
Mar. 2004, Vol.19, No.2, pp.224-238 J. Comput. Sci. ~ Technol.

RPE Query Processing and Optimization Techniques for XML
Databases

Guo-Ren Wang, Bing Sun, J ian-Hua Lv, and Ge Yu

Department of Computer Science, Northeastern University, Shenyang 110004, P.R. China

E-marl: wanggr@mail.neu.edu.cn

Received July 26, 2002; revised March 26, 2003.

Abs t r ac t An extent join to compute path expressions containing parent-children and ancestor-descendent
operations and two path expression optimization rules, path-shortening and path-complementing, are presented
in this paper. Path-shortening reduces the number of joins by shortening the path while path-complementing
optimizes the path execution by using an equivalent complementary path expression to compute the original one.
Experimental results show that the algorithms proposed are more efficient than traditional algorithms.

Keywords XML, regular path expressions, query processing and optimization

! I n t r o d u c t i o n

As an emerging standard for data representa-
tion and exchange on the Web, XML is adopted
by more and more applications for their informa-
tion description. Even though XML is usually used
as an information exchange standard, storing, in-
dexing and querying XML data are still important
issues and have become research hotspots both in
the academic community and in the industrial com-
munity.

So far, there have been three main approaches
to manage XML data, the relational, object-
oriented and native ways. In the relational way [1,2] ,
XML data are mapped into tables and queries on
XML data are translated into SQL statements.
STORED[3], Agora[4] , Monet [a] and VXMLR[6] are
examples following this way. Similar to the re-
lational way, the object-oriented way[7-9] stores
XML documents into an OODB with classes and
translates XML queries into OQL queries based
on XML data schema information. The Lore
Project [l~ is an example following this way. In
the third way, special structures and indexes are
designed to store and index XML data and par-
ticular query optimization techniques are proposed
to query XML da ta from databases. Rufus[hI ,
Strudel [12], and Tamino[13] are examples following
this way.

To improve basic operations on databases such
as "/" and " / / " , indexing is a necessary means and
draws more and more attention. DataGuides [14] is
designed for semi-structured data, and four index

* Regular Paper

structures, value index, label index, edge index and
path index, are proposed. However, they act as
schema more than as indexes. A general index
structure for semi-structured data, called template
index or T-index, is proposed in [15] to make eval-
uating queries involved in several pa th expressions
possible, and the degeneration form of T-index, i.e.,
1-index, is similar to DataGuides. These indexing
techniques are designed for semistructured data.
In [16], three index structures, element index, at-
tribute index and structure index, are proposed to
support three essential functionalities respectively.
For a given element name, a list of element with
the same element name can be found with element
index. Similarly, for a given a t t r ibute name, a list
of at tr ibutes with the same at t r ibute name can be
found with attribute index. Structure index is used
to find the parent element and child elements of a
given element. However, there are two main draw-
backs. 1) Although the ancestor-descendant rela-
tionship between elements and /or a t t r ibute in a hi-
erarchy of XML data can be quickly determined
based on the proposed numbering scheme, it is dif-
ficult to distinguish the parent-child relationship
from the general ancestor-descendant relationship
and therefore it is difficult to build structure index.
This is not made clearly in the paper. In this case,
it is incorrect to compute a join operation standing
for a parent-child relationship using the EE-join al-
gorithm. The ancestor-descendant relationship can
be derived from the parent-child relationship, but
not vice versa. 2) There is the same problem with

This research is partially supported by the National Natural Science Foundation of China (Grant No.60273079) and
the Teaching and Research Award Program for Outstanding Young Teachers in High Education Institution of the Ministry
of Education, China.

Guo-Ren Wang et al.: RPE Query Processing and Optimization Techniques for XML Databases 225

the EA-join algorithm.
To retrieve XML data from databases, many

query languages have been proposed so far. Ex-
amples are Quilt [lr], XQuery [ls], XML-QL [19t,
XQL [2~ XPath [211, and Lorel [221. Because one of
common features of these languages is the use of
regular path expressions (RPE), query rewriting
and optimization for RPE are becoming a research
hotspot and some research results have been re-
ported recently. A usual way to optimize the ex-
ecution of RPE expressions is rewriting an RPE
query with simple path expressions (SPE) based
on schema information and statistics about XML
data, and these SPE queries are then translated
into SQL queries, for example, in the relational
way. In the Lore system, three basic query process-
ing strategies are proposed for the execution of path
expressions, top-down, bottom-up and hybrid. The
top-down way navigates the document tree from the
root to the leaf nodes while the bottom-up way does
from the leaf nodes to the root. In the hybrid way,
a longer path is first broken into several sub-paths,
each of which is performed with either top-down or
bottom-up. The results of the sub-paths are then
joined together. In the VXMLR system [6], regular
path expressions containing " / / " and/or %" oper-
ators are rewritten with simple path queries based
on schema information and statistics. [16] presents
an EE-Join algorithm to compute " / / " operator
and a KC-Join algorithm to compute "*" operator
based on their numbering scheme.

In this paper, we propose an extent join al-
gorithm to compute path expressions contain-
ing parent-children and ancestor-descendent oper-
ations between path steps. To support the ex-
tent join approach, some indexes preserving parent-
children and ancestor-descendent relationships are
also proposed. Furthermore, two path expression
optimization rules are proposed, path-shortening
and path-complementing. Path-shortening reduces
the number of joins by shortening the path while
path-complementing optimizes the execution of a
path by using an equivalently complementary path
to compute the original path. The performances of
the query processing and optimization techniques
proposed in this paper are evaluated with two
benchmarks, XMark and XMach, and two real da ta
sets, Shakes and DBLP.

