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Abs t r ac t  An extent join to compute path expressions containing parent-children and ancestor-descendent 
operations and two path expression optimization rules, path-shortening and path-complementing, are presented 
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Experimental results show that the algorithms proposed are more efficient than traditional algorithms. 
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! I n t r o d u c t i o n  

As an emerging standard for data  representa- 
tion and exchange on the Web, XML is adopted 
by more and more applications for their informa- 
tion description. Even though XML is usually used 
as an information exchange standard, storing, in- 
dexing and querying XML data are still important  
issues and have become research hotspots both  in 
the academic community and in the industrial com- 
munity. 

So far, there have been three main approaches 
to manage XML data, the relational, object- 
oriented and native ways. In the relational way [1,2] , 
XML data are mapped  into tables and queries on 
XML data are translated into SQL statements.  
STORED[ 3], Agora[ 4] , Monet [a] and VXMLR[ 6] are 
examples following this way. Similar to the re- 
lational way, the object-oriented way[ 7-9] stores 
XML documents into an OODB with classes and 
translates XML queries into OQL queries based 
on XML data  schema information. The Lore 
Project  [l~ is an example following this way. In 
the third way, special structures and indexes are 
designed to store and index XML data  and par- 
ticular query optimization techniques are proposed 
to query XML da ta  from databases. Rufus[ hI ,  
Strudel [12], and Tamino[ 13] are examples following 
this way. 

To improve basic operations on databases such 
as "/"  and " / / " ,  indexing is a necessary means and 
draws more and more attention. DataGuides [14] is 
designed for semi-structured data, and four index 

* Regular Paper 

structures, value index, label index, edge index and 
path index, are proposed. However, they act as 
schema more than as indexes. A general index 
structure for semi-structured data,  called template 
index or T-index, is proposed in [15] to make eval- 
uating queries involved in several pa th  expressions 
possible, and the degeneration form of T-index, i.e., 
1-index, is similar to DataGuides. These indexing 
techniques are designed for semistructured data.  
In [16], three index structures, element index, at- 
tribute index and structure index, are proposed to 
support  three essential functionalities respectively. 
For a given element name, a list of element with 
the same element name can be found with element 
index. Similarly, for a given a t t r ibute  name, a list 
of at tr ibutes with the same at t r ibute  name can be 
found with attribute index. Structure index is used 
to find the parent element and child elements of a 
given element. However, there are two main draw- 
backs. 1) Although the ancestor-descendant rela- 
tionship between elements and /or  a t t r ibute  in a hi- 
erarchy of XML data can be quickly determined 
based on the proposed numbering scheme, it is dif- 
ficult to distinguish the parent-child relationship 
from the general ancestor-descendant relationship 
and therefore it is difficult to build structure index. 
This is not made clearly in the paper. In this case, 
it is incorrect to compute a join operation standing 
for a parent-child relationship using the EE-join al- 
gorithm. The ancestor-descendant relationship can 
be derived from the parent-child relationship, but  
not vice versa. 2) There is the same problem with 

This research is partially supported by the National Natural Science Foundation of China (Grant No.60273079) and 
the Teaching and Research Award Program for Outstanding Young Teachers in High Education Institution of the Ministry 
of Education, China. 



Guo-Ren Wang et al.: RPE Query Processing and Optimization Techniques for XML Databases 225 

the EA-join algorithm. 
To retrieve XML data from databases, many 

query languages have been proposed so far. Ex- 
amples are Quilt [lr], XQuery [ls], XML-QL [19t, 
XQL [2~ XPath [211, and Lorel [221. Because one of 
common features of these languages is the use of 
regular path expressions (RPE), query rewriting 
and optimization for RPE are becoming a research 
hotspot and some research results have been re- 
ported recently. A usual way to optimize the ex- 
ecution of RPE expressions is rewriting an RPE 
query with simple path expressions (SPE) based 
on schema information and statistics about XML 
data, and these SPE queries are then translated 
into SQL queries, for example, in the relational 
way. In the Lore system, three basic query process- 
ing strategies are proposed for the execution of path 
expressions, top-down, bottom-up and hybrid. The 
top-down way navigates the document tree from the 
root to the leaf nodes while the bottom-up way does 
from the leaf nodes to the root. In the hybrid way, 
a longer path is first broken into several sub-paths, 
each of which is performed with either top-down or 
bottom-up. The results of the sub-paths are then 
joined together. In the VXMLR system [6], regular 
path expressions containing " / / "  and/or  %" oper- 
ators are rewritten with simple path queries based 
on schema information and statistics. [16] presents 
an EE-Join algorithm to compute " / / "  operator 
and a KC-Join algorithm to compute "*" operator 
based on their numbering scheme. 

In this paper, we propose an extent join al- 
gorithm to compute path expressions contain- 
ing parent-children and ancestor-descendent oper- 
ations between path steps. To support the ex- 
tent join approach, some indexes preserving parent- 
children and ancestor-descendent relationships are 
also proposed. Furthermore, two path expression 
optimization rules are proposed, path-shortening 
and path-complementing. Path-shortening reduces 
the number of joins by shortening the path while 
path-complementing optimizes the execution of a 
path  by using an equivalently complementary path 
to compute the original path. The performances of 
the query processing and optimization techniques 
proposed in this paper are evaluated with two 
benchmarks, XMark and XMach, and two real da ta  
sets, Shakes and DBLP. 

The remainder of this paper is organized as fol- 
lows. Section 2 presents some basic concepts for 
XML query processing, including XML data tree, 
XML schema graph and path expression. Section 
3 describes the extent join algorithm along with in- 
dexes and rewriting algorithm for " / / " .  Section 4 

presents two query optimization rules for regular 
path expressions. Section 5 gives the experimental 
results and the performance evaluation. Finally, 
Section 6 concludes this paper. 

2 Bas ic  C o n c e p t s  

In this section we review some concepts and def- 
initions used throughout the paper, including XML 
data tree, XML schema graph and path expression. 

XML data are represented as an XML data 
tree Td = (Vd, Ed, 5d, Ed, rootd, old), where Vd is 
the node set including element nodes and attribute 
nodes; Ed is the set of tree edges denoting parent- 
children relationships between two elements and 
element-attribute relationships between elements 
and attributes; 5d is the mapping function from 
nodes to nodes that are actually the relationship 
constraints. Each node. has a unique name that 
is a string-literal of Ed and a unique identifier in 
set old. Finally, each XML data tree has a root 
e!ement roota that is included in Vd. 

