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Abs t rac t  With the development of Internet, frequent pattern mining has been extended to more complex 
patterns like tree mining and graph mining. Such applications arise in complex domains like bioinformatics, web 
mining, etc. In this paper, we present a novel algorithm, named Chopper, to discover frequent subtrees from 
ordered labeled trees. An extensive performance study shows that the newly developed algorithm outperforms 
TreeMinerV, one of the fastest methods proposed previously, in mining large databases. At the end of this paper, 
the potential improvement of Chopper is mentioned. 
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1 I n t r o d u c t i o n  

Mining the frequent pattern from data set is a 
key progress in data mining research. Previously, 
most of the efforts are focused on the independent 
data such as the items in the marketing basket. 
However, objects in the real world often have close 
relationship with each other. For example, given 
a set of transactions, where a transaction records 
the items brought by a customer at a time, a set of 
items is called a frequent pattern if it is contained 
in at least rain_sup transactions, where rain_sup is a 
user-specified minimum support threshold. How to 
gain the frequent pattern from these relations be- 
comes the objective of the research in recent years. 
We call this Frequent Structure Mining (FSM)[1]. 

Among exploratory mining methods, an impor- 
tant problem is that  of Association Rule Mining [2], 
which aims to find the item sets that frequently 
occur in many database transactions. Another im- 
portant method is Sequence Mining [31, whose task 
is to discover a sequence of item sets shared across 
time among a large number of objects in a given 
database. These mining tasks can be placed within 
a generic framework, which we term Frequent Pat- 
tern Mining (FPM). 

An interesting case of tree structure mining is 
web usage mining [4,5]. Suppose that a database 
records the web log information of the users' access 
patterns, we can analyze it with various mining ap- 
proaches among which the simplest one is to ignore 
all linkage information and regard users' access to 
each page as independent. In this way, the mining 

results are the page sets that are frequently visited 
by users. However, the order of the pages visited 
by users also contains much information. Thus, if 
we model one access pattern of a user as an ordered 
labeled tree (ignoring back edges) and analyze such 
tree sets, we will eventually be able to obtain the 
paths users visit frequently. This information is 
certainly helpful to the reconstruction of the web 
site. 

Another typical example is the semi-structured 
document mining. In recent years, XML has be- 
come a popular way of storing datasets because 
the semi-structured nature of XML facilitates the 
storage and exchange of information between dif- 
ferent databases. Tree-structured XML documents 
are the most widely used in applications. Given a 
set of such XML documents, one would like to ex- 
tract all frequent subtrees that appear in the col- 
lection. 

Utilizing Association Rule Mining and Se- 
quence Mining, we can obtain useful information 
from such semi-structured document as XML, web 
log and so on. At present, some work has been done 
on how to extract patterns from tree-like data. Dis- 
tinguishing isomorphism is the vital problem they 
have to face. Although most methods have made 
a lot of efforts to handle this problem, the result 
is still not satisfying. One major cost in frequent 
tree pattern mining is to test whether a pattern is 
a subtree of an instance in the database. 

Here, we present a new idea to deal with isomor- 
phism problem and develop an algorithm to solve 
the problem efficiently. 
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1.1 R e l a t e d  W o r k  

Currently, some researches have been done on 
mining semi-structured data [1,6-11], among which 
[1, 9, 10] are focused on the problem of mining fre- 
quent subtrees. The SUBDUE system [12] discovers 
graph patterns using MDL principle. However, it 
may miss some significant patterns, since it per- 
forms a greedy search. W~ang and Liu [11] adopted 
Apriori-style technique to mine frequent path sets 
in ordered trees. Miyahara eta/.  [1~ tried a direct 
generate-test method. Dehaspe et al. [7] developed 
an algorithm WARMA to mine frequent patterns 
in graph structures. Since a tree is a special case 
of graph structures, we can apply WARMA to fre- 
quent tree mining. However, the problem of solving 
isomorphism in graphs is certainly more complex 
than that in trees. Therefore, this complicated al- 
gorithm is not appropriate to be applied to the field 
of tree mining. Besides, most of those methods are 
based on Apriori algorithm, in which the genera- 
tion of a large number of candidate item sets is the 
bottleneck. 

Zaki [1] and Asai eta/ .  [6] proposed efficient al- 
gorithms for frequent subtree discovery in a forest 
on SIGKDD2002 and SDM02 respectively. They 
adopted the method of rightmost expansion to add 
nodes only to the rightmost branch of the tree. 
Zaki utilized the sequence and scope in the TreeM- 
inerH and TreeMinerV algorithms, while Asai et 
al. proposed the FREQT algorithms. These al- 
gorithms are similar to our work to some degree, 
but the basic idea of our work is different from 
that  of theirs. They smartly extend the candidate- 
generation-and-test approach to tackle the min- 
ing, while we employ the depth-first search based, 
pattern-growth methods. For another thing, they 
check subtree isomorphism at the beginning of the 
algorithm, while our algorithm starts this job later 
in the process, which essentially lead to the differ- 
ence in mining efficiency. 

