ) ~  xy v xz is called a distributive lattice. An equiv- 
alent form of  the distributive law is the dual form x v yz-= (x v y) .  (X v z). An element 
x of  a semilattice is called meet irreduczble if x = y z  implies x = y  or x = z .  x is called 
super meet irreducible (s.m.i. for  short) if x>~ yz  implies x ~  y or x>~z. Clearly s.m.i. 
elements are meet irreducible. I f  A is a distributive lattice, then every meet irreducible 
element is s.m.i. If_P is a partially ordered set and x~P,  let xe denote the principal 
ideal {y ~ P: y  <<. x} and let x e be the principal filter {y~P :y  >1 x}. Afi l ter in a semilattice 
A is a subset F such that (1) if y >>. x ~ F  then y~F,  and (2) if x ~ F  and y~F,  then xy~F. 
The smallest and largest elements of  a semilattice (if they exist) are denoted by 0 and I 
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respectively. I f  A is a semilattice let 0 ,  A = A if A has a 0, while if A has no 0, let 0* A 
denote the result of  adding to A an element 0 such that 0 . x = x . 0 = 0  for all xeA. It 
is obvious that A is a subalgebra of the semilattice 0 , A .  Similarly, we let A ,1 denote 
the result of  adding a 1 to A in case A does not already have a 1. A partially ordered 
set is called discrete i fx<,y only when x=y.  

A morphism f : A ~ B  is called a monomorphism, or an embedding if  for any two 

morphisms gi, g z :C~A,  fg l=fgz  implies gl=g2, f is called an epimorphism if 
gl f =  g2fimplies  gl =g2 for any morphisms gi, g2: B--* C. 

T H E O R E M  1.1. Let f :  A ~ B be an 50 morphism. Then 
(1) f is a monomorphism if  and only i f  f is one-to-one 
(2) f is an epimorphism if and only i f  f is onto. 
Proof. The sufficiency is obvious in (1) and (2). Suppose f i s  not one-to-one. There 

exist distinct a, beA such that f ( a ) = f ( b ) .  Let C be any semilattice and define 

gi, g2:C-*A by g i (x )=a  and g2(x)=b for all x. Then fgi=fg2 but gl~g2. This 
proves (1). 

S u p p o s e f i s  not onto. Let C=f(A) .  Then C is a proper subalgebra of  B. Now a 
function g : B ~ 2  is a homomorphism if and only if {x:g(x)= 1} is a filter. Therefore 
we need only find distinct filters Fi, F2 in B such that Fl c~ C = F2 n C. There exists an 
x s B -  C. Let F1 be the principal filter x 8, and let F2 = {yeB:  for some z~C, y>>.z>x}. 
Clearly F2 is a filter and F 1 c~ C=F2 c~ C. But/71 r  since xeF1 -F2.  

2. Injective Semilattices 

There is a very simple representation theorem for semilattices. 

T H E O R E M  2.1 Every semilattice A is isomorphic with a set semilattice. Specific- 
ally, there exists a monomorphism g : A ~ S ( A ). 

Proof. Define g by g ( x ) = x  a. I t  is obvious that g ( x y ) = g ( x ) n g ( y )  and g is one- 
to-one. 

As an immediate consequence, we have the following corollary. 

C O R O L L A R Y  2.2. The only non-trivial subdirectly irreducible semilattice is 2. 

D E F I N I T I O N  2.3. A is called a retract of B if there exist homomorph i smsf :  B--*A 
and g: A ~ B  such tha t fg  = It .  

D E F I N I T I O N  2.4. A semilattice A is called injective (more exactly S a injective) 
if for every S a monomorphism f : B ~ C  and every homomorphism g : B ~ A ,  there 
exists a homomorphism h: C ~ A  such that hf= g. 
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DEFINITION 2.5. A is called an absolute subretract if for every S a monomorphism 
g: A ~ B  there exists a homomorphism f :B -oA  such that f g = l  a. In other words, A 
is a retract of  every semilattice in which it can be embedded. 

When dealing with arbitrary equational classes of algebras, it is more natural to 
define monomorphisms (or epimorphisms) to be homomorphisms which are one-to- 
one (or onto). In our general remarks on equational classes, we shall always use this 
convention. The following facts are easy to prove in any equational class of  algebras. 
A direct product  of  injective algebras is injective. A retract of an injective algebra is 
injective. Every injective algebra is an absolute subretract. We shall see that the con- 
verse holds for 6 a. Also it is obvious that every factor of a direct product  A of  semi- 
lattices is a retract of A. Therefore a direct product of semilattices is injective if and 
only if each of them is injective. 

