
May 2004, Vo1.19, No.3, pp.309-319 J. Comput. Sci. & Technol.

Chopper: Efficient Algorithm for Tree Mining

Chen "Wang, Ming-Sheng Hong, Wei Wang, and Bai-Le Shi

Department of Computing and Information Technology, Fudan University, Shanghai 200433, P.R. China

E-maih chenwangQ fudan.edu.cn

Received March 25, 2003; revised August 11, 2003.

Abs t rac t With the development of Internet, frequent pattern mining has been extended to more complex
patterns like tree mining and graph mining. Such applications arise in complex domains like bioinformatics, web
mining, etc. In this paper, we present a novel algorithm, named Chopper, to discover frequent subtrees from
ordered labeled trees. An extensive performance study shows that the newly developed algorithm outperforms
TreeMinerV, one of the fastest methods proposed previously, in mining large databases. At the end of this paper,
the potential improvement of Chopper is mentioned.

Keywords data mining, semi-structured data, labeled ordered tree

1 I n t r o d u c t i o n

Mining the frequent pattern from data set is a
key progress in data mining research. Previously,
most of the efforts are focused on the independent
data such as the items in the marketing basket.
However, objects in the real world often have close
relationship with each other. For example, given
a set of transactions, where a transaction records
the items brought by a customer at a time, a set of
items is called a frequent pattern if it is contained
in at least rain_sup transactions, where rain_sup is a
user-specified minimum support threshold. How to
gain the frequent pattern from these relations be-
comes the objective of the research in recent years.
We call this Frequent Structure Mining (FSM)[1].

Among exploratory mining methods, an impor-
tant problem is that of Association Rule Mining [2],
which aims to find the item sets that frequently
occur in many database transactions. Another im-
portant method is Sequence Mining [31, whose task
is to discover a sequence of item sets shared across
time among a large number of objects in a given
database. These mining tasks can be placed within
a generic framework, which we term Frequent Pat-
tern Mining (FPM).

An interesting case of tree structure mining is
web usage mining [4,5]. Suppose that a database
records the web log information of the users' access
patterns, we can analyze it with various mining ap-
proaches among which the simplest one is to ignore
all linkage information and regard users' access to
each page as independent. In this way, the mining

results are the page sets that are frequently visited
by users. However, the order of the pages visited
by users also contains much information. Thus, if
we model one access pattern of a user as an ordered
labeled tree (ignoring back edges) and analyze such
tree sets, we will eventually be able to obtain the
paths users visit frequently. This information is
certainly helpful to the reconstruction of the web
site.

Another typical example is the semi-structured
document mining. In recent years, XML has be-
come a popular way of storing datasets because
the semi-structured nature of XML facilitates the
storage and exchange of information between dif-
ferent databases. Tree-structured XML documents
are the most widely used in applications. Given a
set of such XML documents, one would like to ex-
tract all frequent subtrees that appear in the col-
lection.

Utilizing Association Rule Mining and Se-
quence Mining, we can obtain useful information
from such semi-structured document as XML, web
log and so on. At present, some work has been done
on how to extract patterns from tree-like data. Dis-
tinguishing isomorphism is the vital problem they
have to face. Although most methods have made
a lot of efforts to handle this problem, the result
is still not satisfying. One major cost in frequent
tree pattern mining is to test whether a pattern is
a subtree of an instance in the database.

Here, we present a new idea to deal with isomor-
phism problem and develop an algorithm to solve
the problem efficiently.

* Correspondence
This paper is supported by the Key Program of National Natural Science Foundation of China (Grant No.69933010)

and the National High-Tech Development 863 Program of China (Grant Nos.2002AA4Z3430 and 2002AA231041).

310 J. Comput. Sci. & Technol., May 2004, Vo1.19, No.3

1.1 R e l a t e d W o r k

Currently, some researches have been done on
mining semi-structured data [1,6-11], among which
[1, 9, 10] are focused on the problem of mining fre-
quent subtrees. The SUBDUE system [12] discovers
graph patterns using MDL principle. However, it
may miss some significant patterns, since it per-
forms a greedy search. W~ang and Liu [11] adopted
Apriori-style technique to mine frequent path sets
in ordered trees. Miyahara eta/. [1~ tried a direct
generate-test method. Dehaspe et al. [7] developed
an algorithm WARMA to mine frequent patterns
in graph structures. Since a tree is a special case
of graph structures, we can apply WARMA to fre-
quent tree mining. However, the problem of solving
isomorphism in graphs is certainly more complex
than that in trees. Therefore, this complicated al-
gorithm is not appropriate to be applied to the field
of tree mining. Besides, most of those methods are
based on Apriori algorithm, in which the genera-
tion of a large number of candidate item sets is the
bottleneck.

Zaki [1] and Asai eta/ . [6] proposed efficient al-
gorithms for frequent subtree discovery in a forest
on SIGKDD2002 and SDM02 respectively. They
adopted the method of rightmost expansion to add
nodes only to the rightmost branch of the tree.
Zaki utilized the sequence and scope in the TreeM-
inerH and TreeMinerV algorithms, while Asai et
al. proposed the FREQT algorithms. These al-
gorithms are similar to our work to some degree,
but the basic idea of our work is different from
that of theirs. They smartly extend the candidate-
generation-and-test approach to tackle the min-
ing, while we employ the depth-first search based,
pattern-growth methods. For another thing, they
check subtree isomorphism at the beginning of the
algorithm, while our algorithm starts this job later
in the process, which essentially lead to the differ-
ence in mining efficiency.