1.2 O u r  Contribution 

With dimensions of tree-like data increasing, 
we must spend a lot of time and spaces to check 
subtree isomorphism. At present, most algorithms 
solve the isomorphism problem at the beginning. 
Conversely, our algorithm deals with the problem 
later. Consequently, we can use the technique to 
minimize the number of structures for testing and 
reduce the efforts of solving the problem. 

We put forward the idea of "distinguishing iso- 
morphs first and then processing their isomers", 

which can minimize the search space and cut use- 
less branches out as early as possible. This algo- 
r i thm improves the efficiency. Therefore, we ad- 
vance Chopper algorithm whose basic idea is to 
discover all frequent isomorphs from sequences and 
then obtain their isomers from those frequent iso- 
morphs. 

Chopper algorithm is composed of two steps, 
one utilizes the improved PrefixSpan [1~] method to 
discover all frequent sequence retaining the rela- 
tionship of ancestor-descendant between nodes in 
trees, the other finds frequent structures from the 
sequences being generated in the early course. 

After forming the basic algorithm of Chop- 
per, we optimize some places. For example, tra- 
ditional PrefixSpan algorithm mines frequent se- 
quences which do not regard the relationship of 
ancestor-descendant between nodes in trees. Aim- 
ing at tree-like data, we can add to PrefixSpan al- 
gorithm such function as checking the relationship 
of ancestor-descendant between nodes in trees and 
then promote its ability to mine special frequent 
sequences. At this rate, the algorithm will greatly 
reduce the number of frequent sequences to be gen- 
erated, also lighten the burden of distinguishing iso- 
morphism problem, and promote the efficiency of 
algorithm consequently. 

Subsequently, we compare Chopper algorithm 
with Zaki's TreeMinerV algorithm by experiment. 
TreeMiner V algorithm adopts the method of right- 
most expansion to add nodes only to the rightmost 
branch of the tree. So it is efficient and scalable 
when the patterns are not very complex and large. 
Nevertheless, TreeMinerV algorithm would gener- 
ate a lot of candidate item sets and result in bottle- 
neck of performance. Therefore, Chopper algorithm 
manifests better capability than TreeMinerV. 

The rest of this paper is organized as follows. 
In Section 2, we define the basic concepts of the 
frequent subtree mining and state our problem for- 
really. In Section 3, we introduce Chopper algo- 
rithm, based on idea of isomorphism, in detail and 
illustrate the process. In Section 4, we offer exper- 
imental results on synthetic and real datasets to 
evaluate the proposed mining algorithm. In Sec- 
tion 5, we conclude the paper. 

2 Prel iminary Statement  

2.1 Terms and Concepts  

A tree is an acyclic connected graph. A forest 
is a collection of trees, where each tree is a con- 
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nected component .  A forest can thus be viewed as 
an acyclic graph. In general, every tree T has one 
and only one vertex v0 as its "roof'. We can use 
this vertex to represent the tree, denoted as T(vo). 
Then  we call this tree rooted tree. In  this paper ,  
we focus only on rooted tree. Given a rooted tree 
T(vo), the level of node v is defined as the length 
of the pa th  from v0 to v. The height of a tree is the 
max imum level of all nodes in a tree. 

Def in i t ion  1 (Re lat ionship  B e t w e e n  
N o d e s ) .  Given a rooted tree T(vo), consider any 
path starting from vo. I f  node u precedes node v, 
u is called an ancestor of v, and v a descendant of 
u. I f  there is only one edge between u and v, u is 
called the parent of v, and v the child of u. This 
edge is called a branch, denoted as b = ( u ; v ) .  I f  
several nodes share the same parent, they are called 
siblings. 

We denote the term of relationship between an- 
cestor u and its descendant v as A50(u; v), or .AT) 
for short,  and the term of relationship between par-  
ent u and its child v as PC(u; v) or PC. It is obvious 
tha t  PC  is a special case of A50. 

Therefore,  we can denote a rooted tree as 
T(vo) = (N;  B) ,  in which v0 is the root,  N is the 
collection of nodes in the tree, and B is the collec- 
t ion of branches in the tree. An  ordered tree is a 
rooted  tree in which the children of each node are 
ordered, i.e., if a node has k children, then we can 
designate t hem as the first child, second child, and 
SO o n .  

Def in i t ion  2 ( L a b e l e d  T r e e ) .  Given a rooted 
tree T(vo), a label set L, and a collection of all 
nodes N ,  T is a labeled tree iff there exists a map- 
ping f :  N --~ L, that v E N ;  f ( v )  = I e L. The 
tree is then denoted as T(vo) - (L(N) ;  B).  

It  becomes evident from the s ta tement  above 
tha t  different nodes can have the same label, i.e., 
nodes in a labeled tree may  not be labeled uniquely. 

Def in i t ion  3 ( O r d e r e d  L a b e l e d  T r e e ) .  
Given a tree T(vo),  T is an ordered labeled tree iff  
T is ordered and labeled. 