The remainder of this paper is organized as fol-
lows. Section 2 presents some basic concepts for
XML query processing, including XML data tree,
XML schema graph and path expression. Section
3 describes the extent join algorithm along with in-
dexes and rewriting algorithm for " / / " . Section 4

presents two query optimization rules for regular
path expressions. Section 5 gives the experimental
results and the performance evaluation. Finally,
Section 6 concludes this paper.

2 Bas ic C o n c e p t s

In this section we review some concepts and def-
initions used throughout the paper, including XML
data tree, XML schema graph and path expression.

XML data are represented as an XML data
tree Td = (Vd, Ed, 5d, Ed, rootd, old), where Vd is
the node set including element nodes and attribute
nodes; Ed is the set of tree edges denoting parent-
children relationships between two elements and
element-attribute relationships between elements
and attributes; 5d is the mapping function from
nodes to nodes that are actually the relationship
constraints. Each node. has a unique name that
is a string-literal of Ed and a unique identifier in
set old. Finally, each XML data tree has a root
e!ement roota that is included in Vd.

Fig. 1 shows part of an XML document proposed
in the XML Benchmark project [2~1, which is repre-
sented as an XML data tree. There are two kinds of
nodes, elements denoted by ellipses and attributes
by triangles. The numeric identifiers following "&"
in nodes represent oids. The solid edges are tree
edges connecting nodes via the ~d function. In this
model, the parents can actually be reached via the
~21 function from the children. Node "&l" labelled
"site" is the rootd of this XML data tree and all
other nodes can and only can be reached by rootd.
Note that in Fig.i, there are two directed dashed
lines between some nodes (&23 and &:18, s and
&18), representing the referencing-referenced rela-
tionship between elements.

An XML schema graph is defined as a directed,
node-labelled graph Gt = (l/t,Et,e~t,~t, roott),
where Vt is the node set including element type
nodes; Et is the set of graph edges denoting
element-subelement relationships. Attributes are
parts of elements; 8t is the mapping function from
nodes to nodes that actually determines which el-
ement can contain which sub-elements. Each node
has a unique name that is a string-literal of St and
this name is actually element type name. Finally,
an XML schema graph has a root element roott
that is included in Vt, which is defined as the node
with only outgoing edges and without any incoming
edges.

Fig.2 shows part of the XML schema graph that
determines the XML data tree in Fig.1. The nodes

226 J. Compu~. Sci. & Technol., Mar. 2004, Vol.19, No.2

~~;~...}/ac]:~ied:s~Sed_auctions ~open_auctlons

nameri~ ~'~~~I 4 ~ { ~2~closed_auct io (~)n 7"-~ ~176
item (~ ~ . . " ~ buye~ Ip~ce b'~z~'] \price g ~

/ ~ Y "" "/ 1 k~ .~ desription
i d ~ ~ ~ o f i l ~ 0 pn~ofile @ annotation

incom~lx ~ /~ ~mcome desri)tlon

Fig.1. A sample XML data tree.

site

r e g i o n ~ ~ - - ~ " ~ . ~ people closed_auctions open_auctions

namerica {asia }
closed t on o n

I
buy pe bidder

annotation profile income

description

Fig.2. XML schema graph of the sample XML data tree.

are element types and the solid edges are graph
edges connecting nodes via the 5t function. In this
model, the parent elements can actually be reached
via the 5 t 1 function from the children elements
and the corresponding reverse edges are omitted
in Fig.2. The node labelled "site" is the roott of
this XML schema graph. The attributes of element
types are listed besides the nodes with underline,
for example, income.

PathExpression ::= CONNECTOR PathSteps
[PathSteps CONNECTOR PathSteps

PathSteps ::= Name I Name ']' PathSteps
[(PathSteps) I '*'

CONNECTOR ::= '/ ' 1'// '

Fig.3. BNF syntax of path expression.

Path expressions can be straightforwardly de-
fined as a sequence of element type names ("site",
"people", etc.) connected by some connectors such
as " /" , " / / " and wildcard "*". For example, path

expression "/site//item" can be used to find all
items of the database whose root element rootd is
"site". The syntax definition of path expression is
shown in Fig.3.

A path expression mainly consists of two parts,
path steps and connectors. Each path expression
must begin from the root, that is, it begins with a
connector "/" or " / / " . There are two basic kinds
of path steps, Name and wildcard "*". Path step
Name means that in this step only the element in-
stances with type Name(tag name) will be matched
and "*" will match all element instances no matter
which type they belong to. Between two path steps
there must be a connector to specify the relation-
ship between them. Connector " /" appearing in
the beginning of a path expression means that the
path expression begins from exactly the root and
the following path step is the root element type,
while connector " / / " appearing in the beginning of
a path expression means the path expression be-

Guo-Ren Vvhng et al.: RPE Query Processing and Optimization Techniques for XML Databases 227

gins from the root and the following pa th step is
the descendant of the root, that is, " / / " covers sub-
path-expressions with any length. A connector ap-
pearing between two path steps specifies the rela-
tionship between them. In this case, connector " /"
constrains that between the two path steps there
must exist a parent-children relationship while " / / "
is an ancestor-descendant relationship constraint.

3 E x t e n t J o i n

In this section, we present the XML element
extent concept and the extent join algorithm. ~Ve
present some indexes as well in this section to sup-
port the concept and the algorithm.

3.1 X M L E l e m e n t E x t e n t

did C P(aid) } , where P(aid) is the element instance
set that can be reached from aid via path P.

