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Abs t r ac t  This paper presents a new technique of unified probabilistic models for face recognition from only 
one single example image per person. The unified models, trained on an obtained training set with multiple 
samples per person, are used to recognize facial images from another disjoint database with a single sample per 
person. Variations between facial images are modeled as two unified probabilistic models: within-class variations 
and between-class variations. Gaussian Mixture Models are used to approximate the distributions of the two 
variations and exploit a classifier combination method to improve the performance. Extensive experimental 
results on the ORL face database and the authors' database (the ICT-JDL database) including totally 1,750 
facial images of 350 individuals demonstrate that the proposed technique, compared with traditional eigenface 
method and some well-known traditional algorithms, is a significantly more effective and robust approach for face 
recognition. 
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1 I n t r o d u c t i o n  

Over the past  few years, automated face recogni- 
tion has received significant at tention and become 
one of the most active research areas in computer  
vision and pa t te rn  recognition. There are at least 
two reasons for this trend: the notable growth in 
the wide range of commercial and law enforcement 
applications, and the availability of many new fea- 
sible technologies after over 30 years of research. 

Numerous methods have been proposed for face 
recognition within the last several years. Generally 
they can be classified into two categories according 
to feature-extraction techniques: analytic geomet- 
rical feature based and holistic template matching 
based. 

The analytic geometrical-feature-based tech- 
niques are based on the computat ion of a set of ex- 
plicit geometrical features from a facial image, such 
as the relative positions and other parameters  of 
eyes, mouth,  nose, chin and face-outline. Wiskott  
et al. proposed an elastic bunch graph matching 
method [1], which extracts concise face descriptions 
in the form of image graphs. Cootes et al. devel- 
oped an Active Shape Model (ASM)[ 2] to model 
shape and local gray-level appearance and locate 
flexible objects in new images. Lanitis et al. used 
this approach to interpret face images and warp the 

face into a normalized frame [3]. Following that ,  
Cootes et al. presented an Active 'Appearance 
Model (AAM)[ 4], which is a generalization of the 
ASM and uses all the information in the image re- 
gion covered by the target  object, rather  than  just  
that  near modeled edges. Penev et al. developed a 
technique of Local Feature Analysis (LFA) [5] that  
builds a sparsely-distributed representation of faces 
in terms of flexible templates of local features. 

The holistic template matching methods do not 
use any detailed biometric knowledge of the human 
face, but consider the global properties of facial 
images. Based on Principal Component  Analysis 
(PCA), an effective technique for signal representa- 
tion and dimensionality reduction, Turk et al. pro- 
posed an eigenface system, which projects face im- 
ages onto a feature space that  spans the significant 
variations among known face images [6]. The eigen- 
face method, being a milestone work, has become 
a common performance benchmark for compari-  
son in the area. As a classical pa t te rn  recognition 
technique, Linear Discriminant Analysis (LDA) 
has been applied for face recognition [z-9]. Un- 
like PCA that  derives Most Expressive Features 
(MEF),  LDA derives Most Discriminating Features 
(MDF) [s] and becomes an at tract ive choice for face 
recognition and verification tasks. However, LDA 
may suffer from poor generalization of new data,  
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especially when the training dataset is small or not 
representative[l~ 

Furthermore, in very recent years quite a num- 
ber of novel techniques have been exploited in 
face recognition, such as: Support Vector Ma- 
chines (SVMs) [11-131, kernel methods [14-1a], In- 
dependent Component Analysis (ICA) [171, Gaus- 
sian Mixture Models (GMMs) [ls-2~ Neural 
Networks [21-241, evolutionary pursuit [2s], proba- 
bilistic reasoning m0dels [26], optimal discriminant 
vectors [27'281, Fourier transform [291, nearest feature 
line [3~ Hidden Markov Models (HMMs) [al], Haus- 
dorff distance[ 321 and dual attribute graph [331. 