Def in i t ion  4 ( D a t a b a s e  o f  O r d e r e d  L a -  
b e l e d  T r e e ) .  Let TDB denote a database of or- 
dered labeled trees, in which each tuple exists in the 
format  of <TID; Ti} is the label of tree-like data. Ti 
is the ordered labeled tree. 

Def in i t ion  5 ( S u b t r e e ) .  Given an ordered la- 
beled tree T(vo) = (L(N) ;  B),  a tree T '  is a subtree 
of T(vo) iff 

1) T' is an ordered labeled tree T ' ( v  l) = 
(L (N ' ) ;  13') with v' as its root; 

2) node set N '  is a subset of N; 
3) f o rb  = (vi;vj)  e B ' ,  vi is v}s ancestor in T; 

4) the labels of vi and v i correspond with their 
labels in T. 

Please note tha t  the concept  subtree defined 

here is different from the conventional one. (!) In 
Fig. l (b) ,  a subtree of tree T in Fig. l (a)  is shown. 

A < 
(a) (b) 

Fig.1. Examples  of ordered, labelled, rooted tree and sub- 

tree. (a) Tree T. (b) Embedded  subtree.  

2.2 P r o b l e m  Sta tement  

Def in i t ion 6 ( F r e q u e n t  S u b t r e e ) .  Given a 
database of ordered labeled trees TDB and a sub- 
tree T, the support value o f T  is defined as S (T)  = 

]p(T)[ where p(T) is the number of all trees that 
N ' 

contain subtree T, and N is the number of trees in 
TDB. Hence, a structure T is a frequent subtree iff 
s(T)  >>. minsup. Here, minsup is a user-specified 
threshold, called minimum support. 

Given a database of ordered labeled trees T D B  
and a min imum support  minsup,  the problem we 
want to solve is to find all frequent subtrees. 

As mentioned above, mos t  of the existing meth-  
ods are Apriori-based. However, these methods  
cannot  avoid candidate generation,  which great ly  
consumes the system resource. In  this paper,  we 
propose a me thod  based on the depth-first-search- 
based, pa t te rn-growth  ideas. I t  reduces the cost 
of candidate generation dramatically.  In  addition, 
tree isomorphism is a subtle problem to handle. 
Though  in recent work, the cost of it can be l imited 
within O ( n l o g  3 n), it still deteriorates the perfor- 
mance besides the huge cost of candidate  genera- 
tion. We develop some techniques to reduce this 
cost. 

(!)ConventionMly, a tree G I whose graph vertices and graph edges form subsets  of the graph vertices and graph edges 
of  a given tree G is called a subtree of G. 
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3 A l g o r i t h m  C h o p p e r  

In the first part  of this section, we will describe 
the method of frequent pat tern  mining as a whole. 
Then the main steps of the algorithm are stated in 
detail. 

3.1 B a s i c  I d e a  o f  t h e  A l g o r i t h m  

In this section, we propose a general idea to 
solve the problem of searching for frequent sub- 
trees. Some properties of an ordered labeled tree 
will be brought out as follows. We choose pre-order 
sequence as the basis of describing an ordered la- 
beled tree, which cannot represent a tree distinctly. 
Therefore, we have to remember the level number  
of each element of the sequence in the tree. Thus, 
we can describe a tree uniquely with the combina- 
tion of pre-order sequence and level sequence. For 
instance, B1A2C3D3E2F3G3G2D3  is used to rep- 
resent the tree in Fig.2. 

Fig.2. Ordered labeled tree. 

In this paper,  we can deal with the above se- 
quence instead of a tree. 

P r o p e r t y  1. Given a node X~ in a tree of 
TDB, where X is the label of this node and n is its 
level number. The parent node of X,~ in the tree 
is the nearest node ahead of it which has a level 
number n - 1. 

This conclusion can be made easily from the 
pre-order sequence. 

P r o p e r t y  2. The sequence representing an or- 
dered labeled tree with level number has the follow- 
ing properties: 

1) A node's level number is either jus t  bigger 
than the level number of the adjacent node ahead 
by one, or no more than the level number of the 
adjacent node ahead; 

2) The first node of the sequence has the small- 
est level number, which is the only one in the se- 
quence. 

As we discuss above, using only pre-order se- 
quence without level number it is impossible to 
determine an ordered labeled tree. Based on this 
fact, we propose the concepts isomorph and isomer. 
The te rm of isomorph comes from chemistry, which 
means that  two kinds of materials have the same 

J. Comput. Sci. ~z Technol., May 2004, Voi.19, No.3 

components  and the different structures. For exam- 
ple, diamond and graphite are both  denoted by the 
chemical symbol C, which represents the carbon 
atoms, but they differ from each other, especially in 
the physical features. The  reason is, although they 
are both  composed of carbon elements, their struc- 
tures among the carbon a toms are quite different. 
So, we call the symbol C the isomorph of diamond 
and graphite, and the diamond and graphite are the 
isomers of the isomorph C. Therefore, we introduce 
the concept of isomorphism to our algorithm, which 
can explain our problem vividly. In our paper, pre- 
order sequence can be viewed as isomorphs, and 

the sequence combined with level number is its iso- 
mer. As shown in Fig.3, the sequence of ABCD 
is the isomorph, and AIB2C3D4, AIB2C3D2 and 

AIB2C2D3 are isomers. 