Fig. 1 shows part of an XML document proposed 
in the XML Benchmark project [2~1, which is repre- 
sented as an XML data tree. There are two kinds of 
nodes, elements denoted by ellipses and attributes 
by triangles. The numeric identifiers following "&" 
in nodes represent oids. The solid edges are tree 
edges connecting nodes via the ~d function. In this 
model, the parents can actually be reached via the 
~21 function from the children. Node "&l" labelled 
"site" is the rootd of this XML data tree and all 
other nodes can and only can be reached by rootd. 
Note that in Fig.i, there are two directed dashed 
lines between some nodes (&23 and &:18, s and 
&18), representing the referencing-referenced rela- 
tionship between elements. 

An XML schema graph is defined as a directed, 
node-labelled graph Gt = (l/t,Et,e~t,~t, roott), 
where Vt is the node set including element type 
nodes; Et is the set of graph edges denoting 
element-subelement relationships. Attributes are 
parts of elements; 8t is the mapping function from 
nodes to nodes that actually determines which el- 
ement can contain which sub-elements. Each node 
has a unique name that is a string-literal of St and 
this name is actually element type name. Finally, 
an XML schema graph has a root element roott 
that  is included in Vt, which is defined as the node 
with only outgoing edges and without any incoming 
edges. 

Fig.2 shows part of the XML schema graph that  
determines the XML data tree in Fig.1. The nodes 
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Fig.1. A sample XML data tree. 
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Fig.2. XML schema graph of the sample XML data tree. 

are element types and the solid edges are graph 
edges connecting nodes via the 5t function. In this 
model, the parent elements can actually be reached 
via the 5 t  1 function from the children elements 
and the corresponding reverse edges are omitted 
in Fig.2. The node labelled "site" is the roott of 
this XML schema graph. The attributes of element 
types are listed besides the nodes with underline, 
for example, income. 

PathExpression ::= CONNECTOR PathSteps 
[ PathSteps CONNECTOR PathSteps 

PathSteps ::= Name I Name ']' PathSteps 
[ (PathSteps) I '*' 

CONNECTOR ::= '/ '  1'// '  

Fig.3. BNF syntax of path expression. 

Path expressions can be straightforwardly de- 
fined as a sequence of element type names ("site", 
"people", etc.) connected by some connectors such 
as " /" ,  " / / "  and wildcard "*". For example, path 

expression "/site//item" can be used to find all 
items of the database whose root element rootd is 
"site". The syntax definition of path expression is 
shown in Fig.3. 

A path expression mainly consists of two parts, 
path steps and connectors. Each path expression 
must begin from the root, that  is, it begins with a 
connector "/" or " / / " .  There are two basic kinds 
of path steps, Name and wildcard "*". Path  step 
Name means that  in this step only the element in- 
stances with type Name(tag name) will be matched 
and "*" will match all element instances no matter  
which type they belong to. Between two path steps 
there must be a connector to specify the relation- 
ship between them. Connector " /"  appearing in 
the beginning of a path expression means that  the 
path expression begins from exactly the root and 
the following path step is the root element type, 
while connector " / / "  appearing in the beginning of 
a path expression means the path expression be- 
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gins from the root and the following pa th  step is 
the descendant of the root, that  is, " / / "  covers sub- 
path-expressions with any length. A connector ap- 
pearing between two path  steps specifies the rela- 
tionship between them. In this case, connector " /"  
constrains that  between the two path  steps there 
must exist a parent-children relationship while " / / "  
is an ancestor-descendant relationship constraint. 

3 E x t e n t  J o i n  

In this section, we present the XML element 
extent concept and the extent join algorithm. ~Ve 
present some indexes as well in this section to sup- 
port  the concept and the algorithm. 

3.1 X M L  E l e m e n t  E x t e n t  

did C P( aid) } , where P( aid) is the element instance 
set that can be reached from aid via path P. 

In the query processing, PCExt may be more 
useful than the basic XML element extents. A 
PCExt is actually an element extent with a path  
constraint and is a subset of the corresponding 
extent. For example, in PCExt(site, annotation, 
"/site/closed_auctions~ closed_auction~ annotation"), 
the third parameter  is the pa th  constraint on 
Ext(site, annotation). This constraint regulates 
that  in this PCExt, the instances of element anno- 
tation must be the ones that  can be reached from 
the corresponding instances of element site via the 
pa th  expression. As a result, PCExt(site, anno- 
tation, "/site/closed_auctions/closed_auction/an- 
notation") = {(&l, &24), (&l, s 

Given an XML data  tree Td = (Vd, Ea, 5d, Ed, 
rooter, old) and a corresponding XML schema graph 
Gt = (Vt, Et, St, Et, roott), we have the following 
definitions. 

D e f i n i t i o n  1. pcpair(pid, cid) is a pair of oids, 
in which pid and cid E old, and pid is the parent 
of cid, for example, pcpair(&l, &2). 

D e f i n i t i o n  2. adpair( aid, did) is a pair of oids, 
in which aid and did E old, and aid is the ancestor 
of did, for example, adpair(&l, &3). 

Note tha t  a pcpair is a special case of an adpair. 
Additionally, s is defined to act as any element in- 
stance, so adpair(~,~:3) can be used to represent 
adpair(~zl, 8z3) or adpair(~2, &:3). Both adpair and 
pcpair can also act as logic operators. For exam- 
ple, if there exists an ancestor-descendent relation- 
ship between two element instances el and e2, then 
adpair(el, e2) is true. Otherwise, it is false. 

D e f i n i t i o n  3. The set of all pcpairs of a given 
tag name Tag, called parent-child element extent, is 
represented by Ext( any, Tag) = {pcpair(pid, cid)] 
cid is an instance o/ Tag A pcpair(pid, eid) is 
true}. Similarly, the set of all adpairs of two given 
tag names an and dn, called ancestor-descendant 
element extent, is represented by Ext(an, dn) = 
{adpair(aid, did) l pcpair(~ , aid) e Ext(any, an)A 
pcpair(e, did) e Ext(any, dn)A adpair(aid, did) is 
true}. 

For examples, Ext(any, name) = {(~z4,&6), 
(&7, &9), (&11, &13)} and Ext(site, annotation) = 
{(&l, &24), (&l,  &29), (&l, &35)}. 