Face recognition differs from many other tradi- 
tional classification problems such as optical char- 
acter recognition (OCR). In a traditional classifica- 
tion application, there are usually few classes but 
numerous samples for each class. With numerous 
samples per class, samples not seen before can be 
classified by interpolating among the training data  
points. In contrast, for a system of face recogni- 
tion, there are popularly a large number, often over 
several hundreds, of subjects and only a few im- 
ages for each person. And it is not uncommon to 
have only a single example image for each person in 
many applications. Hence face recognition becomes 
a problem of extrapolation from the single samples, 
and the simple Euclidean nearest-neighbor match- 
ing technique is often adopted [a] , as most advanced 
classification techniques perform poorly with only 
one sample per class. 

However, face recognition has another very im- 
portant  and particular characteristic, which has 
hardly ever been pointed out explicitly in litera- 
ture so far as we are aware of: human faces are 
very similar objects with similar geometrical shape 
and configuration; and as a result, the variations of 
each specific person's facial images, due to changes 
of pose, illumination, expression, age and so on, 
are rather similar to each other. Therefore, using 
a training set with multiple samples per class from 
a given known people group, which is usually easy 
to be obtained, we can build unified probabilistic 
models to model all the variations corresponding 
to each specific subject. Then the unified proba- 
bilistic models trained on samples from a known 
people group, for the significant similarity of the 
variations, can be generalized well to samples from 
another different unknown people group. Conse- 
quently, the considerable generalization of the uni- 
fied models provides a promising solution to the 
problem of face recognition from a single example 
image for each target person. The special and in- 
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teresting characteristic is demonstrated by the fol- 
lowing extensive experimental results. 

To some extent, the idea of unified models is 
originated from the techniques in [11, 34], but  
the excellent generalization of the unified mod- 
els to unknown people's facial images was never 
mentioned explicitly. Moghaddam e t a / .  [34] pro- 
posed a novel method for face recognition based 
on a Bayesian analysis of image differences, which 
performed consistently near the top in the 1996 
F E R E T  test [35]. In the approach, variations be- 
tween facial images are modeled as two mutu- 
ally exclusive classes: intra-personal (variations 
in appearance of the same individual, due to dif- 
ferent expressions, poses or lighting) and extra- 
personal (variations in appearance due to a dif- 
ference in identity). Afterwards, both the classes 
are assumed as normal distributions, and then two 
kinds of similarity measures, maximum a posteriori 
(MAP) and maximum likelihood (ME), are com- 
puted. The MAP similarity measure is based on 
both intra-personal differences (within-class varia- 
tions) and extra-personal differences (between-class 
variations); however, the ML approach only uses 
intra-personal differences (within-class variations). 
It was reported that  the former outperformed the 
latter with a minor (2-3%) increase in recognition 
rate according to the experimental results. In the 
same way as [34], Philips [11] also modeled dissim- 
ilarities between two facial images as two classes: 
dissimilarities between facial images of the same 
person, and dissimilarities between facial images of 
different people. Differing from [34], SVMs are di- 
rectly applied to the two-class problem to produce a 
similarity measure between two facial images. Both 
the techniques achieved much bet ter  performances 
than the standard eigenface approach in the respec- 
tive experiments. 

There are inevitably some inaccuracies and lim- 
itations with the approach in [34], which simply 
uses normal density to model the distributions of 
the two kinds of variations, since it is usually dif- 
ficult to provide a proper representation of a prac- 
tical distribution by a common typical distribu- 
tion form of a parametric function in statistics. 
Consequently, we propose a technique to model 
the variations using GMMs instead of normal den- 
sity, since an important at tr ibute of mixture mod- 
els is that they can approximate any continuous 
density to arbitrary accuracy provided the model 
has a sufficiently large number of components, and 
provided the parameters of the model are chosen 
correctly [&6] . Note that GMMs were also used in 
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[18-20], in a different manner, to learn the global 
distribution or a specific distribution but not the 
variations'  distributions. Since the selection of the 
number of mixture components is still an open 
problem, we choose a method of classifier combi- 
nation as a solution and make a notable improve- 
ment on performance. In our approach, the uni- 
fied models are trained on an obtained training 
set with multiple samples per person. Then the 
trained models are used to recognize facial images 
from another disjoint database with a single sam- 
ple per person. Extensive bxperimental results on 
the ORL face database and our own database (the 
ICT-JDL database) including totally 1,750 facial 
images of 350 individuals show that  our technique 
outperforms remarkably the two above-mentioned 
methods and the standard eigenface approach, and 
demonstrate  that  the unified probabilistic models 
are an effective and robust technique for face recog- 
nition from only a single example facial image per 
person. 