Fig.3. Isomorph and isomers. 

In the following part  of this section, we focus on 
the efficiency improvement of the ordered-labeled 
tree mining. We put forward the important  the- 
orem below based on the concept of isomorphism 
and frequent structure. 

T h e o r e m  1. I f  the isomorph expression is not 
frequent, the corresponding isomer is infrequent. 

Proof. Assuming that  there is an infrequent iso- 
morph expression with a frequent isomer structure, 
the structure would e.xist in some original trees and 
the number of these trees would be larger than  the 
minimum support.  For the isomorph expressions 
of these trees, that  infrequent expression must be 
their subset, otherwise the isomer structure will not 
exist in the trees. Therefore, the number of the iso- 
morph  expression in the trees is greater than  the 
minimum support.  It  is a contradiction to the as- 
sumption above. [] 

From this theorem, we can make a conclusion 
tha t  if the isomorph expression is infrequent, then 
the isomer structure is infrequent too, which is very 
important  to the problem of searching for frequent 
subtree. We can first deal with the isomorph ex- 
pression. If it is not frequent, the work of its isomer 
structure will be omitted, which will save us much 
t ime and work. What  is more, when the isomorph 
expression is very long with a lot of isomer struc- 
tures, the improvement of efficiency is remarkable. 
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For graphs, the problem of searching for iso- 
morphism is known to be an NP-hard problem[14]o 
This problem also exists in trees [151, and we will 
solve it later in our algorithm by greatly reducing 
the number  of structures to be tested. In our algo- 
rithm, we first check the expressions, and then filter 
out the infrequent ones, which will save the space 
when searching for the isomer, especially when the 
expression is long. 

Based on the concept of "isomorph first, isomer 
la te r ' ,  Chopper algorithm first obtain isomorph ex- 
pressions by using some method of searching for 
frequent sequence, and then process them to find 
isomer structures. When we search for frequent se- 
quences, we do not need to know their structures, 
thus the process is efficient. 

Chopper algorithm consists of the following two 
steps. Firstly, it searches for frequent sequence, 
and secondly it processes the sequence obtained 
above to find isomer structure. The algorithm is 
shown in Fig.4. The first step deals with scan- 
ning ordered labeled trees. By using some min- 
ing sequence method,  we could find all frequent 
sequences. The second step is to scan TDB once 
again and construct all frequent structures accord- 
ing to each frequent sequence. After finishing the 
scan, all those with support  greater than the min- 
imum support  will be output.  

Algorithm 1. Chopper 
INPUT: tree dataset TDB, support threshold minsup 
OUTPUT: a set of frequent subtree 
Chopper (TDB, minsup) 
{ 

ReadFile (TDB); //read TDB 
FindSequence (TDB, minsup, FSDB); 
InitiMFrequent Tree (ft,FSDB); 
//find isomers in FSDB and store them 
outputFSP=Process(ft,TDB); 
For each isomer i in outputFSP 

if (isomer i is no less than minsup) 
output(isomer i); 

} 

Fig.4. Algorithm of Chopper. 

Most methods  of mining frequent structures 
also consider isomorphism problem, such as [1]. 
But  they consider it at the beginning of their algo- 
rithms, so they have to face a lot of work at first. 
In fact, a great par t  of this work is unnecessary, be- 
cause a lot of sequences do not keep A:D in trees. In 
this situation, we do not consider isomer s tructure 
in the first step. ~Ve only find frequent sequence 
and prune unnecessary sequences as much as we 
can. Thus the number  of structures to be tested is 
minimized. 

We will discuss these two steps in detail in Sub- 
sections 3.2 and 3.3, respectively. 

3.2 Finding Frequent Sequences Keeping 
A/) 

There are many methods of searching for fre- 
quent sequence, most of which are based on the 
concept of Apriori. Most cost of these algorithms is 
concentrated on the candidate generation and pro- 
cessing. PrefixSpan [13] is another method, which 
can reduce a lot generation of candidate, and is 
more efficient than Apriori. So we adopt PrefiSpan 
as the base of Chopper algorithm. 

PrefixSpan is an efficient algorithm mining se- 
quential pat terns from sequence databases. The 
general idea of PrefixSpan is as follows. Given 
a sequence database SDB and a minimum sup- 
port  threshold rain_sup. To facilitate the elabo- 
rat ion of ideas, we assume that  each sequence is 
a string, i.e., any element of a sequence contains 
only one item. PrefixSpan firstly scans SDB to 
find frequent items as length-1 sequential patterns.  
Suppose that  length-1 pat terns (Xl>, . . . ,  (x,~} are 
found. Then, the complete set of sequential pat-  
terns can be divided into n distinct subsets: the 
i- th subset (1 ~ i ~ n) contains the sequential pat-  
terns with prefix (xi/. 