1.2 O u r Contribution

With dimensions of tree-like data increasing,
we must spend a lot of time and spaces to check
subtree isomorphism. At present, most algorithms
solve the isomorphism problem at the beginning.
Conversely, our algorithm deals with the problem
later. Consequently, we can use the technique to
minimize the number of structures for testing and
reduce the efforts of solving the problem.

We put forward the idea of "distinguishing iso-
morphs first and then processing their isomers",

which can minimize the search space and cut use-
less branches out as early as possible. This algo-
r i thm improves the efficiency. Therefore, we ad-
vance Chopper algorithm whose basic idea is to
discover all frequent isomorphs from sequences and
then obtain their isomers from those frequent iso-
morphs.

Chopper algorithm is composed of two steps,
one utilizes the improved PrefixSpan [1~] method to
discover all frequent sequence retaining the rela-
tionship of ancestor-descendant between nodes in
trees, the other finds frequent structures from the
sequences being generated in the early course.

After forming the basic algorithm of Chop-
per, we optimize some places. For example, tra-
ditional PrefixSpan algorithm mines frequent se-
quences which do not regard the relationship of
ancestor-descendant between nodes in trees. Aim-
ing at tree-like data, we can add to PrefixSpan al-
gorithm such function as checking the relationship
of ancestor-descendant between nodes in trees and
then promote its ability to mine special frequent
sequences. At this rate, the algorithm will greatly
reduce the number of frequent sequences to be gen-
erated, also lighten the burden of distinguishing iso-
morphism problem, and promote the efficiency of
algorithm consequently.

Subsequently, we compare Chopper algorithm
with Zaki's TreeMinerV algorithm by experiment.
TreeMiner V algorithm adopts the method of right-
most expansion to add nodes only to the rightmost
branch of the tree. So it is efficient and scalable
when the patterns are not very complex and large.
Nevertheless, TreeMinerV algorithm would gener-
ate a lot of candidate item sets and result in bottle-
neck of performance. Therefore, Chopper algorithm
manifests better capability than TreeMinerV.

The rest of this paper is organized as follows.
In Section 2, we define the basic concepts of the
frequent subtree mining and state our problem for-
really. In Section 3, we introduce Chopper algo-
rithm, based on idea of isomorphism, in detail and
illustrate the process. In Section 4, we offer exper-
imental results on synthetic and real datasets to
evaluate the proposed mining algorithm. In Sec-
tion 5, we conclude the paper.

2 Prel iminary Statement

2.1 Terms and Concepts

A tree is an acyclic connected graph. A forest
is a collection of trees, where each tree is a con-

Chen Wang et al.: Chopper: Efficient Algorithm for Tree Mining 311

nected component . A forest can thus be viewed as
an acyclic graph. In general, every tree T has one
and only one vertex v0 as its "roof'. We can use
this vertex to represent the tree, denoted as T(vo).
Then we call this tree rooted tree. In this paper ,
we focus only on rooted tree. Given a rooted tree
T(vo), the level of node v is defined as the length
of the pa th from v0 to v. The height of a tree is the
max imum level of all nodes in a tree.

Def in i t ion 1 (Re lat ionship B e t w e e n
N o d e s) . Given a rooted tree T(vo), consider any
path starting from vo. I f node u precedes node v,
u is called an ancestor of v, and v a descendant of
u. I f there is only one edge between u and v, u is
called the parent of v, and v the child of u. This
edge is called a branch, denoted as b = (u ; v) . I f
several nodes share the same parent, they are called
siblings.

We denote the term of relationship between an-
cestor u and its descendant v as A50(u; v), or .AT)
for short, and the term of relationship between par-
ent u and its child v as PC(u; v) or PC. It is obvious
tha t PC is a special case of A50.

Therefore, we can denote a rooted tree as
T(vo) = (N; B) , in which v0 is the root, N is the
collection of nodes in the tree, and B is the collec-
t ion of branches in the tree. An ordered tree is a
rooted tree in which the children of each node are
ordered, i.e., if a node has k children, then we can
designate t hem as the first child, second child, and
SO o n .

Def in i t ion 2 (L a b e l e d T r e e) . Given a rooted
tree T(vo), a label set L, and a collection of all
nodes N , T is a labeled tree iff there exists a map-
ping f : N --~ L, that v E N ; f (v) = I e L. The
tree is then denoted as T(vo) - (L(N) ; B).

It becomes evident from the s ta tement above
tha t different nodes can have the same label, i.e.,
nodes in a labeled tree may not be labeled uniquely.

Def in i t ion 3 (O r d e r e d L a b e l e d T r e e) .
Given a tree T(vo), T is an ordered labeled tree iff
T is ordered and labeled.

Def in i t ion 4 (D a t a b a s e o f O r d e r e d L a -
b e l e d T r e e) . Let TDB denote a database of or-
dered labeled trees, in which each tuple exists in the
format of <TID; Ti} is the label of tree-like data. Ti
is the ordered labeled tree.

Def in i t ion 5 (S u b t r e e) . Given an ordered la-
beled tree T(vo) = (L(N) ; B), a tree T ' is a subtree
of T(vo) iff

1) T' is an ordered labeled tree T ' (v l) =
(L (N ') ; 13') with v' as its root;

2) node set N ' is a subset of N;
3) f o rb = (vi;vj) e B ' , vi is v}s ancestor in T;

4) the labels of vi and v i correspond with their
labels in T.