We shall now determine the injective semilattices. First some definitions. 

DEFINITION 2.6. A semilattice A is called complete if it is complete in its 
canonical ordering, that is, every subset S of A has a least upper bound V (S) and a 
greatest lower bound A(S).  A sufficient condition for the completeness of  A is that A 
has a 1 and A(S)  exists for every nonempty S~_A. 

DEFINITION 2.7. A complete semilattice A is called (2, oo) distributive if  for 
any family <ai:iel> of elements of  A and any a~A, we have a. Vi~x a i =  V~x aav 
l f A  is (2, oo) distributive, then 

V ai V b j =  V a~b~ 
j ~ J  

for any families <ai: ieI> and <b i:jeJ>. 

T H E O R E M  2.8. l f  A is a semilattice then A is injective i f  and only i f  A is complete 
and(2, oo) ditributive. 

Proof. Suppose A is injective. Then A is an absolute subretract, and so the mono- 
morphism g:A-oS(A) of Theorem 2.1 has a left inverse f :  S(A)~A.  Let <ai: i~1> be 
any family of  elements of A. It  is easy to check that f ( U i ~ t  g(ai)) is the least upper 
bound of  the family, a n d f ( / ' ~ , ~  g(a,)) is its greatest lower bound. Also, for any a~A, 

V aa, = f ( U  g (aa,)) = f ( ~  (g (a) n g (a~))) = f (g (a) c~ U g (a,)) 

= f g ( a ) . f (  u g(a,)) = a. V a,. 
i a I  i ~ I  

This proves the necessity of the conditions. 
Conversely suppose A is complete and (2, oo) distributive. Let f : B ~ C  be an 

monomorphism and g: B ~ A  be a homomorphism. Define h: C-oA as follows: 

h ( x ) = V { g ( z ) : z e B  and f ( z ) ~ < x } .  
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If  x 1, x2~C, then h(xlx2)<~h(xl)h(x2) since h clearly preserves order. Also by 
(2, oo) distributivity, h(xl)  h(xz)= V (T), where 

T = {g (zl) .g  (z2): zl, z 2 ~B, f (zl) <<. xl,  f (zz) <~ Xz}. 

But T~_{g(z):z~B,f(z)<<,xlx2}. Therefore h(xl)h(xa)<~h(xixz),  and h is a homo- 
morphism. Finally, for any element z o of B, we have 

h ( f  (Zo)) = V {g (z): z ~ B, f (z) ~< f (Zo) } 
= v z z [ )  = g ( z o ) ,  

sincefis a monomorphism. The proof is complete. 

COROLLARY 2.9. A finite semilattice is injective if  and only if  it is a distributive 
lattice. 

An immediate consequence of 2.8 is the following. 

THEOREM 2.10. 5 a is injecrively complete, that is, for every semilattice A there 
exists a monomorphism f of  A into an injective semilattice. 

Proof. By Theorem 2.1 there exists a monomorphism of A into S(A),  which is 
certainly injective by Theorem 2.8. 

Now it is clear that in an injectively complete category, every absolute subretract 
is injective. Therefore a semilattice is injective if and only if it is an absolute subretract. 

Injective semilattices exist in great profusion. It is well known that the class of 
(2, c~) distributive complete lattices coincides with the class of complete Heyting 
algebras. Thus examples of injective semilattices are finite distributive lattices and the 
set semilattice of all open sets of a topologic space. 

There is another interesting consequence of the fact that SP is injectively complete. 
Namely, not only do free products (coproducts) exist in SP but also free products with 
amalgamated subalgebras. See the (not quite accurate) discussion in [2, p. t09]. 

3. Injective Hulls 

From the general theory of categories we have the following definitions. 

DEFINITION 3.1. A monomorphism f : A ~ B  is called essential if for every 
morphism g: B ~  C we have: if gfis a monomorphism then g is a monomorphism. 

DEFINITION 3.2. I f  A is a semitattice then an injective hull of A is an essential 
monomorphism of A into an injective semilattice B. We shall also refer to B itself as 
an injective hull of A. 

It is more convenient here to use the language of extensions rather than mono- 
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morphisms. We say B is an extension of  A if A is a subalgebra of B. B is an essential 
extension of A if the identity monomorptfism of A into B is essential. 