In the query processing, PCExt may be more
useful than the basic XML element extents. A
PCExt is actually an element extent with a path
constraint and is a subset of the corresponding
extent. For example, in PCExt(site, annotation,
"/site/closed_auctions~ closed_auction~ annotation"),
the third parameter is the pa th constraint on
Ext(site, annotation). This constraint regulates
that in this PCExt, the instances of element anno-
tation must be the ones that can be reached from
the corresponding instances of element site via the
pa th expression. As a result, PCExt(site, anno-
tation, "/site/closed_auctions/closed_auction/an-
notation") = {(&l, &24), (&l, s

Given an XML data tree Td = (Vd, Ea, 5d, Ed,
rooter, old) and a corresponding XML schema graph
Gt = (Vt, Et, St, Et, roott), we have the following
definitions.

D e f i n i t i o n 1. pcpair(pid, cid) is a pair of oids,
in which pid and cid E old, and pid is the parent
of cid, for example, pcpair(&l, &2).

D e f i n i t i o n 2. adpair(aid, did) is a pair of oids,
in which aid and did E old, and aid is the ancestor
of did, for example, adpair(&l, &3).

Note tha t a pcpair is a special case of an adpair.
Additionally, s is defined to act as any element in-
stance, so adpair(~,~:3) can be used to represent
adpair(~zl, 8z3) or adpair(~2, &:3). Both adpair and
pcpair can also act as logic operators. For exam-
ple, if there exists an ancestor-descendent relation-
ship between two element instances el and e2, then
adpair(el, e2) is true. Otherwise, it is false.

D e f i n i t i o n 3. The set of all pcpairs of a given
tag name Tag, called parent-child element extent, is
represented by Ext(any, Tag) = {pcpair(pid, cid)]
cid is an instance o/ Tag A pcpair(pid, eid) is
true}. Similarly, the set of all adpairs of two given
tag names an and dn, called ancestor-descendant
element extent, is represented by Ext(an, dn) =
{adpair(aid, did) l pcpair(~ , aid) e Ext(any, an)A
pcpair(e, did) e Ext(any, dn)A adpair(aid, did) is
true}.

For examples, Ext(any, name) = {(~z4,&6),
(&7, &9), (&11, &13)} and Ext(site, annotation) =
{(&l, &24), (&l, &29), (&l, &35)}.

D e f i n i t i o n 4. For two given elements, an
and dn, and a given path P, the path constrained
element extent is defined as PCExt(an, dn, P) =
{ adpair(aid, did) l adpair(aid, did) E Ext(an, dn) A

3.2 I n d e x e s

Neither the DOM interface nor the XML data
tree provides the extent semantic for XML data, so
we propose three structural indexes to support it:
ancestor-descendant index (ADJO, parent-children
index (PCX) and path index (PAt). We also pro-
pose reference index (RX) to support operations
on references.

ADX is used to index Ext(Pname, Cnarne) for
given element names Pname and Cname where
Pname is the ancestor of Cname. Actually, ADX
indexes the ancestor-descendant relationship be-
tween specified elements. For example, ADX(site,
item) = ((&l , &4), (&l, &7), (&l, &l l)} .
PCX is used to index PCExt(Pname, Cname,
"Pname/Cname") for given element names Pname
and Cname where Pname must be the parent
of Cname. For example, PCX(namerica, item)
is {(&3, &4), (&3, &7)}. If the parent ele-
ment name is not specified, PCX(any, item) in-
dexes Ext(any, item)= {(&3, &4), (&3, &7),(&10,
&l l)} , written as PCZ(item). PX(E1/P/E2) is
used to index PCExt(E1, E2, "E1/P/E2"). For ex-
ample, PX(closed_auctions/ closed_auction/buyer)
= {(&21, &23), (&21, &28)}. R X is used to sup-
port the reference semantics between XML ele-
ments. For example, RX(buyer, person, person)
is {(&23, ~:18), (~z28, &18)}.

About the indexes above, only the principles are
introduced. The implementations of them are rel-
atively simple for they have no special demands on
the index structures. The tradit ional index struc-
tures, e.g., B+ tree, are suitable for these indexes.

228 J. Cornput. Sci. & Technol., Mar. 2004, Vol.19, No.2

3.3 E x t e n t J o i n A l g o r i t h m

The basic idea of the extent join algorithm
is replacing the tree traversal procedures with
join operations. Before the whole path expres-
sion is evaluated, the intermediate result sets
to be joined must be first computed. And
the ancestor-descendant/parent-children relation-
ship based multi-join operation is then performed
to evaluate the whole path expression. The
most special characteristic of these indexes is that
they maintain the parent-children and ancestor-
descendant relationship by the index results.

Consider path expression "/site//closed_auction~
annotation~description" containing four path steps

and three connectors. As shown in Fig.4, each path
step corresponds to an intermediate result set, i.e.,
an element extent; each connector is transformed
into a join operation, and the results of joins are
the path constrained element extents. For exam-
ple, the join between Ext(any, site) and Ext(site,
closed_auction) is PCExt(site, closed_auction,
"/site/ closed_auctions~ closed_auction"), and the
PCExt acts as an intermediate result used to per-
form another join with Ext(closed_auction, anno-
tation) to get another PCExt. Path expressions
must be transformed into evaluation plans to get
evaluated. The art of transformation is focused on
the path steps to correspond to extents, and the
following shows the full transformation rules.

o I o

I ~ I I Description[/ I [Ext(annotation,[I ~ [[PCX(annotation,[
~ . ~ ' ' • ~[Description), ~ _ ~[description),

~ C l o s e) l : : n : t ation , ! 0 ~ [E xt (C lOSendn~tU~, one,] ~ [PCX (C i ~nSendo~U~toiOl~, [
Ic,, _ c.o I l xt(n , I l xt(site,r I l r215162215162 l

(a) (b) (c)

Fig.4. (a) Path expression. (b) Extent join tree. (c) Execution tree.