D e f i n i t i o n  4. For two given elements, an 
and dn, and a given path P, the path constrained 
element extent is defined as PCExt(an, dn, P) = 
{ adpair( aid, did) l adpair( aid, did) E Ext( an, dn) A 

3.2 I n d e x e s  

Neither the DOM interface nor the XML data  
tree provides the extent semantic for XML data, so 
we propose three structural indexes to support  it: 
ancestor-descendant index (ADJO, parent-children 
index ( PCX) and path index (PAt). We also pro- 
pose reference index (RX) to support  operations 
on references. 

ADX is used to index Ext(Pname, Cnarne) for 
given element names Pname and Cname where 
Pname is the ancestor of Cname. Actually, ADX 
indexes the ancestor-descendant relationship be- 
tween specified elements. For example, ADX(site, 
item) = ( (&l ,  &4), (&l,  &7), (&l,  &l l )} .  
PCX is used to index PCExt(Pname, Cname, 
"Pname/Cname") for given element names Pname 
and Cname where Pname must  be the parent 
of Cname. For example, PCX(namerica, item) 
is {(&3, &4), (&3, &7)}. If the parent ele- 
ment name is not specified, PCX(any, item) in- 
dexes Ext(any, item)= {(&3, &4), (&3, &7),(&10, 
&l l )} ,  written as PCZ(item). PX(E1/P/E2) is 
used to index PCExt(E1, E2, "E1/P/E2"). For ex- 
ample, PX( closed_auctions/ closed_auction/buyer) 
= {(&21, &23), (&21, &28)}. R X  is used to sup- 
port  the reference semantics between XML ele- 
ments. For example, RX(buyer, person, person) 
is {(&23, ~:18), (~z28, &18)}. 

About the indexes above, only the principles are 
introduced. The implementations of them are rel- 
atively simple for they have no special demands on 
the index structures. The tradit ional index struc- 
tures, e.g., B+ tree, are suitable for these indexes. 
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3.3 E x t e n t  J o i n  A l g o r i t h m  

The basic idea of the extent join algorithm 
is replacing the tree traversal procedures with 
join operations. Before the whole path expres- 
sion is evaluated, the intermediate result sets 
to be joined must be first computed. And 
the ancestor-descendant/parent-children relation- 
ship based multi-join operation is then performed 
to evaluate the whole path expression. The 
most special characteristic of these indexes is that  
they maintain the parent-children and ancestor- 
descendant relationship by the index results. 

Consider path expression "/site//closed_auction~ 
annotation~description" containing four path steps 

and three connectors. As shown in Fig.4, each path 
step corresponds to an intermediate result set, i.e., 
an element extent; each connector is transformed 
into a join operation, and the results of joins are 
the path constrained element extents. For exam- 
ple, the join between Ext(any, site) and Ext(site, 
closed_auction) is PCExt( site, closed_auction, 
"/site/ closed_auctions~ closed_auction"), and the 
PCExt acts as an intermediate result used to per- 
form another join with Ext(closed_auction, anno- 
tation) to get another PCExt. Path expressions 
must be transformed into evaluation plans to get 
evaluated. The art of transformation is focused on 
the path steps to correspond to extents, and the 
following shows the full transformation rules. 

o I o 

I ~ I I Description[ / I [Ext(annotation,[ I ~ [ [PCX(annotation,[ 
~ . ~ '  ' • ~[ Description), ~ _ ~[ description), 

~ C l o s e ) l : : n : t  ation , ! 0 ~ [ E xt ( C lOSendn~tU~, one, ] ~ [ PCX (C i ~nSendo~U~toiOl~, [ 
Ic,, _ c.o I l xt( n , I l xt(site,r I l r215162215162 l 

(a) (b) (c) 

Fig.4. (a) Path expression. (b) Extent join tree. (c) Execution tree. 

(1) Connectors (" /"  and " / / " )  are transformed 
into joins between two sets. 

(2) Path step "." is rewritten with ele- 
ment types using the mapping function ~t. For 
example, ~t(site) = {regions, people, closed_ 
auctions, open_auctions} and path expression 
"/site/./person" is rewritten as "/site/(regions I 
people[ closed_auctions I open_auctions) /person". 

(3) Path steps following connector " / / "  are 
transformed into a corresponding ADX operator. 
For example, path step $2 in "$1//$2" is trans- 
formed into ADX(S1, $2). 

(4) Path  steps following connector "/" are 
transformed into a corresponding PCX operator. 
For example, path step Sz in "$1/$2" is trans- 
formed into PCX(S1, $2). 

(5) Path steps containing "l"s are transformed 
into the unions of corresponding indexes. For ex- 
ample, path step ($2[S3) in "S1/($2[$3)" is trans- 
formed into PCX ( S1, $2) U PCX ( S1, $3). 

The third transformation rule transforms the 
" / / "  connectors into ADXs. However, to build this 
index for every element type pair with ancestor- 
descendent relationship will spend too much time 
and space overhead. So in the case of no corre- 
sponding ADX available, the " / / "  connectors must 

be rewritten into path expressions connected only 
with " /" .  This procedure should be achieved with 
the knowledge of the schema information, e.g., 
DTD of XML documents. For the XML schema 
graph is a directed graph, the rewriting algorithm 
is actually to find all possible paths between two 
nodes in a graph. Before introducing the details of 
the algorithm for rewriting " / / "  connector, we first 
define an important data structure reverse path tree 
( RPT) as follows. 

Def in i t ion  5. A reverse path tree is defined as 
a node-labelled tree Tr = (Vr, Er, E~, root~), which 
organizes several path expressions with a common 
end path step together, where V~ is the node set 
that is actually the set of corresponding path steps; 
the edges contained in the edge set Er are connec- 
tor "/";  ~r  is the same as ~t in Gt; and rootr is 
the root of this tree and is just the common end 
path step. We define R P T ( E )  as a reverse path 
tree rooted at E which contains all path expressions 
from root, to E, and define RPT(E1,  E2) as a re- 
verse path tree rooted at E2 which contains all path 
expressions from Ez to E~ and some path expres- 
sions from root~ to E~. 