The following facts can be proved in any injectively complete equational class of  
algebras with finitary operations. See for example the treatment in [1, p. 91]. If B is 
an essential extension of  A and C is an essential extension of B, then C is an essential 
extension of  A. I f  C is an essential extension of  A then C is an essential extension of 
any intermediate algebra. An algebra A is injective if and only if it has no proper 
extension which is essential. An extension B of A is an injective hull of A if  and only 
if B is a maximal essential extension of A (that is, no extension of B is an essential 
extension of  A). Also B is an injective hull of  A if and only if B is a monimal injective 
extension of A (that is, no intermediate algebra is injective). Every injective extension 
of  A contains an injective hull of  A. If  B and B" are injective hulls of  A, then B and 
B' are isomorphic over A. 

In order to construct the injective hull of  a semilattice, we need the following 
definitions. 

DEFINITION 3.3. A family (a i : i~I )  of elements of a semilattice A is said to be 
distributive if (1) Vi~1 a~ exists, and (2) for any a~A, V ~  aai exists and is equal to 

a" ~/ i~I ai.  

LEMMA 3,4. I f  (a i : i~I )  is distributive, then (aai: i~I)  is distributive for any 
aeA. I f  {aij :jEli} is distributive for each isI, a~ = V j, t ,  a~j and (a~: iEI} is dtstributive, 
then (aii: i~I, j s l l }  is distributive. 

if 
DEFINITION 3.5. An 21 ~ monomorphismf :  A ~ B  is called a regular embedding 

(I) If  aisA for all i~I and /~,~ a i exists, then A i ~  f(a~) exists and is equal to 

f ( A i ~ 1  ai). 
(2) I f  {a,:i~I} is distributive, then V , ~  f(a~) exists and is equal t o f ( V ~  a,). 

DEFINITION 3.6. A nonempty subset J of a semilattice A is called a d-ideal 
provided: 

(1) J is hereditary, that is, if x e J and y -N< x, then y e J, 
(2) If  (a i : i~I )  is distributive, and ai~Jfor all i~I, then V i~r a~aJ. 

LEMMA 3.7. Let B be the set of all d-ideals of a semilattice A with an O. Then B 
is closed under arbitrary intersections and has a largest member. I f  ~ ( S )  denotes the 
smallest d-ideal containing S, then for any nonempty hereditary subset S of A, we have 

~ ( S ) =  {x:x = V xi forsomefamily (a~:i~I)  containedin S}. (1) 
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Proof The first part of the lemma is obvious. Let J denote the right hand side of 
(1). If  J '  e B  and J ' ~  S then J ' ~  J. It remains only to show that J is a d-ideal. Suppose 
y ~< x e J. Then x = V i~t xi, where (x  i: i e I )  is distributive and xis  S for all i. Therefore 
y = x y =  V i~t x iy  and (x~y: i~I )  is distributive by Lemma 3.4. Also x i y ~ S  for all i, 
since S is hereditary. Thus y ~ J  and we have shown that J is hereditary. Using 
Lemma 3.4, it is easily seen that J is closed under joins of distributive families. Thus 
J is a d-ideal and the proof  is complete. 

T H E O R E M  3.8. Let A be a semilattice with 0 and let B be the set of  all d-ideals 
of  A. Let f :A--,B be defined by f ( x ) = x a .  Then the set semilattice B is the injective 
hull of  A and f is a regular embedding. 

Proof By Lemma 3.7, B is a complete set semilattice, the join of a family (Ji : i e I )  
of d-ideals being c~(U ~x Ji). To prove that B is (2, ~ )  distributive, suppose J~B and 
J e B  for all i~I. If  x is any member of Jc~ V i~t .li, then x ~ J  and x ~ ( U i ~  I Ji). By 
Lemma 3.7. x=  Vk~r, Xk, where (Xk :keK)  is distributive and Xke [,Jilt Ji for all k. 
Therefore xk~Jc~ [,Ji~I Ji = ~Ji~l (Jc~Ji) and so x~(~. ,}i~ z (J~J~)) = V i~I (Jc~Ji). 
The converse inclusion V i~t (JcaJi) ~Jca V ieI Ji is obvious. Thus B is injective. It 
is obvious t h a t f i s  a monomorphism a n d f ( A  ~,i ai)= (-'li~t f(a~) whenever A i, t  ai 
exists. Suppose (a~: i s I )  is distributive, and a =  V ~t  ai. Then f(a)~_f(a~) for all i. 
Also if J e B  and J~_f (ai) for all i, then als J for all i, which implies a s J and therefore 
f (a)___ J. This proves that f is a regular embedding. It remains to prove f is essential. 
Let g: B--, C be an 5 ~ morphism such that gfis a monomorphism. We first prove: 