The remainder of this paper is organized as fol- 
lows. In Section 2, the unified models of within- 
class variations and between-class variations are 
described. Section 3 gives a brief description of 
Gaussian Mixture Models. Section 4 introduces the 
process of combining multiple GMMs based on the 
mean rule. The experimental procedures and re- 
sults are presented in detail in Section 5. In Section 
6, we discuss some important  issues concerning the 
proposed approach. Finally, we conclude and give 
future work in Section 7. 

2 W i t h i n - C l a s s  V a r i a t i o n s  a n d  
B e t w e e n - C l a s s  V a r i a t i o n s  

As shown in [34], the intensity difference be- 
tween two facial images/1 and/2  is denoted by A = 
I1 - - /2 .  Then two mutually exclusive classes are 
defined as: within-class variations f~s and between- 
class variations f~E- Consequently, an M-ary  clas- 
sification problem for M individuals is reduced to 
a binary classification problem with f~* and aE-  

In terms of the within-class a posteriori proba- 
bility as given by MAP rule, the similarity measure 
between two facial images can be directly defined 
as :  

can be defined in simpler form using the ML rule 
instead of the MAP rule by only exploiting the 
within-class variations, 

S(I1, I2) : P(LXI~I) (2) 

Therefore, when in identification there is a 
gallery {Yl} of M individuals and a probe x is to 
be identified, the similarity score between x and 
each Yt is S(x,  Yz). Accordingly the probe is identi- 
fied as person k with the max imum similarity score, 
namely 

k = arg maxiS(x,  y,) (3) 

where l = 1 , . . . , M .  
To make a theoretical analysis of the variations, 

we write the conditional density P ( A ] ~ I )  as a lin- 
ear combination of the densities of the with-class 
variations of each class, and P(AIf]E)  as a linear 
combination of the densities of the between-class 
variations of each two different classes respectively. 

N 

P(Al~-r) = Z p(Al~i i)P(S2. lgt , )  (4) 
i = l  

N N 

P(AlaE)  = Z E P(A[f~o)P(aiJ[aE) 
i=1 j=~,~#i (5) 

where ~tij is denoted as the variations from class 
i to class j ,  and N the total  number of all human 
beings as we consider an ideal condition (which can 
also be denoted as the number of individuals in the 
training set for another consideration). 

Generally, all individuals are treated evenly. 
Uniform "fiat" priors are adopted: P(~2iiIaI) = 
1 / N  in (4) and P ( a ~ l a E )  = 1 / ( N  x ( N  - 1)) in 
(5). As a result, we obtain P ( a s )  = N / N  ~ = 1 / N  
and P(~E)  = N • ( g  - 1 ) /N  9 = ( N  - 1 ) / g .  

We denote each specific class-conditional proba- 
bility density function as f~ (x). And then p(Ai~2~j), 
the pdf  of the difference between two independent 
random variants, can be writ ten as 

p (Ala i j )  = f f l f f  f~(A + z ) f j ( z )dz .  (6) 

For simplification, p(AIf~ij) can be denoted as 
pi j (A) .  Hence we obtain 

s(Ii,h) =p(A e ai) : e(aiIzx) 
p ( A I n x ) P ( ~ I )  

p( lai)P(ai) + p( xlaE)p(a ) (1) 

An alternative probabilistic similarity measure 

1 N 

P(AlaI) =ff  Z 
i=1  

1 k f ? S f i ( A + z ) f i ( z ) d z  
N i=1 (7) 
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N N 
1 

i=1  j = l  

N N 
1 

i=1  j = i  
j;t~ 

�9 ffff f i (A + z)f j(z)dz.  (s) 

Consequently, we can write the unified decision 
rule of the MAP method as 

N 
E i = l  p i i ( X  -- Yt)  

k = arg max, ~N= 1 N 

~-~fv f+~  f i ( ( x -  y,) + z)f~(z)dz 
= arg max/  

 j=l - v,) + z)L(z)dz 
o o  

(9) 

and the unified decision rule of the ML method as 

N 

k = arg max t E P i i ( X  --  Yl)  
i = i  

= arg max, E f i((x - Yl) + z)f i(z)dz 
i = I  (io) 

I t  is easy to find that ,  if all the specific densities 
are normal densities with equal covariance matrices 
and different mean vectors, both  decision rules are 
equivalent to the Bayes optimal classifier. 