For example, in Fig.5, (a) shows R P T  (de- 
scription) and (b) shows RPT( closed_auetions, de- 
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scription). "~Ve can easily retrieve pa th  expressions 
with specified starting pa th  step by traversing up 
through the R P T  from the tree leaves with the 
given label. For example, if we only want pa th  
expressions beginning with closed_auctions from 
RPT(closed_auct ions,  description), we can just tra- 
verse up from the most left leaf node of Fig.5(b) to 
the root. So, the connector rewriting algorithm 
is just the R P T  constructing algorithm, as shown 
in Algorithm 1. The 5th step of the algorithm 
checks the number of occurrences of the same el- 

ement type on the current path. It ensures that  
the algorithm can stop normally at last even if 
there are cyclic ancestor-descendant relationships 
between elements. Restricting the maximal num- 
ber of occurrences of an element type on a pa th  to 2 
can not only avoid error, but also ensure that  R P T  
contains all the ancestor-descendant relationships 
between elements. With the proposed transforma- 
tion rules and the algorithm, we have the extent  
jo in  algorithm. The details are shown in Algorithm 
2. 

Description Description 

i i 
Annotation Annotation 

Closed_auction Open-auction Closed_auction Open_auction 
I I I i 

Closed.auctions Open_auctions Closed_auctions Open_auctions 

I I I 
Site Site Site 

(a) (b) 

Fig.5. Reverse path trees. (a) RPT (description). (b) RPT (closed_auction, description). 

A lgo r i t hm 1. Constructing Reverse Path Tree Al- 
gorithm (rewriting "n l / /n2")  
Input: XML schema Gt -- (Vt ,Et ,h t ,Et ,  roott), 
XML element type nl, n2 
Output: R P T  rpt 
(01) rpt.root~ -= n2; 
(02) currentnode -~ rpt.root~; 
(03) currentnode.children -= 5~-1 ( currentnode); 
(04) for each node cc e 5~ -1 (currentnode) do 
(05) if the cc number in the current path does 

not exceed 1 then  
(06) if cc r nl  and cc # roott t hen  
(07) currentnode = cc; 
(08) go to  (03); 
(09) endi f  
(! 0) endi f  
(11) endfor  

Algorithm 2. Extent Join Algorithm 
Input: Path expression query P 
Output: Result set R 
(1) Check the A D X  and rewrite the no-index-supp- 

orted " / /"  connectors using Algorithm 1. 
(2) Transform the rewritten path P into joins and 

indexes and organize as a simple query plan. 
(3) Execute the query plan including indexes and 

joins. 

4 Optimizing Regular Path E x p r e s s i o n s  

In Section 3, we have introduced the basic idea 
of extent  jo in  tha t  uses joins over sets to evalu- 

ate pa th  expression queries. Its performance de- 
pends largely on the number of joins and the size of 
joining sets. In this section, we propose two path  
expression optimization techniques to reduce the 
number of joins and the execution cost of pa th  ex- 
pressions in evaluating a pa th  expression. Mean- 
while, the general cost based optimization proce- 
dure is also introduced in this section. 

4.1 P a t h  S h o r t e n i n g  S t r a t e g y  

Most studies on path  expression queries focus on 
computing a pa th  in different ways, designing spe- 
cial indices to support  special queries, or rewriting 
some specific operators to improve performance. 
However, some optimizing operations can be done 
on some path  expressions based on XML schema in- 
formation. Since an XML document is represented 
as a tree, we have the following theorem. 

T h e o r e m  1. Let Gt be an X M L  schema and 
Td an X M L  document  complying with schema Gt.  
Then each node except rootd is a descendant of 
rootd, i.e.,  (Vn) (n  e {Wd - root ,}  -+ n is a de- 
scendant of rootd). 

Proof. Since Td is a tree and rootd is the root 
of the tree, Theorem 1 is evident. [] 

According to Theorem 1, pa th  operations like 
/ / E T y p e  and / roo td / /E type  can be translated to 
extent operations, i.e., E X T ( E t y p e ) ,  which are used 
to get a certain type of elements from the database. 
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T h e o r e m  2. If an absolute path expression 
query Q = (Gt, Td, roott, PE, RS) is a unique path 
in Gt that can access the final result, then RS = 
EXT(End(PE)) ,  where Znd(PE) represents the 
type of the last element of the path. 

Proof. Firstly, RS C EXT(End(PE))  always 
holds, for each XML instance in RS is of type 
End(PE). Assume that  there is an XML instance 
e E EXT(End(PE))  A e q~ RS, then there must  
be an access pa th  from rootd to e according to 
Theorem 1. It  contradicts the fact that  Q is a 
unique path. So EXT(End(PE))  C RS. Thus, 
RS = EXT(End(PE)) .  [] 

Obviously, we can optimize a query according 
to Theorem 2, if the query is the unique access path 
of the type. We can get the definition of unique ac- 
cess path according to Theorem 2. 

D e f i n i t i o n  6. Let Q = <Gt, Td, roott, PE, RS) 
be a path expression query. If End(roott + PE) = 
E~ A (Ve)(e e EXT(En)  ~ e e RS), then RE is 
the unique access path of element type E,~, in short 
UAP(E,~) = RE. 

Unique access path is defined as that  it must 
s tar t  from the root of XML schema graph, because 
if there are no indices, every XML element can only 
be accessed from the root of XML instance tree. 

We can simplify a long path  computat ion into 
an XML extent index operation according to The- 
orem 1 and Theorem 2 to speed up the query. 
Actually, each element type has unique access 
path for itself. For an element type E,  l I E  
is its unique access path, i.e., UAP(E) = l IE .  
However, it is not common for pa th  expres- 
sions to have unique access path of its end ele- 
ment.  For example, the end element of query 
/site/closed_auctions/closed_auction/annotation/ 
description is description, which can also be 
accessed by ~site~open_auctions~open_auction~ 
annotation/description. In this situation, the 
expression cannot be optimized using Theo- 
ram 1 and Theorem 2. However, the front 
part  of the expression ~site~closed_auctions~ 
closed_auction is the unique access path of element 
type closed_auction. Using Theorem 2, it can be 
simplified to EXT(closed_auction). The rest of the 
pa th  expression can be evaluated using the extent 
join algorithm. Thus, we can get a corollary of 
Theorem 2. 

C o r o l l a r y .  Assume that P1 and P2 are two 
path expressions. For two path expression queries 
Qx = <Gt,Td, roott,/P1/E/P2, RS1) and Q2 = 
<Gt, Td, E,/P2, RS2>, if UAP(E) = PE + P~, then 
RS1 = RS2. 
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The optimization of absolute pa th  expressions 
has been discussed. Now we discuss relative pa th  
expressions. 