(i) l faEA,  J~B, andg( f (a) )  =g(J),  then a =  V (J).  
If  x ~ J, then g ( f  (ax)) = g ( f  (a)) .g ( f  (x)) = g (J) .g ( f  (x)) = g ( f  (x)) s incef  (x) ~ J. 

Therefore ax=x ,  or x<~a for all xeJ .  Suppose x<<,b for all xsJ .  Then J~_f(b) and 
therefore 

g ( f  (ab)) = g ( f  ( a ) ) ' g ( f  (b)) = g ( J ) ' g ( f  (b)) = g ( J )  = g ( f  (a)) .  

Hence ab = a and so a ~< b. Thus a = V (J). Next we show: 
(ii) I f  a~A, JeB,  and g ( f  (a))=g(J), then J = f  (a). 
I f  x e A ,  then 

g ( f  (xa)) = g ( f  ( x ) ) .g ( f  (a)) = g ( f  (x))'g (J) = g ( f  (x) c3 a). 

Therefore by (i), xa = V ( f  (x) n J). Arrange the members of  J in a sequence (Xk: k e K) .  
Then by (i), a = Vk~r xk. It is easy to check that 

J ca f (x) = {XXk: k e K} .  

Therefore x a = V ( f ( x ) c a J ) = V k ~ r  XXk. This shows that ( X k : k e K )  is distributive. 
Since f is a regular embedding, it follows that f ( a ) =  Vk,K f(Xk).  But it is obvious 
that J =  Vk~K f(Xk)" This proves (ii). 
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Now we are ready to prove that g is a monomorphism. Suppose g(J1)=g(J2), 
where J1, J2 eB. I f a e J  1, then 

g ( f  (a)) = g ( f  (a)) .g (J~) = g ( f  (a))-g (,/2) = g ( f  (a) n J2)- 

By (ii), it follows t h a t f  (a) = f  (a) c~ Jz. T h u s f  ( a )_J2  for all a e J1. This proves J1 - J 2  
and similarly J2 ---J~. The proof  is complete. 

T H E O R E M  3.9. I f  A is any semilattice, then O*A is an essential extension of A 
and therefore the injective hull of A is the same as that ofO* A. 

Proof. We may assume A has no 0. Suppose g : O * A ~ C  is any S~' morphism such 
that g I A is a monomorphism but g(0) =g(a)  for some aeA.  There exists beA such 
that as  so that a#ab. But g(O)=g(O.b)=g(ab), so that g(a)=g(ab). Since g I A is 
a monomorphism, we have a contradiction. 

Theorems 3.8 and 3.9 give an explicit construction for the injective hull of any 
semilattice. I f  A has no 0, we may describe its injective hull as the set semilattice of  
all d-ideals of A together with the empty set. As an illustration of this construction, it 
is easy to see that if A is a set semilattice containing all one-element subsets of a set X, 
then the injective hull of  A is S(X) .  

We close this section with the following remark. 

T H E O R E M  3.10. I f  A and B are semilattices with 0 and A' and B' are there speetive 
injeetive hulls of A and B, then the injeetive hull of  A x B is A' x B'. 

Proof. We may assume A' and B' are extensions of A and B. Then A' x B' is an in- 
jective extension of A x B. Suppose g:A' x B ' ~  Cis an 5 a m orphism such that g I (A x B) 
is a monomorphism. Suppose (xl, y l )  and (x2, Y2) are in A' x B' and g ( x l , y l )  
=g(x2,  Y2) but (xl, y l )# (x2 ,  Y2)- Without loss of generality, suppose x i # x 2 ,  and 
say xa s  Since every d-ideal of A is a union of principal ideals, every element x of 
A' is the least upper bound of all elements of  A which are < x. Therefore exists aeA 
such that a<~xl but a~_x2. Also there exist b~, b2eB such that b~<y~ and b2<~y 2. 
Let b = bib2. Let h: A' ~ C be defined by h (x) = g  (x, b). Then h [ A is a monomorphism. 
Therefore h is itself a monomorphism. But 

h (a) = g(a,  b) = g((a, b) . (x l ,  Yl)) = g((a, b)" (x2, Y2)) 
= g (ax2, b) = h (aXE). 