Please note tha t the concept subtree defined

here is different from the conventional one. (!) In
Fig. l (b) , a subtree of tree T in Fig. l (a) is shown.

A <
(a) (b)

Fig.1. Examples of ordered, labelled, rooted tree and sub-

tree. (a) Tree T. (b) Embedded subtree.

2.2 P r o b l e m Sta tement

Def in i t ion 6 (F r e q u e n t S u b t r e e) . Given a
database of ordered labeled trees TDB and a sub-
tree T, the support value o f T is defined as S (T) =

]p(T)[where p(T) is the number of all trees that
N '

contain subtree T, and N is the number of trees in
TDB. Hence, a structure T is a frequent subtree iff
s(T) >>. minsup. Here, minsup is a user-specified
threshold, called minimum support.

Given a database of ordered labeled trees T D B
and a min imum support minsup, the problem we
want to solve is to find all frequent subtrees.

As mentioned above, mos t of the existing meth-
ods are Apriori-based. However, these methods
cannot avoid candidate generation, which great ly
consumes the system resource. In this paper, we
propose a me thod based on the depth-first-search-
based, pa t te rn-growth ideas. I t reduces the cost
of candidate generation dramatically. In addition,
tree isomorphism is a subtle problem to handle.
Though in recent work, the cost of it can be l imited
within O (n l o g 3 n), it still deteriorates the perfor-
mance besides the huge cost of candidate genera-
tion. We develop some techniques to reduce this
cost.

(!)ConventionMly, a tree G I whose graph vertices and graph edges form subsets of the graph vertices and graph edges
of a given tree G is called a subtree of G.

312

3 A l g o r i t h m C h o p p e r

In the first part of this section, we will describe
the method of frequent pat tern mining as a whole.
Then the main steps of the algorithm are stated in
detail.

3.1 B a s i c I d e a o f t h e A l g o r i t h m

In this section, we propose a general idea to
solve the problem of searching for frequent sub-
trees. Some properties of an ordered labeled tree
will be brought out as follows. We choose pre-order
sequence as the basis of describing an ordered la-
beled tree, which cannot represent a tree distinctly.
Therefore, we have to remember the level number
of each element of the sequence in the tree. Thus,
we can describe a tree uniquely with the combina-
tion of pre-order sequence and level sequence. For
instance, B1A2C3D3E2F3G3G2D3 is used to rep-
resent the tree in Fig.2.

Fig.2. Ordered labeled tree.

In this paper, we can deal with the above se-
quence instead of a tree.

P r o p e r t y 1. Given a node X~ in a tree of
TDB, where X is the label of this node and n is its
level number. The parent node of X,~ in the tree
is the nearest node ahead of it which has a level
number n - 1.

This conclusion can be made easily from the
pre-order sequence.

P r o p e r t y 2. The sequence representing an or-
dered labeled tree with level number has the follow-
ing properties:

1) A node's level number is either jus t bigger
than the level number of the adjacent node ahead
by one, or no more than the level number of the
adjacent node ahead;

2) The first node of the sequence has the small-
est level number, which is the only one in the se-
quence.

As we discuss above, using only pre-order se-
quence without level number it is impossible to
determine an ordered labeled tree. Based on this
fact, we propose the concepts isomorph and isomer.
The te rm of isomorph comes from chemistry, which
means that two kinds of materials have the same

J. Comput. Sci. ~z Technol., May 2004, Voi.19, No.3

components and the different structures. For exam-
ple, diamond and graphite are both denoted by the
chemical symbol C, which represents the carbon
atoms, but they differ from each other, especially in
the physical features. The reason is, although they
are both composed of carbon elements, their struc-
tures among the carbon a toms are quite different.
So, we call the symbol C the isomorph of diamond
and graphite, and the diamond and graphite are the
isomers of the isomorph C. Therefore, we introduce
the concept of isomorphism to our algorithm, which
can explain our problem vividly. In our paper, pre-
order sequence can be viewed as isomorphs, and

the sequence combined with level number is its iso-
mer. As shown in Fig.3, the sequence of ABCD
is the isomorph, and AIB2C3D4, AIB2C3D2 and

AIB2C2D3 are isomers.

Fig.3. Isomorph and isomers.

In the following part of this section, we focus on
the efficiency improvement of the ordered-labeled
tree mining. We put forward the important the-
orem below based on the concept of isomorphism
and frequent structure.

T h e o r e m 1. I f the isomorph expression is not
frequent, the corresponding isomer is infrequent.

Proof. Assuming that there is an infrequent iso-
morph expression with a frequent isomer structure,
the structure would e.xist in some original trees and
the number of these trees would be larger than the
minimum support. For the isomorph expressions
of these trees, that infrequent expression must be
their subset, otherwise the isomer structure will not
exist in the trees. Therefore, the number of the iso-
morph expression in the trees is greater than the
minimum support. It is a contradiction to the as-
sumption above. []

From this theorem, we can make a conclusion
tha t if the isomorph expression is infrequent, then
the isomer structure is infrequent too, which is very
important to the problem of searching for frequent
subtree. We can first deal with the isomorph ex-
pression. If it is not frequent, the work of its isomer
structure will be omitted, which will save us much
t ime and work. What is more, when the isomorph
expression is very long with a lot of isomer struc-
tures, the improvement of efficiency is remarkable.