D e f i n i t i o n  7. Let Gt be an XML schema and 
Td an XML data document complying with schema 
Gt. If  Et and E.) E lit, and (Ve2 E V~l)(e2 E 
EXT(E~) -+ (3ea)(et E EXT(E1)  A 5dl(e2) : 
el)), then E1 is the unique parent of E2, in short 
UP(E2) = El. 

Since Gt is a graph structure, an element may 
have more than one parent. We can define the 
unique parent set of an element similarly. It is easy 
to determine if an element is tile unique parent of 
another element using function 6/-1. If 6~-1(E2) : 
{El}, then UP(E2) : E l ,  else UP(E2) ~ El. 

D e f i n i t i o n  8. Let Gt be an XML schema and 
T~z an XML data document complying with schema 
Gt. If E1 and E2 E Vt, and (Ve.~ E Vd)(e2 E 
EXT(E~) -+ (3el)(el e EXT(E1)  A el is the an- 
cestor of e2, then Et is the key ancestor of E2, 
meaning that accessing an instance of E2 must be 
through Et, in short KA(E2) = Et. 

T h e o r e m  3. Let Ei and Ci represent steps 
and path connectors in absolute path expres- 
sion E1CtE2C2E3...C,~-IE,~ for i (1 <~ i ~< 
n), respectively. For query Q1 = <Gt,Td,E1, 
C1E2C2E3. . .Cn-IE, ,  RS1), if UAP(E2) = 
CIE2, then Q1 can be equivalently replaced by 
relative path expression query Q2 = <Gt., Td, E2, 
C2E3...  Cn-tE,~,RS2); if E.z is the unique 
parent or key ancestor of E3, then Q1 can 
be equivalently replaced by Q3 = <Gt,Td, E3, 
C3E4...  C,~_~E,~, RS3), i.e., UAP(E3) = 
C1E:C2 E3. 

Proof. Assume that  C2 is " /" .  Consider 
query Q4 = (Gt,Td,E1, C1E2, RS4>. Then RS4 = 
EXT(E2),  since UAP(E2) = E1C1E2 according 
to Theorem 2, that  is, the instance set contain- 
ing all the instances from E1 along pa th  C1E2 
is EXT(E2). Because E2 is the unique parent 
of E3, each instance in EXT(E3)  is the child of 
an instance in EXT(E2). So for query Qs = 
<Gt,Td,E1,C1E2C2E3, RSh}, RSs = EXT(E3).  
According to Definition 6, UAP(E3) = C1E2C2E3. 
If  C2 is " / / " ,  the proof is similar. [] 

According to Theorem 3, in certain cases, Q2 
can be optimized to Q3- Thus, relative pa th  ex- 
pression queries can also be optimized. The three 
theorems and the corollary discussed above also ap- 
ply to other instances. Using them, a pa th  expres- 
sion query can be shortened according to the in- 
formation in XML document schema to reduce the 
cost of the query. These theorems are called path 
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shortening strategy of pa th  expression queries. 

Theorem 3 not only can be used to shorten pa th  
expressions, but also gives the principle of execut- 
ing the pa th  optimization strategy. A path  expres- 
sion query is shortened from its beginning step by 
step, until it cannot be optimized. It can be sire- 
ply done when the pa th  connector is " /" .  It only 
needs to determine the unique parent of an ele- 
ment. It  is a little bit complex for the case that  
the path  connector is " / / " ,  which needs to deter- 
mine the key ancestor rather than unique parent. 
We can use reverse pa th  tree to determine key an- 
cestor. According to Algorithm 3, the leaf nodes of 
RPT(E1, E.2) can only be either E1 or roott. Fur- 
thermore, when E1 is the key ancestor of E2, the 
leaf nodes of RPT(E1,E2) must be El .  We can 
determine if an element is the key ancestor of an- 
other element based on this property. Thus, the 
algorithm of the path shortening strategy can be 
described as shown in Algorithm 3. 

A lgor i thm 3. Path Shortening Algorithm 

Input :  Path expression query Q = (Gt, Td, roott, 
% 

fi  schema 
i = i  
St, ~t, roott) 

Outpu t :  Optimized path expression query Q' 
(01) f o r i =  1 t o n - 1  do 
(02) 
(03) 
(04) 
(05) 
(06) 
(o7) 
(08) 
(09) 

if (Ci = "/") && (5;-1(E~+1) = {Ei}) then  
cs=i  + l; 
continue; 

else break;  
end  if 
if Ci = " / / "  t hen  

construct RPT(Ei, E~+I); 
if  all leaves of RPT(E~, E~+I) are Ei 
then  

(10) cs = i + 1; 
(11) continue; 
(12) else break;  
(13) end if 
(14) end if 
(15) end for 

(16) Q' = (at ,  Td, Ecs, 
\ 

f i  C~E~,RS>; 
i-=cs-4-1 

FinMly, whether or not a path  expression can 
be optimized using the path shortening strategy 
depends on the feature of the pa th  expression it- 
self, i.e., whether or not part  of the expression is 
a unique access path of certain element. It  is a 
heuristic rule, and it does not need any statistic 
information of data,  since it can reduce join op- 
erations while evaluating the query and certainly 
improve the query performance. Besides the extent 

join algorithm, this optimization strategy can also 
be used for other pa th  expression computing al- 
gorithms with the support  of XML extent index. 
For example, when using the top-down strategy, 
the navigation operations on XML tree can start  
from instances of certain element extent rather 
than from the root. 

4.2 P a t h  C o m p l e m e n t i n g  S t r a t e g y  

The path shortening strategy improves the query 
performance by optimizing the pa th  expression it- 
self. We now introduce the path complementing 
strategy, which computes complex and higher-cost 
query expression by simple and lower-cost query 
expressions. Like the path shortening strategy, this 
s trategy also needs information on XML document 
schema. 

Before introducing the path complementing 
strategy, let us look at an example first. Con- 
sider an absolute pa th  query Q1 = {Gt,Td, roott, 
/ site/ regions/ . / item/ name, RSx) that  retrieves the 
names of items in all regions based on the example 
in Fig.1 and schema in Fig.2. Only item and per- 
son may have child element of type name among 
all elements. If an XML instance typed name in 
the document is not the child node of item, it must 
be the child node of person; that  is, for the in- 
stance set of all name elements, the instance set 
of name child of item and that  of person are com- 
plementary. Since all the name children of per- 
son can be obtained by query Q2 = (Gt, Td, roott, 
~site~people~person~name, RS2), ZXT(name) = 
RS1 U RS2, i.e., RS1 = EXT(name) - RS2. Then 
there are two query plans that  can be chosen when 
executing a pa th  query. One is Q1 and the other is 
EXT(name) - RS2. The costs of these two plans 
may be different from each other, the lower one of 
which should be chosen to compute the query by 
the cost evaluator. 