This implies that a=ax2, or a<<.x2, which is a contradiction. This completes the 
proof. 

If  both A and B have no 0, the injective hull of A x B  is (A ' -{0})  x ( B ' - - { 0 } ) u  
u {(0, 0)}, and there is a corresponding result in the case where exactly one of A, B 
has a 0. We omit the proofs which are quite similar to that of Theorem 3.10. 
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4. Free Semilattiee Over a Partially Ordered Set 

If  A is a semilattice and X is a subset of A then X is said to freely generate A if X 
generates A and any functionf:X-~B, BeSr can be extended to a homomorphism 
g:A ~B.  We shall need the following generalization of this concept. 

THEOREM 4.1. Let P be any partially ordered set. There exists a semilattice P* 
containing P such that P generates P* and every order preserving function f ::P~B, 
BeNr can be extended to a homomorphism f *  :P*~B. The set of s.m.i, elements of P* 
coincides with P. P * is unique up to isomorphism over_P. 

Proof. Let P* be the set of all nonempty finite discrete subsets of P. I f  S l, $2 ~P* 
define S 1 ~< $2 if every member of $2 is t> a member of Si. This is clearly a partial 
ordering and S1 A $2 is the set of minimal elements of S 1 u $2. Hence (P* ,  n > is a 
semilattice. Let h : P o P *  be defined by h(x)={x}.  Then h is an order embedding, 
that is, x < y  if and only if h(x)<<.h(y). Now supposef:P-oB is an order preserving 
function, where Be~9 ~ Define f * : P * ~ B  as follows: f * ( S ) =  A ( f ( S ) ) .  For any 
St, S2eP *, 

f *  (S1) ' f*  (Sz) = A ( f  (Si))" A ( f  ($2)) = A ( f  (S1 u $2) ) 
~</~ ( f  (Si ^ Sz)) = f *  (St ^ $2), 

since $1 u Sz ~- Sl ^ $2. Since f *  clearly preserves order we have f *  (Si ^ Sz) <.f* (S1) x 
i f *  (Sz), and therefore f *  is a homomorphism. Also for any xeP, f * h  (x) =f*({x}) 
=/(x). 

If  xeP, S1eP* ,SzeP*  and {x}>~SI^S2, then x is /> a member of SIuS2 .  
Therefore {x} >/$1 or {x}/> $2, and so {x} is s.m.i. The uniqueness of P* follows in 
the usual way from the fact that h(P) generates P* since S=/~x~,  {x} for any SeP*. 

Note that if P is already a semilattice, then P* may not coincide with P. For 
example if P = {0, a, b}, where 0 < a, 0 < b and a and b are incomparable, then P* has 
four members {0}, {a}, {b} and {a, b} = (a}. {b}. 

THEOREM 4.2. Let A be a semilattice which is generated by the set M of its 
s.m.i, elements. Then A = M*. 

Proof. Let f :  M * ~ A  be defined b y f ( S ) =  A(S). Since M generates A, f i s  onto. 
f i s  a homomorphism because /k (S1 ^ $2) = /~  (S1 w $2) for any Si, $2 eM*.  Suppose 
f ( S 1 ) = f ( S 2 )  and xeSt .  Then x~>/~(S1) =/k(S2). Since x is s.m.i., x must be/> some 
member of  $2. Thus S 1/> $2 and similarly $2 ~< $1. This proves that f is one-to-one 
and is thus an isomorphism. 

THEOREM 4.3. Every free semilattice is isomorphic to So,(X)for some X. 
Proof. A free semilattice is of the form X*, where X is a discrete partially ordered 
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set. In this case X* consists of  all nonempty finite subsets of X and S t A S 2 = S t u $2 
for all $1, S2~X*. 

COROLLARY 4.4. Every free semilattice is isomorphic with the set semilattice 
of  all proper cofinite subsets of  a set X. 

Proof. The canonical ordering of X* is exactly the opposite of  the inclusion 
relation. If  we map subsets of  Xinto  their complements this will also reverse the inclu- 
sion relation. 

5. Projective Semilattices 

D E F I N I T I O N  5.1. A semilattice A is called projective if for every S z epimorphism 
f :  C---,B and every homomorphism g:A--*B there exists a homomorphism h :A--,C 
such tha t fh  =g.  