Chen Wang et al.: Chopper: Ettlcient Algorithm for Tree Mining 313

For graphs, the problem of searching for iso-
morphism is known to be an NP-hard problem[14]o
This problem also exists in trees [151, and we will
solve it later in our algorithm by greatly reducing
the number of structures to be tested. In our algo-
rithm, we first check the expressions, and then filter
out the infrequent ones, which will save the space
when searching for the isomer, especially when the
expression is long.

Based on the concept of "isomorph first, isomer
la te r ' , Chopper algorithm first obtain isomorph ex-
pressions by using some method of searching for
frequent sequence, and then process them to find
isomer structures. When we search for frequent se-
quences, we do not need to know their structures,
thus the process is efficient.

Chopper algorithm consists of the following two
steps. Firstly, it searches for frequent sequence,
and secondly it processes the sequence obtained
above to find isomer structure. The algorithm is
shown in Fig.4. The first step deals with scan-
ning ordered labeled trees. By using some min-
ing sequence method, we could find all frequent
sequences. The second step is to scan TDB once
again and construct all frequent structures accord-
ing to each frequent sequence. After finishing the
scan, all those with support greater than the min-
imum support will be output.

Algorithm 1. Chopper
INPUT: tree dataset TDB, support threshold minsup
OUTPUT: a set of frequent subtree
Chopper (TDB, minsup)
{

ReadFile (TDB); //read TDB
FindSequence (TDB, minsup, FSDB);
InitiMFrequent Tree (ft,FSDB);
//find isomers in FSDB and store them
outputFSP=Process(ft,TDB);
For each isomer i in outputFSP

if (isomer i is no less than minsup)
output(isomer i);

}

Fig.4. Algorithm of Chopper.

Most methods of mining frequent structures
also consider isomorphism problem, such as [1].
But they consider it at the beginning of their algo-
rithms, so they have to face a lot of work at first.
In fact, a great par t of this work is unnecessary, be-
cause a lot of sequences do not keep A:D in trees. In
this situation, we do not consider isomer s tructure
in the first step. ~Ve only find frequent sequence
and prune unnecessary sequences as much as we
can. Thus the number of structures to be tested is
minimized.

We will discuss these two steps in detail in Sub-
sections 3.2 and 3.3, respectively.

3.2 Finding Frequent Sequences Keeping
A/)

There are many methods of searching for fre-
quent sequence, most of which are based on the
concept of Apriori. Most cost of these algorithms is
concentrated on the candidate generation and pro-
cessing. PrefixSpan [13] is another method, which
can reduce a lot generation of candidate, and is
more efficient than Apriori. So we adopt PrefiSpan
as the base of Chopper algorithm.

PrefixSpan is an efficient algorithm mining se-
quential pat terns from sequence databases. The
general idea of PrefixSpan is as follows. Given
a sequence database SDB and a minimum sup-
port threshold rain_sup. To facilitate the elabo-
rat ion of ideas, we assume that each sequence is
a string, i.e., any element of a sequence contains
only one item. PrefixSpan firstly scans SDB to
find frequent items as length-1 sequential patterns.
Suppose that length-1 pat terns (Xl>, . . . , (x,~} are
found. Then, the complete set of sequential pat-
terns can be divided into n distinct subsets: the
i- th subset (1 ~ i ~ n) contains the sequential pat-
terns with prefix (xi/.

To mine the sequential pat terns with prefix (x~/,
the (x~}-projected database is formed, which con-
tains the sequences having xi. For each sequence
in the (xi/-projected database, all infrequent items
as well as all items before the first occurrence
of xi should be ignored. Then, PrefixSpan finds
the length-2 sequential pat terns in <x~/-projected
database in the form of (x~xjl. According to xj ' s ,
the sequential patterns with prefix (xi) can be fur-
ther divided into subsets and can grow recursively.

Some specific techniques have been developed
to enable efficient implementat ion of PrefixSpan.
Interested readers might refer to [13] for a detailed
technical discussion.

The traditional PrefixSpan method is used to
mine the frequent sequences. However, for the tree
mining, we can make some optimization to improve
its efficiency. Since the frequent structures must
keep .AT), we can apply some techniques to reduce
the amount of the generated frequent sequences.

The improved PrefixSpan algorithm, finding
Frequent Sequences keeping r is shown in Fig.5.

Suppose there is an ordered-labeled tree shown
in Fig.6(a). We need to record all occurrences of
the frequent nodes for efficiency. Fig.6(b) shows the

314 J. Comput. Sci. & Technol., May 2004, Vo1.19, No.3

Algori thm 2. Finding Frequent Sequences keeping A ~
INPUT: a dataset DB, support threshold minsup,
and a parameter Sequence which is initialized to NULL
OUTPUT: the list of frequent sequences and related
information
FindSequence (DB, miasup, Sequence)
(

node-list=find all frequent nodes in DB;
For each node in node-list
(

result=Join(Sequence,node);
support =KeepingAD (result,DB);
if(support is larger than minsup)
(

output (result);
NewPDB = CreatePDB(result);
FindSequence(NewPDB,minsup,result)

}
}

Fig.5. Finding frequent sequences keeping AT).