Def in i t ion  9. Let Gt = (Vt,Et,ht, Et, roott) be 
an XML schema and Td = (Vd, Ed, hd, Ed, rootd, 
old, typed, oidd) an XML data document comply- 
ing with schema Gt. If  E2 �9 Vt, KA(E2) = El, 
there is n paths between E1 and E2 represented by 
P 1 , P 2 , . . . , P n ,  and End(P~) = E2 (1 < i < n), 

i--1 
then U PJ + 6 PJ (1 < i < n) is the comple- 

j = l  j = i + l  

mentary paths of Pi between E1 and E2, abbreviated 
i--1 

as CP(E1, E2, Pi) = U 5 + (3 5 
j = l  j -=i+ l 

i - 1  

T h e o r e m  4. I f  CP(E~,E2,P~) = U Pj + 
j -~ l  
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Pj, and the corresponding query of path Pi 
j=i-~ l 

is Qi = (Gt,Td,E1,Pi, RSi) (1 ~ i <~ n), then 

(Ve2)(e~ e EXT(E2) --+ e~ e 5 RSi), i.e., 
i = I  

EXT(E2) = ~J RSi, that is RSi = EXT(E~) - 
i = 1  

i - -1  

j = l  j = i + l  
i - -1  

Pro@ Because CP(E1,E2,Pi) = [.J Pj + 
j = l  

Pj, KA(E2) = E1 and P1, P'z,- .- ,  Pn are all 
j = i §  

the paths between E1 and E~. Assume there exists 

an XML instance e E EXT(E~) and e ~ 0 RSI. 
i = l  

Since KA(E2) = El, there must exist an instance 
e' E EXT(E1) such that e' is an ancestor ofe  in Td. 
Thus, there exists a path P' r Pi (1 ~< i ~< n) and 
its corresponding query Q' = ( Gt, Td, Et, pi, RSI} 
such that e' E RS'. It is paradoxical. Thus the 
theory is proved. [] 

The path expression query obtained after using 
the path complementing strate~" can also be ulteri- 
orly optimized using the path shortening strategy. 
The key problem of the path complementing strat- 
egy is to find the complementary paths of a path ex- 
pression query and choose the query plan according 
to their costs. 

For two element types E1 and E2, if KA(E2) = 
El,  then the reverse path tree RPT(E1,E2) can 
be used to compute all the  paths between them. 
Chase the R P T  pointer reversely from its leaf nodes 
to the root. The connector between nodes is usu- 
ally " /" .  When the reverse pointer chasing gets 
the same element, rewrite the part of path between 
them to a closure structure or use connector " / / "  
to replace it. For example, the p a t h / a / b / c / d / b / e  
is rewritten to /a/(b/e/d)+/e. This operation is 
the re,terse work of deducing cyclic paths in the 
building of RPT. The operation of getting com- 
plementary paths is fairly straightforward when all 
paths between two nodes are gotten, and only path 
matching and set difference operations are needed. 
Algorithm 4 uses R P T  to determine the key ances- 
tor. At the same time, the complementary paths 
are obtained and the function gr E2, P) is 
used to represent the procedure of getting comple- 
mentary paths. Then, this algorithm performs cost 
estimating on each query strategy, and executes the 
query using the least cost strategy. Before the cost 
estimating, the path expressions should be opti- 
mized using the path shortening strategy, and the 
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functions PS(P) and Cost(P) are used to repre- 
sent the path shortening procedure and the cost es- 
timating procedure, respectively. Additionally, this 
algorithm applies the path complementing strategy 
from the end of path, and stops whenever a lower 
cost strategy than the original one is gotten. In 
this way, the longer the path is, the greater the 
performance improvement of path complementing 
is expected. 

Algor i thm 4. Path Complementing Algorithm 
Input :  Path expression query Q -- (Gt, Td, E0, P, 

7~ 

RS),P = ~-~CiE~, XML schema Gt = 
i = l  

( Vt , Et , St, Et , root t ) 
Output :  Optimized query strategy S 
(01) if KA(E=) = Eo then  
(02) P'  = getCP(Eo, E~, P) 
(03) if Cost(EXT(E,~)- PS(P')) < Cost(PS(P)) 

then  
(04) S = EXT(E~) - PS(P') 
(05) r e tu rn  
(06) end if 
(07) end if 
(08) for i = n - 1 to step-1 do 
(09) if KA(EI) = Eo then  

i 
(lO) trap, = ~ C~Ej 

j = l  
(11) P' = getCP(Eo, E,, tmpp) 
(12) if Cost(EXT(E,,) - PS(P')) < Cost(PS 

(tmpp)) then  
n 

(13) S = (EXT(E,~)-PS(P')+}-~ CjEj) 
j= i  

(14) r e tu rn  
(15) end if 
(16) end if 
(17) end for 

4.3 Q u e r y i n g  a n d  O p t i m i z i n g  P a t h  E x p r e s -  
s ions  

In the above subsections, two optimization tech- 
niques are proposed for path expression. We have 
introduced that the path-shortening rule is heuris- 
tic, while the path-complementing technique is not 
suitable for all cases. Therefore, a cost based 
query plan selection is used for the path optimiza- 
tion procedure. In this subsection, we show how 
to use them in path expression query processing 
procedure. The selection of path expression and 
cost estimation are not the focuses of this paper, 
so the details of these issues are omitted. Given 
a path  expression query P and an XML schema 
graph Gt = (Vt, Et, St, Et, roott), the general steps 
of querying and optimizing path  expression queries 
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are shown as follows. 

Step 1. Rewriting of '*'. Wi th  the XML schema 
graph, path  steps '*' are rewritten as the unions of all 
possible sub-paths via function St. 

Step 2. Complementary path selection. Wi th  the 
XML schema graph, the complementary paths of user 
query are found and their costs are estimated. Check 
if the cost of complementary paths is lower than that  
of the original path. If it is lower, the complementary 
approach is chosen. Otherwise, the original path is cho- 
sen. 

Step 3. Path shortening. Using Algorithm 3 to 
shorten the selected path expressions. 