For  any equation class of algebras, the following statements are easy to prove. 
Every free algebra is projective. A retract of a projective algebra is projective. An 
algebra A is projective if and only if it is an absolute quotient retract, that is, every 
epimorphism onto A has a right inverse. An algebra is projective if and only if it is 
a retract of  a free algebra. 

DEF INI TI ON 5.2. A ring of sets is a family R of sets such that if A, BER, then 
A u B ~ R  and A n B ~ R .  

The following theorem describes the projective semilattices. 

T H E O R E M  5.3. For any semilattice A, the following are equivalent: 
(1) A is projective, 
(2) (a) for all x~A,  x a is finite, and 

(b) I f  x, y, z~A and x>>.yz, then either x>>.y, or x>>.z, or x = x l x 2  for some 
xl ,  x2 such that x 1 >t y and x2 >>- z, 

(3) (a) For al lx~A,  x a isfinite, and 
(b) A * 1 is a distributive lattice, 

(4) A * 1 is isomorphic with ( R, u ),  where R is a ring of finite sets, 
(5) l f  M is the set of s.m.i, elements of A, then M generates A and for each x e M ,  

x M isfinite. 
(6) A = P ' f o r  some partially ordered set P such that x ~ is finite for all x~P. 
Proof. (1) --* (2). I f  A is projective, then A is a retract of  a free semilattice. There- 

fore for some X there exist homomorphismsf :  So, (X)~A and g: A--,S,~(X) such that 
f g=Ja .  Since the canonical order of So,(X) is opposite to the order by inclusion, 
g (x  a) is a set of subsets of g(x). But g is necessarily one-to-one and g(x) is finite. 
Therefore x a must be finite. Now suppose x>~y.z. Then g(x)>>,g(y).g(z), and so 
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g(x) ~ g ( y )  u g(z). Therefore 

g (x) = (g (x) g (y)) (g (x) g 

I f  g(x ) r ig ( y )  is empty, then g(x)C_g(z) and therefore x=fg(x)>~fg(z)=z.  Similarly 
if g(x)  rig(z) is empty, then x>~y. Otherwise, let x 1 = f ( g ( x )  r ig(y))  and x2 =f(g (x )  n 
c~ g(z) ). Then x=fg (x )  = x 1 " x2, and x 1 >~ fg (y )  = y, x2 >~ fg(z)  = z. 

(2) ~ (3). Let x, y e A .  1. "[hen { z e A .  1 :z>~x and z>~y} is finite, nonempty and 
closed under -. Therefore x v y  exists, and A * 1 is a lattice. Next we show that A .  1 
satisfies the dual form of the distributive law, that is, 

(x v y) (x v z) = x v y z .  

This holds if x = l ,  y = l  or z = l .  Since xvyz>>.yz, we have x v y z = x l ' x  2 where 
xl ~>y and x2>~z (xl or Xz may be 1). Since xl ~>x and x2>>.x, we have x v y z = x  a .Xz>>- 
> . ( x v y ) . ( x v z ) .  The reverse inequality x v y z < < . ( x v y ) . ( x v z )  is obvious and this 
completes the proof.  

(3) ~ (4). We first show that every element of  A * 1 is a finite product  of  meet irre- 
ducible elemets. I f  some element x is not so expressible, then x = y ' z  where y > x, z >  x, 
and either y or z is not so expressible. Continuing, we obtain an infinite chain of  
elements > x ,  which contradicts (3)(a). Let M be the set of  all meet irreducible 
elements o fA  * 1. Def ine f :A �9 1 ~So, (M)  b y f  (x) = {yeM:y>~x}.  By the first remark, 
f i s  one-to-one. N o w f  ( x l x 2 ) = f  ( x l ) u f  (x2) for any xl,  Xa cA, since every element of  
M is s.m.i, in A * 1 by (3)(b). Also f ( x  1 v x z ) = f  ( x ~ ) n f ( x z ) ,  obviously. Thus A .  1 
is isomorphic w i t h f  (A * 1), which is a ring of finite sets. 

(4) ~ (3) is obvious. 
(3) ~ (5). In the proof  of(3) ~ (4), we saw that every element o fA �9 1 is a product of  

s.m.i, elements of  A * 1. But every element of  A which is s.m.i, in A .  1 is s.m.i, in A. 
I t  is now obvious that (5) holds. 