(1) Connectors (" /" and " / / ") are transformed
into joins between two sets.

(2) Path step "." is rewritten with ele-
ment types using the mapping function ~t. For
example, ~t(site) = {regions, people, closed_
auctions, open_auctions} and path expression
"/site/./person" is rewritten as "/site/(regions I
people[closed_auctions I open_auctions) /person".

(3) Path steps following connector " / / " are
transformed into a corresponding ADX operator.
For example, path step $2 in "$1//$2" is trans-
formed into ADX(S1, $2).

(4) Path steps following connector "/" are
transformed into a corresponding PCX operator.
For example, path step Sz in "$1/$2" is trans-
formed into PCX(S1, $2).

(5) Path steps containing "l"s are transformed
into the unions of corresponding indexes. For ex-
ample, path step ($2[S3) in "S1/($2[$3)" is trans-
formed into PCX (S1, $2) U PCX (S1, $3).

The third transformation rule transforms the
" / / " connectors into ADXs. However, to build this
index for every element type pair with ancestor-
descendent relationship will spend too much time
and space overhead. So in the case of no corre-
sponding ADX available, the " / / " connectors must

be rewritten into path expressions connected only
with " /" . This procedure should be achieved with
the knowledge of the schema information, e.g.,
DTD of XML documents. For the XML schema
graph is a directed graph, the rewriting algorithm
is actually to find all possible paths between two
nodes in a graph. Before introducing the details of
the algorithm for rewriting " / / " connector, we first
define an important data structure reverse path tree
(RPT) as follows.

Def in i t ion 5. A reverse path tree is defined as
a node-labelled tree Tr = (Vr, Er, E~, root~), which
organizes several path expressions with a common
end path step together, where V~ is the node set
that is actually the set of corresponding path steps;
the edges contained in the edge set Er are connec-
tor "/"; ~r is the same as ~t in Gt; and rootr is
the root of this tree and is just the common end
path step. We define R P T (E) as a reverse path
tree rooted at E which contains all path expressions
from root, to E, and define RPT(E1, E2) as a re-
verse path tree rooted at E2 which contains all path
expressions from Ez to E~ and some path expres-
sions from root~ to E~.

For example, in Fig.5, (a) shows R P T (de-
scription) and (b) shows RPT(closed_auetions, de-

Guo-Ren Wang et al.: RPE Query Processing and Optimization Techniques for XML Databases 229

scription). "~Ve can easily retrieve pa th expressions
with specified starting pa th step by traversing up
through the R P T from the tree leaves with the
given label. For example, if we only want pa th
expressions beginning with closed_auctions from
RPT(closed_auct ions, description), we can just tra-
verse up from the most left leaf node of Fig.5(b) to
the root. So, the connector rewriting algorithm
is just the R P T constructing algorithm, as shown
in Algorithm 1. The 5th step of the algorithm
checks the number of occurrences of the same el-

ement type on the current path. It ensures that
the algorithm can stop normally at last even if
there are cyclic ancestor-descendant relationships
between elements. Restricting the maximal num-
ber of occurrences of an element type on a pa th to 2
can not only avoid error, but also ensure that R P T
contains all the ancestor-descendant relationships
between elements. With the proposed transforma-
tion rules and the algorithm, we have the extent
jo in algorithm. The details are shown in Algorithm
2.

Description Description

i i
Annotation Annotation

Closed_auction Open-auction Closed_auction Open_auction
I I I i

Closed.auctions Open_auctions Closed_auctions Open_auctions

I I I
Site Site Site

(a) (b)

Fig.5. Reverse path trees. (a) RPT (description). (b) RPT (closed_auction, description).

A lgo r i t hm 1. Constructing Reverse Path Tree Al-
gorithm (rewriting "n l / /n2")
Input: XML schema Gt -- (Vt ,Et ,h t ,Et , roott),
XML element type nl, n2
Output: R P T rpt
(01) rpt.root~ -= n2;
(02) currentnode -~ rpt.root~;
(03) currentnode.children -= 5~-1 (currentnode);
(04) for each node cc e 5~ -1 (currentnode) do
(05) if the cc number in the current path does

not exceed 1 then
(06) if cc r nl and cc # roott t hen
(07) currentnode = cc;
(08) go to (03);
(09) endi f
(! 0) endi f
(11) endfor

Algorithm 2. Extent Join Algorithm
Input: Path expression query P
Output: Result set R
(1) Check the A D X and rewrite the no-index-supp-

orted " / /" connectors using Algorithm 1.
(2) Transform the rewritten path P into joins and

indexes and organize as a simple query plan.
(3) Execute the query plan including indexes and

joins.

4 Optimizing Regular Path E x p r e s s i o n s

In Section 3, we have introduced the basic idea
of extent jo in tha t uses joins over sets to evalu-

ate pa th expression queries. Its performance de-
pends largely on the number of joins and the size of
joining sets. In this section, we propose two path
expression optimization techniques to reduce the
number of joins and the execution cost of pa th ex-
pressions in evaluating a pa th expression. Mean-
while, the general cost based optimization proce-
dure is also introduced in this section.

4.1 P a t h S h o r t e n i n g S t r a t e g y

Most studies on path expression queries focus on
computing a pa th in different ways, designing spe-
cial indices to support special queries, or rewriting
some specific operators to improve performance.
However, some optimizing operations can be done
on some path expressions based on XML schema in-
formation. Since an XML document is represented
as a tree, we have the following theorem.

T h e o r e m 1. Let Gt be an X M L schema and
Td an X M L document complying with schema Gt.
Then each node except rootd is a descendant of
rootd, i.e., (Vn) (n e {Wd - root ,} -+ n is a de-
scendant of rootd).