However, it is really troublesome to compute 
the theoretical errors of the two decision rules, as 
(9) and (10) demonstrate.  In [34] the experimental  
results show tha t  the unified MAP always makes a 
minor improvement over the unified ML, but all of 
our simulation data,  on the contrary, demonstrate  
tha t  the lat ter  moderately outperforms the former. 
In Section 6, the problem is discussed in more de- 
tail. 

3 G a u s s i a n  M i x t u r e  M o d e l s  

GMMs are a semi-parametric approach to den- 
sity estimation, combining the advantages of bo th  
parametr ic  and non-parametric  methods. GMMs 
are not restricted to specific functional forms, 
where the size of the model only grows with the 
complexity of the problem being solved, and not 
simply with the size of the data set [36]. 
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GMMs are defined as a linear combination of K 
component normal densities p(x]i): 

K 

p(x) =  p(xli)P(i) (11) 
i = i  

where the number K of components is typically 
much less than  the size T of the training data  set 
{xt}. Such a representation is called a mixture 
distribution [3a] and the coefficients P(i) are called 
the mixing parameters.  

P(i) can be regarded as the prior probabili ty 
of the data  point generated from component i of 
the mixture. These priors are chosen to satisfy the 

K 

constraints: E P(i) = 1 and 0 ~< P(i) <. 1. 
i=l.  

The component density functions p(x[i) are nor- 

malized so that  / p ( x ] i ) d x  = 1, and hence can be 
J 

regarded as class-conditional densities. 
Each component density p(x]i) is assumed to 

be a normal density with a covariance matr ix  Ei 
and a mean vector /~i. Firstly, the mean vector 
~i and the covariance Ei for each Gaussian com- 
ponent is initialized using the K-means  algorithm, 
and P(i) is initialized as 1/K.  And then, the pa- 
rameters of GMMs can be achieved in a maximum 
likelihood framework by the well-known iterative 
expectat ion-maximization (EM) algorithm [37]. 

4 C o m b i n a t i o n  o f  M u l t i p l e  G a u s s i a n  
M i x t u r e  M o d e l s  

Although GMMs are a popular  tool for density 
estimation, choosing the number  of mixture com- 
ponents is still an open problem. There are many 
approaches proposed recently to this problem. But 
our intention here is to investigate the basic ef- 
fectiveness of the GMMs approach. So we adopt 
a simple classifier combination approach based on 
the mean rule, for that  a combination of many dif- 
ferent classifiers can lead to notable improvements 
in the predictions on new da ta  and outperform the 
best single classifier used in isolation [36], and that  
the classifier combination scheme of mean rule can 
usually outperform many other schemes such as the 
product  rule, min rule, max  rule, median rule, and 
majori ty  voting[3S'a9]. 

By setting various numbers K of GMMs'  com- 
ponents, different GMMs are produced to approxi- 
mate  the densities of the two kinds of variations 
between facial images, and then different classifiers 
are yielded. 
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It  is supposed that  we have obtained a set of 
L various classifiers Ct, where l = 1 , . . .  ,L  based 
on different GMMs. Then for a gallery {Yi} of M 
known individuals, the similarity score between a 
probe x and each yi presented by a classifier Cz is 
denoted as St(x, yi). 