(5) ~ (6) is an immediate consequence of  Theorem 4.2. 
(6) ~ (1) There exists an epimorphism f :  F ~ P * ,  where F is a free semilattice. For 

each x eP,  select an element g (x) such tha t fg  (x) = x. Let h : P ~ F  be defined by 

h(x)  = A {g(Y):Y/> x}. 

Then h is order preserving a n d f h ( x ) = x  for all xeP.  Extend h to a homomorphism 
h* :P*~F.  Since P generates P*,  we havefh*  = IF.. Thus P*  is a retract o f F  and P*  is 
projective. 

C O R O L L A R Y  5.4. I f  A is a finite semilattice, then A is projective i f  and only i f  
A * 1 is a distributive lattice. 

Proof. This follows immediately from (3) of  Theorem 5.3. 



36 A. Horn and N. Kimura ALGEBRA UNIV. 

DEFINITION 5.5. I f  A is a semilattice, let .4= O. A * 1. 

THEOREM 5.6. I f  A is a projective semilattice, then .4 is injective. 
Proof. Let X be a set of the same cardinal as A, and let F=So,(X) .  Then F is the 

semilattice, under union, of all finite subsets of X together with X itself. F is certainly 
complete, and if a i~F  for all i~I, then in the canonical ordering, A i~i ai= ("]i~I ai. 
Therefore for any aeF, we have 

a.  V a~ = a u (~ a~ = ('~ (a u ai) = V aa~. 
i ~ I  i ~ l  i ~ I  i e l  

By Theorem 2.8,/v is injective. Since F is free and A is projective, there exist homo- 
morphsims f : F ~ A  and g : A ~ F  such that f g =  In. Extend f to a homomorphism 
f : F ~ f i  by defining f ( 0 ) = 0  and f ( 1 ) = l .  This definition is consistent since if F 
already has a 0, then so does A because f is onto. Extend g to a homomorphism 

: A--* F by defining ~ (0) = 0 if A has no 0, and g (1) = 1 if A has no 1. Clearly f~  = ln. 
Thus .4 is a retract of/v and s o .4 is injective. 

THEOREM 5.7. A semilattice A is a homomorphic image of  an injective semi- 
lattice i f  and only i f  A has a 0 and a 1. 

Proof. The necessity is obvious. Suppose A has a 0 and a 1. There exists an epi- 
morphismf :  F ~ A ,  where F is a free semilattice.fcan be extended to an epimorphism 
f :  F~-4  by definingf  (0) = 0 a n d f  (1)= 1. By Theorem 5.6, Fis  injective and the proof 
is complete. 

We close this section with the following example. 

THEOREM 5.8. There exists a projective semilattice A such that A x A is not 
projective. 

Proof  Let A be the three-element semilattice {0, a, b}, where a .O=b.O=a.b=O.  
Then A is projective by Theorem 5.8(3), since A .  1 is the four element Boolean 
algebra. However (.4 x A)* 1 is not distributive since 

(0, a).((a,  0) v (b, 0)) = (0, a)- 1 = (0, a) ,  
while 

(0, a) .(a,  O) v (0, a). (b, O) = (0, 0). 

Therefore by Theorem 5.8(3), A x A is not projective. 

6. Projective Covers 

The notion of projective cover is obtained by dualizing the concept of injective 
hull. 
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DEF INI TI ON 6.1. An epimorphismf:  B ~ A  is called tight if for every morphism 
g: C ~ B  we have: i f fg is an epimorphism then g is an epimorphism. 

It is easily seen that an epimorphismf:  B ~  A is tight if and only if for every proper 
subalgebra C of  B , f  (C) ~ A. 

DEFINITION 6.2. A projective cover of a semilattice A is a tight epimorphism 
from a projective algebra B onto A. We shall also refer to B as a projective cover of A. 
The following theorem gives the uniqueness of projective covers. 

T H E O R E M  6.3. I f  f : B ~ A  and f '  : B ' ~ A  are projective covers of A, then there 
exists an isomorphism h: B'--*B such that f '  =fh. 

Proof. Since B is projective, there exists a homomorphism g : B ~ B '  such that 
f = f ' g ,  g is an epimorphism becausef '  is tight. B' being an absolute quotient retract, 
there exists a monomorphism h : B ' ~ B  such that gh = IB,. N o w f h  =f'gh =f ' ,  a n d f i s  
tight. Therefore h is onto and h is an isomorphism. 