1' 4

(a) (b)

B D
1At 1,0 1,5
1,3 1,4

(c)

Fig.6. Example of keeping .A:D.

da ta s t ruc ture we adopt . Each element in the list
are stored in the form of (TID;position), where
TID records the IDs of the original tree, and
position stores the posi t ion of the node in the prr
order sequence of the tree, which begins with 0.
Fig.6(b) also shows the result after scanning the
database. If A, B, C and D are the frequent nodes,
we scan the tree once more to gain the informat ion
of these nodes. If the T ID of tree in Fig.6(a) is 1,
A has occurred twice, in positions 2 and 4, so the
list of A will contain two elements: (1, 1 / and (1, 3).
Other nodes ' informat ion can be gained in the same
way. W h e n we deal with the prefix, we use the
intersection opera to r on all the T I D fields related
with the nodes in the prefix, then, do the fur ther
analysis on those trees in the T ID intersection set.
For each tree with the T ID in the set, we only need
to extract the informat ion about the prefix. For ex-
ample, for the prefix ABD in Fig.6(a), we const ruct
a s t ruc ture shown in Fig.6(c) according to the fields
in Fig.6(b). This s t ruc ture is beneficiM to the pat -

te rn counting. The number of dist inct T I D is the
pa t t e rn frequency. If the shared T I D numbers of
two pa t te rns (one is a prefix, the o ther is a node)
are less than the min imum threshold, they cannot
be combined as a frequent pa t te rn , so they can be
dropped. This s t ruc ture can be set up in one scan-
ning. For the fur ther projec ted database , we only
need to ignore the first par t of each node 's list.

3.2.1 Shrinking the Projected Database

W h e n dealing with the pro jec ted da tabase of
l - l eng th sequences, we can shrink it efficiently.
For instance, for the tree B1A2C3A2B3D4C5C3
shown in Fig.6(a), instead of the project ion
CABDCC, we generate the pro jec ted da tabase of
A by project ing it into two trees: C and BDCC.
This is because the result of the projec t ion is in a
two-tree one if we do it directly, bu t for convenience
in the later part , dividing them into two is a trivial
method . But this technique can only be applied in
the root of the original tree. If the length of prefix
is more than one, the rest nodes are all the descen-
dants of the root, and belong to one tree, which
cannot be divided.

Meanwhile, this projec ted da tabase do not need
to copy the sequences from the original one. W h a t
we need is only to store the head and end links of
the corresponding posit ion in the two trees. This
technique can be referred as pseudo-project.

3 . 3 F i n d i n g F r e q u e n t S u b s t r u c t u r e s

Once we discover all frequent sequences, we en-
ter the second step of the a lgor i thm shown in Fig.7.

Algori thm 3. Finding Frequent Structures
INPUT: a tree database TDB, frequent
sequences set ft
OUTPUT: isomer set
Process(f~, TDB)
{

tree-list ---- find all trees in TDB;
For each tree t in tree-list
(

node-list = find all nodes in tree t;
For each node n in node-list

//expand current node in fl
ExpandNode(fl, n);

}

Fig.7. Finding frequent structures.

In this algorithm, we should scan the cor-
responding trees in the original da tase t (TDB).
Firstly, we extract sequences from the current tree

Chen Wang et al.: Chopper: Emcient Algorithm for Tree Mining

according to the frequent sequences obtained from
the first phase, and generate all possible isomers for
them. Then we decide whether these isomers exist
in the current tree or not. If it is in the tree, the
isomer is added to the result list, or the count of the
corresponding isomer in the result list is increased
by one. Every node in each tree is recursively pro-
cessed, until the whole TDB is scanned. W h e n
the a lgor i thm finishes, all the isomers are gener-
a ted and the corresponding times of appearances
are counted.

For example, given a tree A1B2C3D2, the se-
quences for all its possible isomers can be: A, AB,
B, ABC, AC, BC, C, ABCD, ABD, ACD, AD,
BCD, BD, CD and D. If the sequence ABC exists
in the frequent sequences resulting from the first
phase, the isomer A1B2C3 will be added to the
result list; if A1B2C3 has been in the result list,
its counter is increased by one. If the sequences
do not exist in the frequent sequences, the isomers
need not be generated or tested any more.

Now let us use an example to illustrate how the
isomers are generated by the algorithm.

Example 1. Given the da ta set of ordered la-
beled trees in Fig.8, now comes to the tree with
T I D i. Meanwhile, all the frequent sequences dis-
covered are (A, B, C, D, AB, AD, DC, ABC,
ABD, ADC, ABDC).

Because there are four nodes in the current tree,
four recursive steps are needed here, as shown in
Fig.9. In the first step, we scan node A. For it is
the root node, no ancestor node of it is in the index

315

list. From the frequent sequences, we get tha t the
sequence A is frequent, so the isomer A1 is added
to the result list, and the node A is inserted in the
index list.

riD] Tree @ ~

i A1B2D2C3 --,"

Fig.8. Data for finding isomer.

In the following three steps, we scan the in-
dex list reversely to get all the ancestors for the
current node, and expand the ancestors with their
child nodes and nodes connected to them. After the
current node is added to their isomers, we get new
candidate isomers. Then we decide whether the se-
quence representat ion of each candidate isomer be-
longs to the frequent sequences. If it is, the isomer
is recorded; otherwise, it is discarded. MeanwhiIe,
the current node is inserted into the index list.

After an ordered labeled tree is scanned, all iso-
mers from it are collected. If the isomer has been in
the result list, its corresponding counter increases.
Continue to scan all the trees one by one, until the
whole da ta set has been scanned. Then the algo-
r i thm stops.

4 E x p e r i m e n t s

According to the conclusions in [1], we only

Index list Isomers
Step 1 Step 2 Index list Isomers
Original ~ Original ,-~t---~ ~ l F ~
conditions conditions ," :

Result ~ Result " " ~

Because A is a frequent Because B, AB are frequent
sequence, the isomer A1 sequences, the isomers B1 and
is added to the result list, A1B2 are added, and the index
and the index item is item is inserted for B.
also inserted for A.