Proof. Since Td is a tree and rootd is the root
of the tree, Theorem 1 is evident. []

According to Theorem 1, pa th operations like
/ / E T y p e and / roo td / /E type can be translated to
extent operations, i.e., E X T (E t y p e) , which are used
to get a certain type of elements from the database.

230

T h e o r e m 2. If an absolute path expression
query Q = (Gt, Td, roott, PE, RS) is a unique path
in Gt that can access the final result, then RS =
EXT(End(PE)) , where Znd(PE) represents the
type of the last element of the path.

Proof. Firstly, RS C EXT(End(PE)) always
holds, for each XML instance in RS is of type
End(PE). Assume that there is an XML instance
e E EXT(End(PE)) A e q~ RS, then there must
be an access pa th from rootd to e according to
Theorem 1. It contradicts the fact that Q is a
unique path. So EXT(End(PE)) C RS. Thus,
RS = EXT(End(PE)) . []

Obviously, we can optimize a query according
to Theorem 2, if the query is the unique access path
of the type. We can get the definition of unique ac-
cess path according to Theorem 2.

D e f i n i t i o n 6. Let Q = <Gt, Td, roott, PE, RS)
be a path expression query. If End(roott + PE) =
E~ A (Ve)(e e EXT(En) ~ e e RS), then RE is
the unique access path of element type E,~, in short
UAP(E,~) = RE.

Unique access path is defined as that it must
s tar t from the root of XML schema graph, because
if there are no indices, every XML element can only
be accessed from the root of XML instance tree.

We can simplify a long path computat ion into
an XML extent index operation according to The-
orem 1 and Theorem 2 to speed up the query.
Actually, each element type has unique access
path for itself. For an element type E, l I E
is its unique access path, i.e., UAP(E) = l IE .
However, it is not common for pa th expres-
sions to have unique access path of its end ele-
ment. For example, the end element of query
/site/closed_auctions/closed_auction/annotation/
description is description, which can also be
accessed by ~site~open_auctions~open_auction~
annotation/description. In this situation, the
expression cannot be optimized using Theo-
ram 1 and Theorem 2. However, the front
part of the expression ~site~closed_auctions~
closed_auction is the unique access path of element
type closed_auction. Using Theorem 2, it can be
simplified to EXT(closed_auction). The rest of the
pa th expression can be evaluated using the extent
join algorithm. Thus, we can get a corollary of
Theorem 2.

C o r o l l a r y . Assume that P1 and P2 are two
path expressions. For two path expression queries
Qx = <Gt,Td, roott,/P1/E/P2, RS1) and Q2 =
<Gt, Td, E,/P2, RS2>, if UAP(E) = PE + P~, then
RS1 = RS2.

J. Comput. Sci. & Technol., Mar. 2004, Vo1.19, No.2

The optimization of absolute pa th expressions
has been discussed. Now we discuss relative pa th
expressions.

D e f i n i t i o n 7. Let Gt be an XML schema and
Td an XML data document complying with schema
Gt. If Et and E.) E lit, and (Ve2 E V~l)(e2 E
EXT(E~) -+ (3ea)(et E EXT(E1) A 5dl(e2) :
el)), then E1 is the unique parent of E2, in short
UP(E2) = El.

Since Gt is a graph structure, an element may
have more than one parent. We can define the
unique parent set of an element similarly. It is easy
to determine if an element is tile unique parent of
another element using function 6/-1. If 6~-1(E2) :
{El}, then UP(E2) : E l , else UP(E2) ~ El.

D e f i n i t i o n 8. Let Gt be an XML schema and
T~z an XML data document complying with schema
Gt. If E1 and E2 E Vt, and (Ve.~ E Vd)(e2 E
EXT(E~) -+ (3el)(el e EXT(E1) A el is the an-
cestor of e2, then Et is the key ancestor of E2,
meaning that accessing an instance of E2 must be
through Et, in short KA(E2) = Et.

T h e o r e m 3. Let Ei and Ci represent steps
and path connectors in absolute path expres-
sion E1CtE2C2E3...C,~-IE,~ for i (1 <~ i ~<
n), respectively. For query Q1 = <Gt,Td,E1,
C1E2C2E3. . .Cn-IE, , RS1), if UAP(E2) =
CIE2, then Q1 can be equivalently replaced by
relative path expression query Q2 = <Gt., Td, E2,
C2E3... Cn-tE,~,RS2); if E.z is the unique
parent or key ancestor of E3, then Q1 can
be equivalently replaced by Q3 = <Gt,Td, E3,
C3E4... C,~_~E,~, RS3), i.e., UAP(E3) =
C1E:C2 E3.

Proof. Assume that C2 is " /" . Consider
query Q4 = (Gt,Td,E1, C1E2, RS4>. Then RS4 =
EXT(E2), since UAP(E2) = E1C1E2 according
to Theorem 2, that is, the instance set contain-
ing all the instances from E1 along pa th C1E2
is EXT(E2). Because E2 is the unique parent
of E3, each instance in EXT(E3) is the child of
an instance in EXT(E2). So for query Qs =
<Gt,Td,E1,C1E2C2E3, RSh}, RSs = EXT(E3).
According to Definition 6, UAP(E3) = C1E2C2E3.
If C2 is " / / " , the proof is similar. []

According to Theorem 3, in certain cases, Q2
can be optimized to Q3- Thus, relative pa th ex-
pression queries can also be optimized. The three
theorems and the corollary discussed above also ap-
ply to other instances. Using them, a pa th expres-
sion query can be shortened according to the in-
formation in XML document schema to reduce the
cost of the query. These theorems are called path

Guo-Ren Wang et al.: RPE Query Processing and Optimization Techniques for XPclL Databases 231

shortening strategy of pa th expression queries.