The similarity scores are firstly normalized as 

two databases. As to the unified MAP, the uni- 
fied ML and our method,  the principal subspace 
dimensions for f~I and ftE are set as Mr = 50 
and ME = 50, respectively. The SVM-based al- 
gorithm, using a radial basis kernel, is conducted 
on the principal subspace consisting of the first 50 
eigenfeatures. 

y,) (12) 
sf( , y.,) = S (x, w)  

and then the mean combination rule is introduced 
to obtain the combined similarity score 

L 
1 

s . . . .  ( x , v , ) :  (13) 
1=1 

As a result, the probe is identified as person k 
with 

k = arg max Scom(X, w) (14) 

5 E x p e r i m e n t s  

In order to evaluate the performance of the tech- 
nique, extensive experiments are conducted on two 
face databases: the ORL database and a larger 
database,  our own ICT-JDL database, consisting 
of 1,750 facial images of 350 individuals. 

We approximate  the two distributions using 
GMMs with different numbers of components and 
obtain two kinds of similarity measures based on 
the unified MAP rule and the unified ML rule re- 
spectively. Finally, combined similarity measures 
are obtained based on the classifier combination 
scheme of mean rule. In all our experiments, the 
lat ter  outperforms the former with a minor advan- 
tage in the recognition rate, contrary to the exper- 
imental  results of [34]. We therefore show only the 
results of our approach based on the unified ML 
rule in this paper.  For comparison, the s tandard 
eigenface approach, SVM [11], the unified MAP[ 34] 
and the unified ML[ 34] are also evaluated with the 

5.1 O R L  D a t a b a s e  

The ORL database [4~ is from the Olivetti Re- 
search Laboratory in Cambridge, U.K. There are 
ten different images for each of 40 distinct sub- 
jects. For some subjects, the images were taken at 
different times, varying the lighting, facial expres- 
sions (open/closed eyes, smiling/not smiling) and 
facial details (with glasses/no glasses). All the im- 
ages were taken against a dark homogeneous back- 
ground with the subjects in an upright, frontal po- 
sition, with tolerance for some tilting and rotation 
of up to about  20 degrees. There is some varia- 
tion in scale of up to about  10%. The images are 
of grayscale with a resolution of 92 • 112. Some 
examples from the database are shown in Fig.1. 

The 400 images are divided into non- 
overlapping training and testing sets. Each set 
consists of 10 images of 20 people. Accordingly 
1,800 (P120 • 20) within-class difference samples and 
38,000 (P220 x 10 • 10) between-class difference sam- 
ples corresponding to the classes 12r and f i e  respec- 
tively are created from the training set. 

A gallery is built by randomly selecting 20 im- 
ages from the testing set, with one image per per- 
son, and the remaining 180 images make up a probe 
set. This random selection has been repeated for 
100 times to create 100 different galleries and 100 
different probe sets accordingly. All recognition 
techniques to be evaluated below are assessed with 
these 100 testing sets. 

As the s tandard eigenface approach, SVM, the 
unified MAP and the unified ML obtain average 
recognition rates of 71.38%, 77.78%, 79.87%, and 

Fig.1. Some examples from the ORL database. 
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81.68% respectively. We combine GMMs with 1 
to 8 Gaussian components using the mean combi- 
nation method and achieve an average recognition 
rate of 84.25%. Table 1 shows that our method 
outperforms all the others as a robust technique. 

Table 1. Results for ORL Database by Different Methods 
Average 

Approach recognition Variance 
rate (%) 

Eigenface [6] 71.38 0.0434 
SVM[ 11] 77.78 0.0384 
Unified MAP[ 34] 79.87 0.0237 
Unified ML [34] 81.68 0.0323 
Combination of GMMs 84.25 0.0275 

Fig.2 illustrates the average recognition rates 
according to GMMs with 1 to 8 components and 
the combinations of them. It is notable that the 
combinations demonstrate a remarkable robustness 
and outperform the best of the individual GMMs 
when the number of the combined GMMs is not 
too small. 

85 

84 

O 

J-~ Combination of GMY.:[s] ! 

82 

81 

80 

79 
1 2 4 o 7 8 

Number of mixture components 

Fig.2. Results for ORL database according to GMMs with 
1 to 8 components and the combinations of them. 

5 . 2  I C T - J D L  D a t a b a s e  

The ICT-JDL database consists of 1,750 facial 
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images of 350 persons, with 5 images per subject. 
All the images were taken with a general USB cam- 
era, which contain quite a high degree of variability 
in expression and pose. For some subjects, the im- 
ages were taken with variation of illumination and 
facial details (with glasses/no glasses). Fig.3 shows 
some examples from the database. 