Original ~ ~ . / /
conditions . :-:. ,'"

Result "[-C--~A1B2D2c3-- DIC2 1C2 A-1B2C2 C1

Because ABDC, ABC, DC, AC, C are frequent
sequrnces, the isomers A t B2 D2C3, A1B2C2, D1C2,
A1C2, C1, and index item is inserted for C. Otherwise,
ADC is not a frequent sequence, so we need not generate
the isomer AID2C3.

Fig.9. Process of finding isomer.

Isomers

Step 3
Original
conditions

Result " ~

Because ABD, AD, D are frequent
sequences, the isomers A1B2D2,
A1D2D1 are added. And index item
is inserted for D.

all the isomers
[A1B2D2C3J for the current labeled tree

316 J. Comput. Sci. & Technol., May 2004, Vo1.19, No.3

choose TreeMinerV as the opponent of Chopper.
It shows that Chopper outperforms TreeMinerV,
especially in the case of large amount of complex
tree structures.

All the experiments are performed on a Pent ium
IV 1.TGHz PC with 512MB RAM. The OS is Red
Hat Linux 9.0 and the algorithm is implemented in
C + + .

4.1 Exper iments on Synthet i c Data

We choose a B P T from the B P T set with equal
possibility, randomly choose a node within valid
level in the synthetic tree, t reat it as a temporary
root, and overlap the B P T ' s root by this root. All
the nodes under the t empora ry root should be re-
assigned a label with the label of the corresponding
node in BPT. If there is no such node, add a new
one. This procedure will terminate when all the
chosen B P T nodes are put into the synthetic tree.
Now the synthetic tree is ready.

4.1.1 Synthetic Data Generation

All the generated data are in the form of
(TreelD, TreeSeq), where TreeID identifies each or-
dered labeled tree and TreeSeq is the pre-order code
of that tree.

We wrote a synthetic data generation program
to output all the test data. There are 8 parame-
ters for data generation adjustment. They are: the
number of the labels S, the probability threshold
of one node in the tree to generate children p, the
number of the basic pat tern trees (BPT) L, the av-
erage height of the B P T I , the maximum fanout
(children) of nodes in the B P T C, the data size of
synthetic trees N, the average height of synthetic
trees H , and the maximum fanout of nodes in syn-
thetic trees. The actual height of each (basic pat-
tern) tree is determined by the Gaussian distribu-
tion having the average of H(I) and the s tandard
deviation of 1.

A synthetic dataset is generated in 3 phases as
follows. First, we generate a label set of S. Then,
according to above parameters, we generate all the
B P T and synthetic trees. Last, we use the B P T to
overlap in the synthetic trees and replace or add
some nodes and branches in synthetic trees to ob-
tain the final dataset.

The second phase in the generation can be done
according to the following steps. For a given node,
we assign a label from label set with equal possibil-
ity. Then we use a random-number generator to get
a number. If the number exceeds p, we determine
how many children this node can have by choosing
a number n between 0 and C(F) in equal possibil-
ity and call this method recursively to generate its
children; if the number is less than p, we must turn
back to its parent to deal with the next sibling or
turn back more in the case that all the siblings have
been generated. This process will terminate when
the height of the tree reaches the value specified by
the parameter I(H).

In the overlapping phase, the height and max-
imum fanout of the synthetic tree is not changed.

4.1.2 Performance on Synthetic Data

At first, we consider the scalability with minsup
of the two algorithms, while other parameters are:
S = 100, p = 0.5, L = 10, I = 4, C = 3,
N = 10,000, H = 8, F = 6. Fig.10 shows
the result, where the minsup is set from 0.1 to
0.003. In this figure, both X and Y axes have
been processed by log10 T for the convenience of
observation. We can find, that Chopper is a win-
ner, especially, TreeMinerV is halted in 3 hours-for
memory overflow when minsup = 0.02, while the
Chopper goes well. It should also be noted that ,
Chopper does not perform excellently until minsup
is dropped to 0.004.

10 4

10 3

10 2

101

j j/
[~ TreeMinerV

10-1 10-2 10-3

Support threshold

Fig.10. MinSup vs. t ime.

Fig.11 shows the scalability with data size. In
this figure, the Y axe has been processed by log10 T
for the convenience of observation. The da ta size
N varies from 10,000 to 50,000, while other pa-
rameters are: S = 100, p = 0.5, L = 10, I = 4,
C = 3, H = 8, F = 6, minsup = 0.01. Here we
find the cost of both time and space of Chopper
is extremely less than that of TreeMinerV which
is halted for memory overflow. The reason is tha t
Chopper can save time and space cost by avoiding
false candidate subtree generation.

Chen ~Vang et al.: Chopper: Efficient Algorithm for Tree Mining 317

2,000

1,500

1,000

500

0

I - + - T r e e M i n e r V
[~ C hoppe r

10,000 30,000 50,000

Da t a size

F i g . l l . D a t a size vs. t ime.

104

10 3

102

101

10 4

-- ' -- TreeMinerV
- - ~ Choppe r

6 7 8 9
Height

(a)

103/f
.-s

102

eeMinerV
L ~ Chopper

101
4 5 6 7

M a x i m u m fanout

(b)

Fig.12. Tree size vs. t ime. (a) Height vs. t ime. (b) Maxi -

m u m fanout vs. t ime.