To mine the sequential pat terns with prefix (x~/, 
the (x~}-projected database is formed, which con- 
tains the sequences having xi. For each sequence 
in the (xi/-projected database, all infrequent items 
as well as all items before the first occurrence 
of xi should be ignored. Then, PrefixSpan finds 
the length-2 sequential pat terns in <x~/-projected 
database in the form of (x~xjl. According to xj ' s ,  
the sequential patterns with prefix (xi) can be fur- 
ther divided into subsets and can grow recursively. 

Some specific techniques have been developed 
to enable efficient implementat ion of PrefixSpan. 
Interested readers might refer to [13] for a detailed 
technical discussion. 

The traditional PrefixSpan method is used to 
mine the frequent sequences. However, for the tree 
mining, we can make some optimization to improve 
its efficiency. Since the frequent structures must  
keep .AT), we can apply some techniques to reduce 
the amount of the generated frequent sequences. 

The improved PrefixSpan algorithm, finding 
Frequent Sequences keeping r is shown in Fig.5. 

Suppose there is an ordered-labeled tree shown 
in Fig.6(a). We need to record all occurrences of 
the frequent nodes for efficiency. Fig.6(b) shows the 
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Algori thm 2. Finding Frequent Sequences keeping A ~  
INPUT: a dataset DB, support threshold minsup, 
and a parameter Sequence which is initialized to NULL 
OUTPUT: the list of frequent sequences and related 
information 
FindSequence (DB, miasup, Sequence) 
( 

node-list=find all frequent nodes in DB; 
For each node in node-list 
( 

result=Join(Sequence,node); 
support =KeepingAD (result,DB); 
if(support is larger than minsup) 
( 

output (result); 
NewPDB = CreatePDB(result); 
FindSequence(NewPDB,minsup,result ) 

} 
} 

Fig.5. Finding frequent sequences keeping AT). 

1' 4 

(a) (b) 

B D 
1At 1,0 1,5 
1,3 1,4 

(c) 

Fig.6. Example of keeping .A:D. 

da ta  s t ruc ture  we adopt .  Each element in the list 
are stored in the form of (TID;position), where 
TID records the IDs of the original tree, and  
position stores the posi t ion of the node in the  prr 
order sequence of  the  tree, which begins with 0. 
Fig.6(b) also shows the result after scanning the 
database.  If  A, B,  C and D are the frequent nodes, 
we scan the tree once more to gain the informat ion 
of  these nodes. If  the  T ID  of tree in Fig.6(a) is 1, 
A has occurred twice, in positions 2 and 4, so the 
list of  A will contain  two elements: (1, 1 / and (1, 3). 
Other  nodes '  informat ion  can be gained in the same 
way. W h e n  we deal with the prefix, we use the 
intersection opera to r  on all the T I D  fields related 
with the nodes in the  prefix, then, do the fur ther  
analysis on those trees in the T ID  intersection set. 
For each tree with the  T ID  in the set, we only need 
to extract  the  informat ion  about  the prefix. For ex- 
ample,  for the prefix ABD in Fig.6(a), we const ruct  
a s t ruc ture  shown in Fig.6(c) according to the fields 
in Fig.6(b).  This  s t ruc ture  is beneficiM to  the  pat -  

te rn  counting.  The  number  of dist inct  T I D  is the 
pa t t e rn  frequency. If  the shared T I D  numbers  of 
two pa t te rns  (one is a prefix, the o ther  is a node) 
are less than  the min imum threshold,  they  cannot  
be combined as a frequent pa t te rn ,  so they can be 
dropped.  This s t ruc ture  can be set up in one scan- 
ning. For the fur ther  projec ted  database ,  we only 
need to ignore the first par t  of each node 's  list. 

3.2.1 Shrinking the Projected Database 

W h e n  dealing with the pro jec ted  da tabase  of 
l - l eng th  sequences, we can shrink it efficiently. 
For instance, for the tree B1A2C3A2B3D4C5C3 
shown in Fig.6(a),  instead of the project ion 
CABDCC, we generate  the pro jec ted  da tabase  of 
A by project ing it into two trees: C and BDCC. 
This  is because the result of the projec t ion is in a 
two-tree one if we do it directly, bu t  for convenience 
in the later part ,  dividing them into two is a trivial 
method .  But  this technique can only be applied in 
the root  of the original tree. If  the length of prefix 
is more  than  one, the rest nodes are all the descen- 
dants  of the root,  and belong to one tree, which 
cannot  be divided. 

Meanwhile, this projec ted  da tabase  do not  need 
to copy the sequences from the original one. W h a t  
we need is only to store the head and end links of 
the  corresponding posit ion in the two trees. This 
technique can be referred as pseudo-project. 

3 . 3  F i n d i n g  F r e q u e n t  S u b s t r u c t u r e s  

Once we discover all frequent sequences, we en- 
ter the second step of the a lgor i thm shown in Fig.7. 