Theorem 3 not only can be used to shorten pa th
expressions, but also gives the principle of execut-
ing the pa th optimization strategy. A path expres-
sion query is shortened from its beginning step by
step, until it cannot be optimized. It can be sire-
ply done when the pa th connector is " /" . It only
needs to determine the unique parent of an ele-
ment. It is a little bit complex for the case that
the path connector is " / / " , which needs to deter-
mine the key ancestor rather than unique parent.
We can use reverse pa th tree to determine key an-
cestor. According to Algorithm 3, the leaf nodes of
RPT(E1, E.2) can only be either E1 or roott. Fur-
thermore, when E1 is the key ancestor of E2, the
leaf nodes of RPT(E1,E2) must be El . We can
determine if an element is the key ancestor of an-
other element based on this property. Thus, the
algorithm of the path shortening strategy can be
described as shown in Algorithm 3.

A lgor i thm 3. Path Shortening Algorithm

Input : Path expression query Q = (Gt, Td, roott,
%

fi schema
i = i
St, ~t, roott)

Outpu t : Optimized path expression query Q'
(01) f o r i = 1 t o n - 1 do
(02)
(03)
(04)
(05)
(06)
(o7)
(08)
(09)

if (Ci = "/") && (5;-1(E~+1) = {Ei}) then
cs=i + l;
continue;

else break;
end if
if Ci = " / / " t hen

construct RPT(Ei, E~+I);
if all leaves of RPT(E~, E~+I) are Ei
then

(10) cs = i + 1;
(11) continue;
(12) else break;
(13) end if
(14) end if
(15) end for

(16) Q' = (at , Td, Ecs,
\

f i C~E~,RS>;
i-=cs-4-1

FinMly, whether or not a path expression can
be optimized using the path shortening strategy
depends on the feature of the pa th expression it-
self, i.e., whether or not part of the expression is
a unique access path of certain element. It is a
heuristic rule, and it does not need any statistic
information of data, since it can reduce join op-
erations while evaluating the query and certainly
improve the query performance. Besides the extent

join algorithm, this optimization strategy can also
be used for other pa th expression computing al-
gorithms with the support of XML extent index.
For example, when using the top-down strategy,
the navigation operations on XML tree can start
from instances of certain element extent rather
than from the root.

4.2 P a t h C o m p l e m e n t i n g S t r a t e g y

The path shortening strategy improves the query
performance by optimizing the pa th expression it-
self. We now introduce the path complementing
strategy, which computes complex and higher-cost
query expression by simple and lower-cost query
expressions. Like the path shortening strategy, this
s trategy also needs information on XML document
schema.

Before introducing the path complementing
strategy, let us look at an example first. Con-
sider an absolute pa th query Q1 = {Gt,Td, roott,
/ site/ regions/ . / item/ name, RSx) that retrieves the
names of items in all regions based on the example
in Fig.1 and schema in Fig.2. Only item and per-
son may have child element of type name among
all elements. If an XML instance typed name in
the document is not the child node of item, it must
be the child node of person; that is, for the in-
stance set of all name elements, the instance set
of name child of item and that of person are com-
plementary. Since all the name children of per-
son can be obtained by query Q2 = (Gt, Td, roott,
~site~people~person~name, RS2), ZXT(name) =
RS1 U RS2, i.e., RS1 = EXT(name) - RS2. Then
there are two query plans that can be chosen when
executing a pa th query. One is Q1 and the other is
EXT(name) - RS2. The costs of these two plans
may be different from each other, the lower one of
which should be chosen to compute the query by
the cost evaluator.

Def in i t ion 9. Let Gt = (Vt,Et,ht, Et, roott) be
an XML schema and Td = (Vd, Ed, hd, Ed, rootd,
old, typed, oidd) an XML data document comply-
ing with schema Gt. If E2 �9 Vt, KA(E2) = El,
there is n paths between E1 and E2 represented by
P 1 , P 2 , . . . , P n , and End(P~) = E2 (1 < i < n),

i--1
then U PJ + 6 PJ (1 < i < n) is the comple-

j = l j = i + l

mentary paths of Pi between E1 and E2, abbreviated
i--1

as CP(E1, E2, Pi) = U 5 + (3 5
j = l j -=i+ l

i - 1

T h e o r e m 4. I f CP(E~,E2,P~) = U Pj +
j -~ l

232

Pj, and the corresponding query of path Pi
j=i-~ l

is Qi = (Gt,Td,E1,Pi, RSi) (1 ~ i <~ n), then

(Ve2)(e~ e EXT(E2) --+ e~ e 5 RSi), i.e.,
i = I

EXT(E2) = ~J RSi, that is RSi = EXT(E~) -
i = 1

i - -1

j = l j = i + l
i - -1

Pro@ Because CP(E1,E2,Pi) = [.J Pj +
j = l

Pj, KA(E2) = E1 and P1, P'z,- .- , Pn are all
j = i §

the paths between E1 and E~. Assume there exists

an XML instance e E EXT(E~) and e ~ 0 RSI.
i = l

Since KA(E2) = El, there must exist an instance
e' E EXT(E1) such that e' is an ancestor ofe in Td.
Thus, there exists a path P' r Pi (1 ~< i ~< n) and
its corresponding query Q' = (Gt, Td, Et, pi, RSI}
such that e' E RS'. It is paradoxical. Thus the
theory is proved. []

The path expression query obtained after using
the path complementing strate~" can also be ulteri-
orly optimized using the path shortening strategy.
The key problem of the path complementing strat-
egy is to find the complementary paths of a path ex-
pression query and choose the query plan according
to their costs.