Finally, the scalability with tree size is shown
in Fig.12. In this figure, the Y axes have been
processed by log10 T for the convenience of ob-
servation. In Fig.12(a), we only vary H from 6
to 9. It is easy to find that, when H equals 6
or 7, the performance of Chopper is better than
that of TreeMinerV. However, when the trees be-
come higher, the superiority grows. In particular,
when H equals 8 or 9, Chopper thoroughly de-

feats TreeMinerV for the reason that TreeMinerV
is halted for memory overflow. In Fig.12(b), the
performance of Chopper and TreeMinerV is simi-
lar to the case above. Chopper certainly performs
bet ter than TreeMinerV, while the fanout contin-
ues to increase.

4.2 E x p e r i m e n t s o n R e a l D a t a

We used Chopper in Web Usage Mining. We
downloaded the Weblog [16] of Hyperreal [17], chose
those dated from Sept.10 to Oct.9, 1998 as the
input data, and then transformed the Weblog
into tree-like data set which included over 12,000
records totally.

4.2.1 Performances on Real Data

Fig.13 shows the performance of the two algo-
rithms, where the minsup is set from 0.1 to 0.0006.
In this figure, both X and Y axes have been pro-
cessed by logl0 T for the convenience of observa-
tion. We can find that the performance of Chopper
is better than that of TreeMinerV. Especially,
TreeMinerV is halted in 3 hours for memory over-
flow when minsup = 0.0006, while the Chopper
goes well.

10 4

10 3

10 2

]
i0-i i r ,

10-1 10-2 10-3 10-4

Suppor t th resho ld

Fig.13. MinSup vs. t ime.

Finally, Fig.14(a) shows the number of fre-
quent patterns generated by the algorithm, while
Fig.14(b) shows the average number of the nodes of
the frequent patterns generated by the algorithm,
where the minsup is set from 0.1 to 0.0006. For
the convenience of observation, both X and Y axes
have been processed by log10 T in Fig.14(a), while
Y axe has been processed by log10 T in Fig.14(b).

4.2.2 Results on Real Data

Fig.15 shows some results. So if we modify the

318

10 s

106
.=

~. 104

6
Z 102

t~

0 r

6
Z

<

10 o

7J

/

i0 - I 10-2 10-3
Support threshold

(a)

/
/

/
.,5

/ - -

. w - "

10-4

10-1 10-2 10-3 10-4
Support threshold

(b)

Fig.14. MinSup vs. patterns. (a) MinSup vs. the number of
patterns. (b) MinSup vs. the Avg No. of nodes of patterns.

I_t/music/machines/ / /music/ ~] m a n u f a c t u r e ~ machines/

(~ /music/ machines/ I J /music/ machines/ |
manufacturers/ Moog/~'] manufacturers/ Moog/ MG-1/~)

/music/machines/manufacturers/Moog/]
MG-1/info/ moog.MG-1

Fig.15. Example of the result.

web site architecture according to the results shown
in the figure, it will be more efficient for users to
browse this site, which will in turn improve the hit
ratio of the web site.

The result can be explained and exploited as fol-
lows: After examining the mining result, we found
tha t among the users who visited the webpage of
Moog, approximately half of them visited the page
MG-1. So we suggest that the webmaster place a
"Hot" tag to the right of MG-I ' s link. Similarly,
it is interesting to find that almost all the remain-
ing users continued to visit "moog.MG-l" , which

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

consists of the description and comments of synth
MG-1 from people who bought it. Usually, when
someone is interested in a product and may plan
to buy it, it is likely that he or she wants to hear
others ' comments on this product. These words are
not like those in commercials, and often offer more
down-to-earth and reliable information. This ex-
plains the webpage access pa t te rn quite well. We
also notice that currently the section containing
"moog.MG-l" is not arranged at the top of the
webpage. Considering the psychological factor of
users described above, it is wise to re-build this
page by placing "moog.MG-l" at the top. In short,
if we modify the web site architecture according to
the results shown in the figure, it will be more ef-
ficient for users to browse this site, which will in
turn further improve the hit ratio of the web site.

Still, there are some other results in Fig.16.
Here we do not explain them any more.

/msic/machines/addressbook/index.ht ml]

I /~gould/synth.html I/machines,~/m,a~nufacturers/I I/lakata&awai k3.html[

~ K
-~.a,t mazes/ /

Imachines/iconsl /homes/cook/anhevn/ /music/machincs/Elcctronica/
back~round.defau t anhevn.htm web/archive/feb96/0094.htm I

/ h ~ s/d / I mac ines categorie o-it-yourself,]machines/n~rmfacturers/
sequencer/analo:~ue.sequencer.txt I Waldorf/Wave/

(a)

I /music/machines/addressbook/i ndex.ht ml I

I /machines/manufacturers/ Roland/CompuRhythmlima es/ I I /~gould/synth.htm

I Imachineslmanufacturers/ Moog;,/Prodigfl]] /korg/links.html

(b)

/music/machine/scategories/drum- machines/samples/
Rhythm-Ace.txt

/midi/ I I /machines/manu facturers/Theremin/

/machines/adaptive/ I] /homes/map/home.html

] /music/machines/Analogue-Heaven/new.html I
(c)

Fig.16. Some results of the Weblog analysis. (a) 19970212
minsup = 0.002; (b) 19980731 minsup = 0.005; (C)
19980824 minsup = 0.003.