Algori thm 3. Finding Frequent Structures 
INPUT: a tree database TDB, frequent 
sequences set ft 
OUTPUT: isomer set 
Process(f~, TDB) 
{ 

tree-list ---- find all trees in TDB; 
For each tree t in tree-list 
( 

node-list = find all nodes in tree t; 
For each node n in node-list 

//expand current node in fl 
ExpandNode(fl, n); 

} 

Fig.7. Finding frequent structures. 

In  this algorithm, we should scan the cor- 
responding trees in the original da tase t  (TDB). 
Firstly, we extract  sequences from the current  tree 
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according to the frequent sequences obtained from 
the first phase, and generate  all possible isomers for 
them. Then  we decide whether  these isomers exist 
in the current  tree or not.  If  it is in the tree, the 
isomer is added to the result list, or the count of the 
corresponding isomer in the result list is increased 
by one. Every  node in each tree is recursively pro- 
cessed, until the whole TDB is scanned. W h e n  
the a lgor i thm finishes, all the isomers are gener- 
a ted and the corresponding times of appearances  
are counted.  

For example, given a tree A1B2C3D2, the se- 
quences for all its possible isomers can be: A, AB, 
B, ABC, AC, BC, C, ABCD, ABD, ACD, AD, 
BCD, BD, CD and D. If  the sequence ABC exists 
in the frequent sequences resulting from the first 
phase, the isomer A1B2C3 will be added to the 
result list; if A1B2C3 has been in the result list, 
its counter  is increased by one. If  the sequences 
do not exist in the frequent sequences, the isomers 
need not  be generated or tested any more. 

Now let us use an example to illustrate how the 
isomers are generated by the algorithm. 

Example 1. Given the da ta  set of ordered la- 
beled trees in Fig.8, now comes to the tree with 
T I D  i. Meanwhile, all the frequent sequences dis- 
covered are (A, B, C, D, AB, AD, DC, ABC, 
ABD, ADC, ABDC). 

Because there are four nodes in the current tree, 
four recursive steps are needed here, as shown in 
Fig.9. In  the first step, we scan node A. For it is 
the root  node, no ancestor  node of it is in the index 
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list. From the frequent sequences, we get tha t  the 
sequence A is frequent, so the isomer A1 is added 
to the result list, and the node A is inserted in the 
index list. 

riD] Tree @ ~  

i A1B2D2C3 --," 

Fig.8. Data for finding isomer. 

In the following three steps, we scan the in- 
dex list reversely to get all the ancestors for the 
current  node, and expand the ancestors with their 
child nodes and nodes connected to them. After  the 
current node is added to their isomers, we get new 
candidate  isomers. Then  we decide whether the se- 
quence representat ion of each candidate  isomer be- 
longs to the frequent sequences. If  it is, the isomer 
is recorded; otherwise, it is discarded. MeanwhiIe, 
the current node is inserted into the index list. 

After  an ordered labeled tree is scanned, all iso- 
mers from it are collected. If  the isomer has been in 
the result list, its corresponding counter increases. 
Continue to scan all the trees one by one, until  the 
whole da ta  set has been scanned. Then  the algo- 
r i thm stops. 

4 E x p e r i m e n t s  

According to the conclusions in [1], we only 

Index list Isomers 
Step 1 Step 2 Index list Isomers 
Original ~ Original ,-~t---~ ~ l F ~  
conditions conditions ," : 

Result ~ Result " " ~  

Because A is a frequent Because B, AB are frequent 
sequence, the isomer A1 sequences, the isomers B1 and 
is added to the result list, A1B2 are added, and the index 
and the index item is item is inserted for B. 
also inserted for A. 

Original ~ ~ .  / /  
conditions . :-:. ,'" 

Result "[-C--~A1B2D2c3-- DIC2 1C2 A-1B2C2 C1 

Because ABDC, ABC, DC, AC, C are frequent 
sequrnces, the isomers A t B2 D2C3, A1B2C2, D1C2, 
A1C2, C1, and index item is inserted for C. Otherwise, 
ADC is not a frequent sequence, so we need not generate 
the isomer AID2C3. 

Fig.9. Process of finding isomer. 

Isomers 

Step 3 
Original 
conditions 

Result " ~  

Because ABD, AD, D are frequent 
sequences, the isomers A1B2D2, 
A1D2D1 are added. And index item 
is inserted for D. 

all the isomers 
[A1B2D2C3J for the current labeled tree 
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choose TreeMinerV as the opponent of Chopper. 
It shows that  Chopper outperforms TreeMinerV, 
especially in the case of large amount of complex 
tree structures. 

All the experiments are performed on a Pent ium 
IV 1.TGHz PC with 512MB RAM. The OS is Red 
Hat Linux 9.0 and the algorithm is implemented in 
C + + .  