All the images are partitioned into disjoint 
training set and testing set. 250 images of 50 in- 
dividuals are contained in the training set, and all 
the rest constitute the testing set. 

In the training set, tens of synthetic samples 
are derived from each original image with slight 
geometric transforms of translation, scaling, rota- 
tion and mirror-reflection. There are two reasons 
for exploiting the technique of making synthetic 
samples: firstly, it can make the exploited sta- 
tistical classification algorithm perform more ro- 
bust which usually needs a sufficiently large train- 
ing set; furthermore, it can compensate align- 
ment error to some extent, as none of the exist- 
ing alignment algorithms can obtain a pixel pre- 
cision. The technique has not been used in the 
experiments on the ORL database, since many 
of the ORL images do not leave enough margin 
for the transforms. At last, 60,000 randomly- 
selected within-class variation samples and 60,000 
randomly-selected between-class variation samples 
are obtained from the expanded training set. 

In the testing set, a normal facial image (taken 
with nearly frontal pose, neutral expression and 
ambient lighting condition) for each of the 300 indi- 
viduals is chosen as a gallery example. And all the 
remaining 1,200 images constitute the probe set. 

In Table 2, it is demonstrated that  our method 
outperforms all the others with a recognition rate 
of 94.67%. Fig.4 shows the experimental results for 
the ICT-JDL database according to GMMs with 1 
to 8 components and the combinations of them, 

Fig.3. Some examples from the ICT-JDL database. 
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and indicates tha t  the combinat ion me thod  pro- 
vides a solution to the problem of choosing the 
number  of mixture  components .  

Table 2. Results for our Database by Different Methods 
Approach Recognition rate (%) 
Eigenface[6l 76.08 
SVM [11] 90.42 
Unified MAP [a41 89.75 
Unified ML [a4] 92.25 
Combination of GMMs 94.67 

three normal  r andom vectors: X1  ~ N ( M I , E 1 ) ,  
X 2  ~ N(M2,  E2) and X 3  ~ N(M3,  E3), where 

E00] [1 ~ 0] 

95 

iiiiiiiiiiiiiii !!!! !!!i !iiiiiiiiiiiiiiiiiii iiiiiii 94 

5 

93 

1 2 3 4 5 6 7 
Number of mixture components 

Fig.4. Results for ICT-JDL database according to GMMs 
with 1 to 8 components and the combinations of them. 

6 D i s c u s s i o n s  

In  [34] it is claimed tha t  the two variat ion classes 
appear  to be two enmeshed distributions, differ- 
ing primari ly in the amount  of scatter,  with F~t 
displaying smaller differences as expected. In  this 
paper  the two distr ibutions are investigated fur- 
ther. Visualizations of the distributions are shown 
in Fig.5 and Fig.6, which are the approximat ive  3- 
D plots and contour  plots of the distr ibutions of 
the  two classes respectively in the first two princi- 
pal  components  based on the t raining da ta  of  the 
O R L  database.  From the plots it can be found 
tha t  the relative or ientat ion and scat ter  of the dis- 
t r ibut ions  are considerably different. And  we can 
also observe tha t  it seems not quite precise to sim- 
ply assume either the  within-class variations or the 
between-classes variations as a Ganssian distribu- 
tion, whereas mixture  models provide a promising 
solution. 

As pointed out  i n  Section 2, it is difficult to  
compare  theoret ical ly the unified ML rule wi th  the 
unified M A P  rule. Here we give a simple example of 
a 3-class classification problem to demons t ra te  t ha t  
the unified ML can outperform the unified M A P  
sometimes. The  three classes are represented by 

-3 3 

(~) 

o 

-i 

-2 

-3 

(b) 

Fig.5. Approximative 3-D plot and contour plot of the dis- 
tribution of the within-class variations class ~1 in the first 
two principal components. 

100,000 r andom da ta  points  are generated for 
each class respectively as probe  examples, in order 
to compare the classifiers. The  gallery {Yl, Y2, Y3} 
is set as {/1//1,11//2, M3}, and  the results in classifi- 
cat ion obtained from the Bayes opt imal  classifier, 
the unified ML rule, and the  unified M AP rule are 
shown in Table 3. The plot of the da ta  points and 
the three decision boundaries  are given in Fig.7. 