Chen ~Vang et al.: Chopper: ENcien t A lgor i thm for Tree Mining 319

5 C o n c l u s i o n

We are drown in the world of numerous and
complicated documents. We expect eagerly to find
a path to the golden nuggets in a short time. Here
we present a new mechanism to achieve this goal.
Many documents are semi-structured, which con-
tain some incomplete structural information, for
instance, the XML documents. There are many
similar substructures in these documents, so it is
very useful to gain the frequent structures through
mining, which leads to the results of similar in-
formation among these documents. In this paper,
we introduce a new algorithm Chopper, which can
tackle the problem efficiently.

The next step for us is to improve our work
with the aim of solving some special structures in
the documents, such as the nested or cyclic ones.
Other interesting work includes coupling the struc-
tural information within the process of sequence
generating tightly, with the hope of making the
performance better.

A c k n o w l e d g e m e n t Here we want to give our
sincere thanks to Ming-Sheng Hong and Jin Pan for
the coding work and helpful discussions.

R e f e r e n c e s

[1] Zaki M J. Efficiently mining frequent trees in a for-
est. In 8th A C M SIGKDD International Conference
on Knowledge Discovery and Data Mining, Copyright
2002 ACM 1-58113-567-X/02/0007, July 2002.

[2] Cook D, Holder L. Substructure discovery using minimal
description length and background knowledge. Journal
of Artificial Intelligence Research, 1994, 1: 231-255.

[3] Agrawal R, Mannila H, Srikant R e t al. Fast discovery of
association rules. In Advances in Knowledge Discovery
and Data Mining, Fayyad U et al. (ads.), AAAI Press,
Menlo Park, CA, 1996, pp.307-328.

[4] Cooley R, Mobasher B, Sravastava J. Web mining: In-
formation and pattern discovering on the World Wide
Web. In 8th IEEE Int. Conf. Tools with AI, Newport
Beach, California, USA, Nov. 1997, pp.558-567.

[5] Zaki M J. SPADE: An efficient algorithm for mining fre-
quent sequences. Machine Learning Journal, Jan/Feb
2001, 42(1/2): 112-120. Special issue on Unsupervised
Learning.

[6] Asai T, Abe K, Kawasoe S et al. Efficient substruc-
ture discovery from large semi-structured data. In Proc.
SDM'02, Hyatt Regency, Crystal City, Arlington, Vir-
ginia, USA, Apr. 2002, pp.158-174.

[7] Deahaspe L, Toivonen H, King R D. Finging frequent
substructures in chemical compounds. In Proc. KDD-
98, New York, USA, 1998, pp.30-36.

[8] Matsuda T, Horiuchi T, Motoda H et al. Graph-based
induction for general graph structured data. In Proc.
DS'99, New York, USA, 1999, pp.340--342.

[9] Mannila H, Meek C. Global partial orders from sequen-
tial data. In Proc. KDD2000, Boston, USA, 2000,

pp.161-168.
[10] Miyahara T, Shoudai T, Uchida T et al. Discovery of

frequent tree structured patterns in semistructured Web
documents. In Proc. PAKDD-2001, Hong Kong, China,
2001, pp.47-52.

[11] Wang K, Liu H. Schema discovery for semistructured
data. In Proc. KDD'97, Newport Beach, USA, 1997,
pp.271-274.

[12] Wang J T L, Shapiro B A, Shasha D et al. Automated
discovery of active motifs in multiple RNA secondary
structures. In Proc. KDD-96, Portland, USA, 1996,
pp.70-75.

[13] Pei J, Han J, Mortazavi-Asl B et al. PrefixSpan: Mining
sequential patterns by prefix-projected growth. In Proc.
ICDE01, Heidelberg, Germany, April 2001, pp.215-224.

[14] Scott Fortin. The graph isomorphism problem. Techni-
cal Report No. TR96-20, Dept. of Computer Science,
University of Alberta, I996.

[15] Richard Cole, Ramesh Hariharan, Piotr Indyk. Tree
pattern matching and subset matching in deterministic
O(n log 3 n)-time. In Proc. the lOth Annual ACMSIAM
Symposium on Discrete Algorithms, Robert E Tarjan,
Tandy Warnow (eds.), Baltimore, Maryland, USA, Jan.
1999, pp.245-254.

[16] http://music.hyperreal.org
[17] http:/ /www.cs.washington.edu/research/adaptive

Chert W a n g was born in
1976. He received his B.E. de-
gree and M.S. degree in com-
puter science from Soochow Uni-
versity in 1999 and 2002 respec-
tively. Now, he is currently
a Ph.D. candidate in computer
science at Fudan University. His
research interests include data

mining, database and knowledge base.

Q i n g - Q i n g Y u a n was born in 1978. She received
her B.E. degree and M.S. degree in computer science
from Fudan University in 2000 and 2003 respectively.
Her research interests include data mining, database
and knowledge base.

t t a o - F e n g Zhou was born in 1975. He received
his B.E. degree in computer science from Shanghai Uni-
versity in 1997, his M.S. degree and Ph.D. in computer
science from Fudan University in 2000 and 2003 re-
spectively. His research interests include data mining,
database and knowledge base.

Wei W a n g was born in 1970. He received the M.S.
degree in 1992 and the Ph.D. degree in 1998. Now he is
an associate professor of the Dept. of Computing and
Information Technology, Fudan University. His main
research areas include spatial-temporal database, con-
straint database, index technology and semistructure
database.

Bai -Le Shi was born in 1935. He received the M.S.
degree in 1956. Now he is a chief professor of the Dept.
of Computing and Information Technology, Fudan Uni-
versity. His main research areas include object-oriented
database, knowledge database, digital library.