4.1 Exper iments  on  Synthet i c  Data  

We choose a B P T  from the B P T  set with equal 
possibility, randomly choose a node within valid 
level in the synthetic tree, t reat  it as a temporary  
root, and overlap the B P T ' s  root by this root. All 
the nodes under the t empora ry  root should be re- 
assigned a label with the label of the corresponding 
node in BPT.  If  there is no such node, add a new 
one. This procedure will terminate  when all the 
chosen B P T  nodes are put into the synthetic tree. 
Now the synthetic tree is ready. 

4.1.1 Synthetic Data Generation 

All the generated data  are in the form of 
(TreelD, TreeSeq), where TreeID identifies each or- 
dered labeled tree and TreeSeq is the pre-order code 
of that  tree. 

We wrote a synthetic data  generation program 
to output  all the test data. There are 8 parame- 
ters for data  generation adjustment. They are: the 
number of the labels S, the probability threshold 
of one node in the tree to generate children p, the 
number of the basic pat tern  trees (BPT) L, the av- 
erage height of the B P T  I ,  the maximum fanout 
(children) of nodes in the B P T  C, the data  size of 
synthetic trees N,  the average height of synthetic 
trees H ,  and the maximum fanout of nodes in syn- 
thetic trees. The actual height of each (basic pat-  
tern) tree is determined by the Gaussian distribu- 
tion having the average of H(I)  and the s tandard 
deviation of 1. 

A synthetic dataset  is generated in 3 phases as 
follows. First, we generate a label set of S. Then, 
according to above parameters,  we generate all the 
B P T  and synthetic trees. Last, we use the B P T  to 
overlap in the synthetic trees and replace or add 
some nodes and branches in synthetic trees to ob- 
tain the final dataset.  

The second phase in the generation can be done 
according to the following steps. For a given node, 
we assign a label from label set with equal possibil- 
ity. Then we use a random-number  generator to get 
a number. If  the number  exceeds p, we determine 
how many children this node can have by choosing 
a number n between 0 and C(F) in equal possibil- 
ity and call this method recursively to generate its 
children; if the number  is less than p, we must turn 
back to its parent  to deal with the next sibling or 
turn back more in the case that  all the siblings have 
been generated. This process will terminate when 
the height of the tree reaches the value specified by 
the parameter  I(H).  

In the overlapping phase, the height and max- 
imum fanout of the synthetic tree is not changed. 

4.1.2 Performance on Synthetic Data 

At first, we consider the scalability with minsup 
of the two algorithms, while other parameters  are: 
S = 100, p = 0.5, L = 10, I = 4, C = 3, 
N = 10,000, H = 8, F = 6. Fig.10 shows 
the result, where the minsup is set from 0.1 to 
0.003. In this figure, both  X and Y axes have 
been processed by log10 T for the convenience of 
observation. We can find, that  Chopper is a win- 
ner, especially, TreeMinerV is halted in 3 hours-for 
memory  overflow when minsup = 0.02, while the 
Chopper goes well. It should also be noted that ,  
Chopper does not perform excellently until minsup 
is dropped to 0.004. 

10 4 

10 3 

10 2 

101 

j j/ 
[ ~ TreeMinerV 

10-1 10-2 10-3 

Support  threshold  

Fig.10. MinSup vs. t ime.  

Fig.11 shows the scalability with data  size. In 
this figure, the Y axe has been processed by log10 T 
for the convenience of observation. The da ta  size 
N varies from 10,000 to 50,000, while other pa- 
rameters  are: S = 100, p = 0.5, L = 10, I = 4, 
C = 3, H = 8, F = 6, minsup = 0.01. Here we 
find the cost of both  time and space of Chopper 
is extremely less than that  of TreeMinerV which 
is halted for memory overflow. The  reason is tha t  
Chopper can save time and space cost by avoiding 
false candidate subtree generation. 
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Fig.12. Tree size vs. t ime.  (a) Height  vs. t ime.  (b) Maxi -  

m u m  fanout  vs. t ime.  

Finally, the scalability with tree size is shown 
in Fig.12. In this figure, the Y axes have been 
processed by log10 T for the convenience of ob- 
servation. In Fig.12(a), we only vary H from 6 
to 9. It is easy to find that,  when H equals 6 
or 7, the performance of Chopper is better  than 
that  of TreeMinerV. However, when the trees be- 
come higher, the superiority grows. In particular, 
when H equals 8 or 9, Chopper thoroughly de- 

feats TreeMinerV for the reason that TreeMinerV 
is halted for memory overflow. In Fig.12(b), the 
performance of Chopper and TreeMinerV is simi- 
lar to the case above. Chopper certainly performs 
bet ter  than TreeMinerV, while the fanout contin- 
ues to increase. 

4.2  E x p e r i m e n t s  o n  R e a l  D a t a  

We used Chopper in Web Usage Mining. We 
downloaded the Weblog [16] of Hyperreal [17], chose 
those dated from Sept.10 to Oct.9, 1998 as the 
input data, and then transformed the Weblog 
into tree-like data set which included over 12,000 
records totally. 