In contrast to the situation for injective hulls, not every semilattice has a pro- 
jective cover even though every semilattice is a homomorphic image of  a free semi- 
lattice. The following theorem describes the situation. 

T H E O R E M  6.4. Let A be a semilattice and let M be the set of  meet irreducible 
elements of  A. Then A has a projective cover i f  and only i f  M generates A and for each 
x e M ,  x u is finite (compare with Theorem 5.3(5)). In this case, the projective cover of 
A i s M * .  

Proof. Suppose f :  B ~ A  is a projective cover. Let N be the set of s.m.i, elements of  
B. To prove that M generates A, we need only to s h o w f ( N ) ~ M .  Let x e N  and let C 
be the subalgebra of B which is generated by N -  {x}. 

Iff(x)~f(c), then f ( N ) ~ f ( C )  and so f ( C ) = A .  Since f is tight, C = B  and 
so xeC .  Therefore x = x  I . . . . .  x,, where x~eN and x ~ x  for all i. This contradicts the 
fact that x is meet irreducible. H e n c e f ( x ) ~ f ( C ) .  Now suppose f (x )~M.  Then there 
exist u, v such that f (x) = f  (u) - f  (v), f (u) > f  (x) and f (v) > f  (x). But then uv (E C. 
Since N generates B, we have 

U / )  = X ' X  1 . . . . .  Xn, 

Where x i e N -  {x}. Hence x >1 uo and therefore x 1> u or x ~> v. This implies f (x)>>,f(u) 
o r f  (x) ~>f (v), which is a contradiction. This proves that M generates A. 

Next we shall show that for each x6M,  x a is finite. Suppose x a is infinite for some 
x e M .  For each aeA,  choose an element g(a) such that fg (a )= a. Let T =  {g(a):a > x}. 
By Theorem 5.3(2), only finitely many elements of Tare  >>.g(x). Since Tis infinite, there 
exists an ao eA such that a o > x and g(ao) ~. g(x). Let S = {g(a):a ~ x} u {g(ao).g(x)}. 
Then f (S) = A since f (g(ao) .g(x)) = a o "x = x. Therefore S generates B because f is 
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tight. Hence 
g(x) = g ( a l )  . . . . .  g(a.) 

where a i ~ x for  i =  1 . . . .  , n, because g(ao).g(x) <g(x). Apply ingfwe  have 

X = a 1 . . . . .  an, 

which contradicts the fact that x is meet irreducible. This proves the necessity of  the 
conditions. 

Now assume M generates A and x M is finite for all xeM.  By Theorem 4.1 there 
exists a h o m o m o r p h i s m f : M * ~ A  such t h a t f ( { x } ) = x  for  all xeM.  f i s  onto be- 
cause M generates A. By Theorem 5.3(6), M*  is projective. Since {{x}:xeM} gener- 
ates M*,  f will be tight if  we prove: if SeM* and f ( S ) = x ,  xeM,  then S =  {x}. Let 
S = { x  1, D, x,}. Then S={x l}  . . . . .  {x,} and s o f ( S ) = x = x  1 . . . . .  x,. Therefore x=x ,  
for some i and x~ I> x for all i. Since S is discrete, we must have S = {x}. 

As an illustration, let X be a set of  four elements and let A be the set semilattice 
consisting of  all subsets of  X with cardinal ~ 3. Then the projective cover of  A is 
S(Y) ,  where Yis a set of  cardinal 6, while the injective hull of  A is S(X). 

For  a final example, let A be the partially ordered set {ai:i=O, 1, 2 , . . . }w{bi : i  
=0 ,  1, 2,...}, where ai<a~+1 and a~<b~ for all i. Then (A, A )  is a semilattice in 
which a~ = bi ^ b, +1 and b, is meet irreducible for all i. Since {bi:i = 0, 1 . . . .  } is discrete, 
the projective cover of  A is the free semilattice with N o generators. This example shows 
that if x is an element of  a semilattice A wlaich has a projective cover, x x need not be 
finite. 
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Addendum. Theorems 2.8 and 3.8 were obtained independently by G. Bruns and 
H. Lakser in their paper Injective hulls of  semilattices, Canadian Mathematical 
Bulletin, vol. 13, 1970, pp. 115-118. The problem of characterizing the subalgebras of  
free semilattices has been solved by K. Baker (to appear). 
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