For two element types E1 and E2, if KA(E2) =
El, then the reverse path tree RPT(E1,E2) can
be used to compute all the paths between them.
Chase the R P T pointer reversely from its leaf nodes
to the root. The connector between nodes is usu-
ally " /" . When the reverse pointer chasing gets
the same element, rewrite the part of path between
them to a closure structure or use connector " / / "
to replace it. For example, the p a t h / a / b / c / d / b / e
is rewritten to /a/(b/e/d)+/e. This operation is
the re,terse work of deducing cyclic paths in the
building of RPT. The operation of getting com-
plementary paths is fairly straightforward when all
paths between two nodes are gotten, and only path
matching and set difference operations are needed.
Algorithm 4 uses R P T to determine the key ances-
tor. At the same time, the complementary paths
are obtained and the function gr E2, P) is
used to represent the procedure of getting comple-
mentary paths. Then, this algorithm performs cost
estimating on each query strategy, and executes the
query using the least cost strategy. Before the cost
estimating, the path expressions should be opti-
mized using the path shortening strategy, and the

J. Comput. Sci. & Technol., Mar. 2004, Vol.19, No.2

functions PS(P) and Cost(P) are used to repre-
sent the path shortening procedure and the cost es-
timating procedure, respectively. Additionally, this
algorithm applies the path complementing strategy
from the end of path, and stops whenever a lower
cost strategy than the original one is gotten. In
this way, the longer the path is, the greater the
performance improvement of path complementing
is expected.

Algor i thm 4. Path Complementing Algorithm
Input : Path expression query Q -- (Gt, Td, E0, P,

7~

RS),P = ~-~CiE~, XML schema Gt =
i = l

(Vt , Et , St, Et , root t)
Output : Optimized query strategy S
(01) if KA(E=) = Eo then
(02) P' = getCP(Eo, E~, P)
(03) if Cost(EXT(E,~)- PS(P')) < Cost(PS(P))

then
(04) S = EXT(E~) - PS(P')
(05) r e tu rn
(06) end if
(07) end if
(08) for i = n - 1 to step-1 do
(09) if KA(EI) = Eo then

i
(lO) trap, = ~ C~Ej

j = l
(11) P' = getCP(Eo, E,, tmpp)
(12) if Cost(EXT(E,,) - PS(P')) < Cost(PS

(tmpp)) then
n

(13) S = (EXT(E,~)-PS(P')+}-~ CjEj)
j= i

(14) r e tu rn
(15) end if
(16) end if
(17) end for

4.3 Q u e r y i n g a n d O p t i m i z i n g P a t h E x p r e s -
s ions

In the above subsections, two optimization tech-
niques are proposed for path expression. We have
introduced that the path-shortening rule is heuris-
tic, while the path-complementing technique is not
suitable for all cases. Therefore, a cost based
query plan selection is used for the path optimiza-
tion procedure. In this subsection, we show how
to use them in path expression query processing
procedure. The selection of path expression and
cost estimation are not the focuses of this paper,
so the details of these issues are omitted. Given
a path expression query P and an XML schema
graph Gt = (Vt, Et, St, Et, roott), the general steps
of querying and optimizing path expression queries

Guo-Ren Wang et al.: RPE Query Processing and Optimization Techniques for XML Databases 233

are shown as follows.

Step 1. Rewriting of '*'. Wi th the XML schema
graph, path steps '*' are rewritten as the unions of all
possible sub-paths via function St.

Step 2. Complementary path selection. Wi th the
XML schema graph, the complementary paths of user
query are found and their costs are estimated. Check
if the cost of complementary paths is lower than that
of the original path. If it is lower, the complementary
approach is chosen. Otherwise, the original path is cho-
sen.

Step 3. Path shortening. Using Algorithm 3 to
shorten the selected path expressions.

Step 4. Rewriting of connector " / / " . Check if there
exist " / / " connectors with no ADX support. If so, they
are rewritten using Algorithm 1.

Step 5. Index selection and query plan construc-
tion. Select correct indexes and transform the pa th
expressions into query plans.

Step 6. Query plan execution. Execute the query
plan including indexes and joins.

5 E x p e r i m e n t s

In this sect ion, we will discuss the pe r fo rmance
eva lua t ion of the extent join and the p a t h expres-
sion op t im iza t i on rules p roposed in this p a p e r in
t e rms of four benchmarks : XMark, XMach, D B L P
and Shake.

as tha t in Fig.2. X M a r k focuses on the core ingredi-
ent of XML benchmark inc luding the query proces-
sor and its in te rac t ion wi th the da tabase . X M a r k
to t a l ly specifies 20 queries t h a t cover a wide range
inc luding exact match , o rdered access, cast ing, reg-
ular p a t h expressions, chasing references, construc-
t ion of complex results , jo in on values, reconst ruc-
t ion, full t ex t , p a t h t raversals , missing elements ,
funct ion appl ica t ion , sor t ing and aggregat ion .

XMach. The second d a t a set is a scalable
mul t i -user benchmark to eva lua te the pe r fo rmance
of XML d a t a m a n a g e m e n t sys tems p roposed by
R a h m and Bohme [261. I t is based oll a web appl i -
ca t ion and considers different types of XML da ta ,
in pa r t i cu l a r tex t documents , schema-less d a t a and
s t r uc tu r e d da ta . The d a t a b a s e conta ins a d i rec to ry
s t ruc tu re and XML documents . I t is a mul t ip le
D T D and mul t ip le documen t benchmark t ha t to-
ta l ly consists of 11 queries: 8 re t r ieval and 3 u p d a t e
queries.

The above two d a t a sets are used to s imula te
some appl ica t ions , while the following two d a t a sets
are real da ta .