4.2.1 Performances on Real Data 

Fig.13 shows the performance of the two algo- 
rithms, where the minsup is set from 0.1 to 0.0006. 
In this figure, both X and Y axes have been pro- 
cessed by logl0 T for the convenience of observa- 
tion. We can find that the performance of Chopper 
is better than that of TreeMinerV. Especially, 
TreeMinerV is halted in 3 hours for memory over- 
flow when minsup = 0.0006, while the Chopper 
goes well. 

10 4 

10 3 

10 2 

] 
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Fig.13. MinSup  vs. t ime.  

Finally, Fig.14(a) shows the number of fre- 
quent patterns generated by the algorithm, while 
Fig.14(b) shows the average number of the nodes of 
the frequent patterns generated by the algorithm, 
where the minsup is set from 0.1 to 0.0006. For 
the convenience of observation, both X and Y axes 
have been processed by log10 T in Fig.14(a), while 
Y axe has been processed by log10 T in Fig.14(b). 

4.2.2 Results on Real Data 

Fig.15 shows some results. So if we modify the 
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Fig.14. MinSup vs. patterns. (a) MinSup vs. the number of 
patterns. (b) MinSup vs. the Avg No. of nodes of patterns. 

I_t/music/machines/ / /music/ ~ ]  m a n u f a c t u r e ~  machines/ 

(~ /music/ machines/ I J  /music/ machines/ | 
manufacturers/ Moog/~'] manufacturers/ Moog/ MG-1/~) 

/music/machines/manufacturers/Moog/] 
MG-1/info/ moog.MG-1 

Fig.15. Example of the result. 

web site architecture according to the results shown 
in the figure, it will be more efficient for users to 
browse this site, which will in turn improve the hit 
ratio of the web site. 

The result can be explained and exploited as fol- 
lows: After examining the mining result, we found 
tha t  among the users who visited the webpage of 
Moog, approximately half of them visited the page 
MG-1. So we suggest that  the webmaster place a 
"Hot" tag to the right of MG-I ' s  link. Similarly, 
it is interesting to find that  almost all the remain- 
ing users continued to visit "moog.MG-l" ,  which 
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consists of the description and comments  of synth 
MG-1 from people who bought it. Usually, when 
someone is interested in a product  and may plan 
to buy it, it is likely that  he or she wants to hear 
others '  comments  on this product.  These words are 
not like those in commercials, and often offer more 
down-to-earth and reliable information. This ex- 
plains the webpage access pa t te rn  quite well. We 
also notice that  currently the section containing 
"moog.MG-l"  is not arranged at the top of the 
webpage. Considering the psychological factor of 
users described above, it is wise to re-build this 
page by placing "moog.MG-l"  at the top. In short, 
if we modify the web site architecture according to 
the results shown in the figure, it will be more ef- 
ficient for users to browse this site, which will in 
turn  further improve the hit ratio of the web site. 

Still, there are some other results in Fig.16. 
Here we do not explain them any more. 

/msic/machines/addressbook/index.ht ml ] 

I /~gould/synth.html I/machines,~/m,a~nufacturers/I I/lakata&awai k3.html[ 

~ K  
-~.a,t mazes/ / 

Imachines/iconsl /homes/cook/anhevn/ /music/machincs/Elcctronica/ 
back~round.defau t anhevn.htm web/archive/feb96/0094.htm I 

/ h ~ s/d / I mac ines categorie o-it-yourself, ]machines/n~rmfacturers/ 
sequencer/analo:~ue.sequencer.txt I Waldorf/Wave/ 

(a) 

I /music/machines/addressbook/i ndex.ht ml I 

I /machines/manufacturers/ Roland/CompuRhythmlima es/ I I /~gould/synth.htm 

I Imachineslmanufacturers/ Moog;,/Prodigfl ] ] /korg/links.html 

(b) 

/music/machine/scategories/drum- machines/samples/ 
Rhythm-Ace.txt 

/midi/ I I /machines/manu facturers/Theremin/ 

/machines/adaptive/ I ] /homes/map/home.html 

] /music/machines/Analogue-Heaven/new.html I 
(c) 

Fig.16. Some results of the Weblog analysis. (a) 19970212 
minsup = 0.002; (b) 19980731 minsup = 0.005; (C) 
19980824 minsup = 0.003. 
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5 C o n c l u s i o n  

We are drown in the world of numerous and 
complicated documents. We expect eagerly to find 
a path to the golden nuggets in a short time. Here 
we present a new mechanism to achieve this goal. 
Many documents are semi-structured, which con- 
tain some incomplete structural information, for 
instance, the XML documents. There are many 
similar substructures in these documents, so it is 
very useful to gain the frequent structures through 
mining, which leads to the results of similar in- 
formation among these documents. In this paper, 
we introduce a new algorithm Chopper, which can 
tackle the problem efficiently. 

The next step for us is to improve our work 
with the aim of solving some special structures in 
the documents, such as the nested or cyclic ones. 
Other interesting work includes coupling the struc- 
tural information within the process of sequence 
generating tightly, with the hope of making the 
performance better. 
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