Step 4. Rewriting of connector " / / " .  Check if there 
exist " / / "  connectors with no ADX support.  If so, they 
are rewritten using Algorithm 1. 

Step 5. Index selection and query plan construc- 
tion. Select correct indexes and transform the pa th  
expressions into query plans. 

Step 6. Query plan execution. Execute the query 
plan including indexes and joins. 

5 E x p e r i m e n t s  

In this  sect ion,  we will discuss the  pe r fo rmance  
eva lua t ion  of the  extent join and  the p a t h  expres-  
sion op t im iza t i on  rules p roposed  in this  p a p e r  in 
t e rms  of four benchmarks :  XMark, XMach, D B L P  
and  Shake. 

as tha t  in Fig.2.  X M a r k  focuses on the core ingredi- 
ent  of XML benchmark  inc luding  the query  proces-  
sor and  its in te rac t ion  wi th  the  da tabase .  X M a r k  
to t a l ly  specifies 20 queries t h a t  cover a wide range 
inc luding exact  match ,  o rdered  access, cast ing,  reg- 
ular  p a t h  expressions,  chasing references, construc-  
t ion of complex  results ,  jo in  on values, reconst ruc-  
t ion,  full t ex t ,  p a t h  t raversals ,  missing elements ,  
funct ion appl ica t ion ,  sor t ing  and  aggregat ion .  

XMach. The  second d a t a  set is a scalable  
mul t i -user  benchmark  to eva lua te  the pe r fo rmance  
of XML d a t a  m a n a g e m e n t  sys tems p roposed  by 
R a h m  and  Bohme [261. I t  is based  oll a web appl i -  
ca t ion  and considers  different types  of XML da ta ,  
in pa r t i cu l a r  tex t  documents ,  schema-less  d a t a  and  
s t r uc tu r e d  da ta .  The  d a t a b a s e  conta ins  a d i rec to ry  
s t ruc tu re  and  XML documents .  I t  is a mul t ip le  
D T D  and mul t ip le  documen t  benchmark  t ha t  to- 
ta l ly  consists  of 11 queries: 8 re t r ieval  and  3 u p d a t e  
queries. 

The  above two d a t a  sets are used to  s imula te  
some appl ica t ions ,  while the  following two d a t a  sets 
are  real  da ta .  

Shakes. The  th i rd  d a t a  set is the  Bosak  Shake- 
speare  collect ion avai lable  at  h t t p : / / m e t a l a b .  
u n c . e d u / b o s a k / x m l / e g / s h a k e s 2 0 0 . z i p .  8 qu- 
eries are designed over the  Shakes d a t a  set, as 
shown in Table  1. 

5 .1  O v e r v i e w  

The  expe r imen t s  were conduc ted  on a single 
800MHz C P U  P C  wi th  184MB ma in  memory.  We 
employed  a na t ive  XML m a n a g e m e n t  sys tem cal led  
XBase  [24] as the  under ly ing  d a t a  s torage,  which  
stores XML d o c u m e n t  into an ob jec t  d a t a b a s e  w i th  
an  O D M G - b i n d i n g  D O M  interface.  The  t e s t ing  
p rog rams  were coded  wi th  MS V C + +  6.0 and  
O D M G  C + + O M L  2.0 [25]. The  da t a se t s  used are  
descr ibed  as follows. 

XMark. T h e  first d a t a  set is from the  X M L  
b e n c h m a r k  p ro j ec t  [24]. The  scale factor  se lected is 
1.0 and the  co r respond ing  XML documen t  size is 
abou t  100MB. T h e  hierarchical  schema is the  same  

Table 1. Queries on Shakes 
No. Path expression queries 
Q1 ~PLAY~ACT 
Q2 /PLAY/ACT/SCENE/SPEECtI/LINE/STAGEDIR 
Q3 //SCENE/TITLE 
Q4 / /ACT/ /TITLE 
Q5 /PLAY/ACT [2] 
Q6 (/PLAY/ACT) [2]/TITLE 
Q7 /PLAY/ACT/SCENE/SPEECH[SPEAKER= "CURIO"] 
Q8 /PLAY/ACT/SCENE[//SPEAKER = "Steword']/ 

TITLE 

DBLP. The  last  d a t a  set is from the  D B L P  
b ib l iography  web site, avai lable  at  f t p : / / f t p .  
i n f  o rmat  i c .  m a i - t r i e r ,  d e / p u b / u s e r s / L e y / b i b /  
r e c o r d s . t a r . g z .  8 queries are  defined over the  
D B L P  d a t a  set, as shown in Table  2. 

No. Queries 
Table  2. Queries on DBLP 

Q1 Select all conference paper titles published in 2000 on XML 
Q2 Select all paper titles written by Michael Stonebraker 
Q3 Select all paper titles written by Michael Stonebraker or Jim Gray 
Q4 Select all database papers published between 1990 and 1994 
Q5 Select all papers that have a citation entry whose label is CARE84 
Q6 Select database paper titles with paper length longer than 20 pages 
Q7 Select all papers by Michael Stonebraker quoted by papers published in year 1994 
Q8 Select all papers by Jim Gray that are quoted by Michael Stonebraker 
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Table  3. Parameters of Generated Benchmark Databases 
Benchmark Document Number of Database Index 

Amount Size Elements Attributes Size Size 
XMark 1 100M 1,360,720 381,880 319.9M 14.0M 
XMach 10,001 71.4M 289,694 129,147 157.8M 5.8M 
Shakes 37 7.4M 179,690 0 16.3M 1.1M 
DBLP 275,523 108M 2,785,894 350,376 328.7M 19.7M 

The parameters of four benchmark databases 
are shown in Table 3. 

Ill order to fully explore the performance of the 
extent join algorithm and query optimization tech- 
niques proposed in this paper, we implemented 3 
different query evaluating strategies: top-dowm, ex- 
tent join, optimized. The top-down strategy evalu- 
ates path expressions by traversing the XML data 
tree from top to down with no index support, which 
is similar to the top-down approach described in 
[10]. The extent join approach is supported by 
indexes including ADX, PCX and RX. The opti- 
mized way optimizes the extent join way by apply- 
ing query optimization rules. It follows the opti- 
mizing steps in Section 4 to select the most optimal 
query execution plan. 