The  example can be regarded as an explanat ion 
for the fact tha t  in all our experiments  the unified 
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-2  

- 4  

- 4  - 4  

(a) 

i i i , i i i 

- 2  0 2 

(b) 

Fig.6. Approximative 3-D plot and contour plot of the dis- 
tribution of the between-class variations class f ie  in the first 
two principal components. 

- 2  

- 4  
- 8  - 6  - 4  - 2  0 

Bayes optimal classifer 
' O  

! . , ' ~ . ! .  .............. 

�9 ~ - - - ~  ~ - ~ -  . . . . . . . . . . . . . . .  

o ' ~ o  i 

2 4 

--- Unified ML rule ~ Unified MAP rule 

Fig.'/. Comparison among the Bayes optimal classifier, the 
unified ML rule, and the unified MAP rule for a 3-class clas- 
sification problem. 

ML ou tpe r fo rms  the  unified MAP.  A l though  when  
choosing which rule is st i l l  a difficult p rob lem,  i t  is 
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not iceab le  t h a t  the  c o m p u t a t i o n a l  cost  of  the  uni- 
fied ML is only  half  of the  unif ied NIAP ' s  while 
the i r  pe r fo rmances  are a lmos t  the  same. 

Table 3. Results of Classification Obtained from 
the Bayes Optimal Classifier, the Unified ML Rule, and 

the Unified MAP Rule using the Synthetic Dataset 
Approach Recognition rate (%) 
Bayes optimal classifier 95.50 
Unified ML rule 94.05 
Unified MAP rule 93.24 

7 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this  p a p e r  we p ropose  a novel technique  of 
unif ied models  as a p romis ing  so lu t ion  to the  prob-  
lem of face recogni t ion  f rom a single example  im- 
age for each t a rge t  person.  T h e  unif ied models ,  
t r a ined  by using an o b t a i n e d  t r a in ing  set wi th  mul- 
t ip le  samples  pe r  person,  are  used to recognize fa- 
cial  images  f rom ano the r  d is jo int  d a t a b a s e  wi th  a 
single sample  pe r  person.  G M M s  are app l i ed  to 
a p p r o x i m a t e  the  d i s t r i bu t ions  of the  var ia t ions  be- 
tween facial  images,  and  a classifier c o m b i n a t i o n  
m e t h o d  is exp lo i ted  to improve  the  pe r fo rmance .  
T h e  excel lent  pe r fo rmance  of  our  m e t h o d  demon-  
s t r a t e d  by extensive e x p e r i m e n t a l  resul ts  conf i rms 
the  following. 

* The  var ia t ions  of each specific pe r son ' s  facial  
images,  due to  changes of pose,  i l lumina t ion ,  ex- 
press ion and  so on, are r a t h e r  s imi lar  to each other ;  
therefore,  the  unified p robab i l i s t i c  models  t r a i ned  
wi th  samples  from a group  of known people  for the  
signif icant  s imi la r i ty  of the  var ia t ions ,  can  be  gener-  
al ized well to samples  f rom a n o t h e r  different  g roups  
of unknown people.  

�9 GMMs,  as a flexible a p p r o a c h  for dens i ty  es- 
t ima t ion ,  can make  efficient use of the  i n fo rma t ion  
in face subspace.  

I t  was po in ted  out  t h a t  G M M s  suffer f rom a 
d rawback  t ha t  each c o m p o n e n t  is a s sumed  as Gaus -  
sian,  which is of ten v io la ted  in m a n y  n a t u r a l  clus- 
te r ing  problems[41,42]. A n d  accord ing ly  a mix-  

tu re  of Independen t  C o m p o n e n t  Ana lys i s  ( ICA)  
mode l  [41-43] was p roposed  to  be a s u b s t i t u t i o n  for 
GMMs.  Therefore,  an  obvious  ex tens ion  of  our  
work would employ  I C A  m i x t u r e  models  to  m o d e l  
the  unified var ia t ions  of facial  images.  
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