5.2 E x t e n t  J o i n  

Fig.6 shows the performance comparison be- 
tween top down and extent join in terms of XMark. 
Extent join is much better  than top down in most 
cases. The extent join is about 2 ~ 20 times, 
sometimes hundreds of times, faster than top down. 
However, there are some exceptions. 1) For Q2, 
Q3, Q13 and Q14, the performance of extent join 
is similar to that  of top down. The reasons are 
described as follows, a) Q2 and Q3 are ordered 
accesses to elements. In this case, extent join also 
needs to traverse the XML data trees, b) Q13 is 
result reconstruction and needs to traverse a rel- 

atively big sub-tree to get all results, c) Q14 is 
a full text query, which also needs to traverse the 
whole sub-tree to check if elements are right. (2) 
For Q15 and Q16 containing very long path traver- 
sals, top down outperforms extent join by about 
3070. Due to the much smaller selectivity of path 
expression top down does not need to traverse the 
whole XML data  tree, whereas extent join must 
do many join operations (e.g., Q15: 12, Q16: 14). 
Then we can get a conclusion: extent join is bet- 
ter than top down in most cases unless it needs to 
traverse a large XML data tree like top down or 
the path queries are very long such that  extent join 
must do too many join operations. 

Fig.7 shows the performance comparison be- 
tween top down and extent join in terms of XMach. 
From the figure, we can see that the performance 
of extent join for Q1, Q2, Q6, Q7 and Q8 outper- 
forms that  for Q3, Q4 and Qh. In the cases of Q1, 
Q2, Q6, Q7 and Qs, the top down approach has to 
navigate a large portion of XML trees while the ex- 
tent join approach can save I /O overhead with the 
help of indexes. Q3 is a recursive query. The top 
down approach computes the recursive operation 
by navigating a small portion of XML trees while 
the extent join approach conducts this recursion by 
a recursive join operation in all XML trees. There- 
fore, the I /O cost of top down is lower than that  
of extent join. Q4 needs to reconstruct the q u e r y  
result according to the document order, top down 
outperforms extent join because navigating XML 
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Fig.6. Extent join (XMark). 
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trees is a natural result-reconstructing procedure. 
As for Q5, the reason why top down outperforms 
extent join is similar to Q3. 

100,000 
I-'1 Top down O Extent .join 

Z? 
"2 1,000 

0.[ 
Q1 Q',. (33 04 Q~ Q~ Q7 Qs 

Fig.7. Extent join (XMach). 

Figs.8 and 9 are the performance comparison 
between top down and extent join for the two real 
data sets, respectively. First, consider DBLP where 
most of queries are very long and have predicates at 
the end. Extent join is much better  than top down 
(Q2, Q3, Q4, Q5 and Q6). There exists a con- 
taining operator in Q1 and the path expressions in 
it are relatively short. All these factors cause top 
down to be bet ter  than extent join for this query. 
The performance of extent join on Q7 and Q8 is 
very bad and we cannot get performance results. 
The reason may be that they all contain several 
(4 or 5) long path expressions with more than 10 
steps. 
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Fig.& Extent join (DBLP). 
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Fig.9. Extent join (Shakes). 

From Fig.9, we can also see that the extent join 
performance for some queries (Q1, Q3, Q4 and Q5) 

outperforms the top down performance. From sys- 
tematic analysis, we can see that  the performance 
of top down heavily depends on the portion of XML 
trees navigated while the performance of extent join 
mainly depends on the number of joins. So we have 
proposed some techniques to improve the perfor- 
mance of the extent join approach and the perfor- 
mance evaluation is given in the next section. 

5.3 Q u e r y  O p t i m i z a t i o n  

Figs.10 and 11 show the performance compari- 
son between extent join and optimized for XMark 
and XMach, respectively. The optimized approach 
is the winner in all query results, and queries are 
divided into several categories. 

(1) Query performance is improved greatly. Ex- 
amples are Q5, Q6, QT, Q18 and Q20 of XMark, 
whose path expressions are shortened greatly, and 
these queries have no predicates or the predicates 
are at the last step of the paths. In these cases, the 
optimized approach can be 10 ~ 200 times faster 
than extent join. 

(2) Query performance is improved moderately. 
Q1, Q2, Q3, Q4, QS, Q9, Q10, Q l l ,  Q12 and 
Q17 belong to this category. They are either 
queries that can only be shortened a little by path- 
shortenin 9 rule and the saved extent join opera- 
tions take relatively small costs (Q1), or queries 
that have some other high-cost operations, for ex- 
ample, join on values, ordered access and reference 
chasing. In this category the benefits of query opti- 
mization rules cannot be seen dearly (Q2, Q3, Q4, 
QS, Q9, Q10, Q l l ,  Q12). They also may be queries 
whose complementary paths are still very complex 
(Q17). For queries of this category, the optimized 
approach can save the evaluating time by 10% 
400%. Most queries fall in this category. 

(3) Query performance is improved slightly. 
Q13, Q14, Q15 and Q16 of XMark fall in this cat- 
egory and the benefit of the optimized approach 
for them is only 0.3% ~-, 8%. The reasons are 
that  these queries have operations of very high cost 
(Q13: complex result reconstruction, Q14: full text  
scanning) or they are expressions of very long path  
and can only be shortened little (Q15:2 out of 12, 
Q 1 6 : 2  out of 14). The XMach results in Fig.11 
also indicate the similar result (Q2, Q3, q4, Q5, 
Q6 and Q7 belong to category 1, Q8 belongs to 
category 2 and Q1 belongs to category 3). 

Figs.12 and 13 are the performance comparison 
between extent join and optimized for the two real 
data sets, DBLP (Fig.12) and Shakes (Fig.13). 
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From these two figures we can see that optimized 
outperforms extent join overall queries in both 
DBLP and Shakes. The performance analysis is 
similar to benckmarks XMark and XMach. 

6 C o n c l u s i o n s  

In this paper, we proposed the extent join ap- 
proach to evaluate regular path expressions. In or- 
der to further improve the query performance, we 
also proposed two novel query optimization tech- 
niques: path-shortening and path-complementing. 
Path-shortening reduces the number of joins by 
shortening the path and path-complementing is a 
technique to use an equivalent complementary path 
expression to compute the original path specified in 
a user query. They can reduce the path computing 
cost by decreasing the length of paths and using 
equivalent complementary expressions to optimize 
long and complex paths. From our experimental 
results, 80% of the queries can benefit from these 
optimization rules, and path expression evaluating 
performance can be improved by 20% ~ 400%. 
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