Shakes. The th i rd d a t a set is the Bosak Shake-
speare collect ion avai lable at h t t p : / / m e t a l a b .
u n c . e d u / b o s a k / x m l / e g / s h a k e s 2 0 0 . z i p . 8 qu-
eries are designed over the Shakes d a t a set, as
shown in Table 1.

5 .1 O v e r v i e w

The expe r imen t s were conduc ted on a single
800MHz C P U P C wi th 184MB ma in memory. We
employed a na t ive XML m a n a g e m e n t sys tem cal led
XBase [24] as the under ly ing d a t a s torage, which
stores XML d o c u m e n t into an ob jec t d a t a b a s e w i th
an O D M G - b i n d i n g D O M interface. The t e s t ing
p rog rams were coded wi th MS V C + + 6.0 and
O D M G C + + O M L 2.0 [25]. The da t a se t s used are
descr ibed as follows.

XMark. T h e first d a t a set is from the X M L
b e n c h m a r k p ro j ec t [24]. The scale factor se lected is
1.0 and the co r respond ing XML documen t size is
abou t 100MB. T h e hierarchical schema is the same

Table 1. Queries on Shakes
No. Path expression queries
Q1 ~PLAY~ACT
Q2 /PLAY/ACT/SCENE/SPEECtI/LINE/STAGEDIR
Q3 //SCENE/TITLE
Q4 / /ACT/ /TITLE
Q5 /PLAY/ACT [2]
Q6 (/PLAY/ACT) [2]/TITLE
Q7 /PLAY/ACT/SCENE/SPEECH[SPEAKER= "CURIO"]
Q8 /PLAY/ACT/SCENE[//SPEAKER = "Steword']/

TITLE

DBLP. The last d a t a set is from the D B L P
b ib l iography web site, avai lable at f t p : / / f t p .
i n f o rmat i c . m a i - t r i e r , d e / p u b / u s e r s / L e y / b i b /
r e c o r d s . t a r . g z . 8 queries are defined over the
D B L P d a t a set, as shown in Table 2.

No. Queries
Table 2. Queries on DBLP

Q1 Select all conference paper titles published in 2000 on XML
Q2 Select all paper titles written by Michael Stonebraker
Q3 Select all paper titles written by Michael Stonebraker or Jim Gray
Q4 Select all database papers published between 1990 and 1994
Q5 Select all papers that have a citation entry whose label is CARE84
Q6 Select database paper titles with paper length longer than 20 pages
Q7 Select all papers by Michael Stonebraker quoted by papers published in year 1994
Q8 Select all papers by Jim Gray that are quoted by Michael Stonebraker

234 J. Comput. Sci. & Technol., Mar. 2004, Vo1.19, No.2

Table 3. Parameters of Generated Benchmark Databases
Benchmark Document Number of Database Index

Amount Size Elements Attributes Size Size
XMark 1 100M 1,360,720 381,880 319.9M 14.0M
XMach 10,001 71.4M 289,694 129,147 157.8M 5.8M
Shakes 37 7.4M 179,690 0 16.3M 1.1M
DBLP 275,523 108M 2,785,894 350,376 328.7M 19.7M

The parameters of four benchmark databases
are shown in Table 3.

Ill order to fully explore the performance of the
extent join algorithm and query optimization tech-
niques proposed in this paper, we implemented 3
different query evaluating strategies: top-dowm, ex-
tent join, optimized. The top-down strategy evalu-
ates path expressions by traversing the XML data
tree from top to down with no index support, which
is similar to the top-down approach described in
[10]. The extent join approach is supported by
indexes including ADX, PCX and RX. The opti-
mized way optimizes the extent join way by apply-
ing query optimization rules. It follows the opti-
mizing steps in Section 4 to select the most optimal
query execution plan.

5.2 E x t e n t J o i n

Fig.6 shows the performance comparison be-
tween top down and extent join in terms of XMark.
Extent join is much better than top down in most
cases. The extent join is about 2 ~ 20 times,
sometimes hundreds of times, faster than top down.
However, there are some exceptions. 1) For Q2,
Q3, Q13 and Q14, the performance of extent join
is similar to that of top down. The reasons are
described as follows, a) Q2 and Q3 are ordered
accesses to elements. In this case, extent join also
needs to traverse the XML data trees, b) Q13 is
result reconstruction and needs to traverse a rel-

atively big sub-tree to get all results, c) Q14 is
a full text query, which also needs to traverse the
whole sub-tree to check if elements are right. (2)
For Q15 and Q16 containing very long path traver-
sals, top down outperforms extent join by about
3070. Due to the much smaller selectivity of path
expression top down does not need to traverse the
whole XML data tree, whereas extent join must
do many join operations (e.g., Q15: 12, Q16: 14).
Then we can get a conclusion: extent join is bet-
ter than top down in most cases unless it needs to
traverse a large XML data tree like top down or
the path queries are very long such that extent join
must do too many join operations.

Fig.7 shows the performance comparison be-
tween top down and extent join in terms of XMach.
From the figure, we can see that the performance
of extent join for Q1, Q2, Q6, Q7 and Q8 outper-
forms that for Q3, Q4 and Qh. In the cases of Q1,
Q2, Q6, Q7 and Qs, the top down approach has to
navigate a large portion of XML trees while the ex-
tent join approach can save I /O overhead with the
help of indexes. Q3 is a recursive query. The top
down approach computes the recursive operation
by navigating a small portion of XML trees while
the extent join approach conducts this recursion by
a recursive join operation in all XML trees. There-
fore, the I /O cost of top down is lower than that
of extent join. Q4 needs to reconstruct the q u e r y
result according to the document order, top down
outperforms extent join because navigating XML

1,000.0

100.0

** 10.0

e~

E- l.0

0.1

[] Top down

Q1
i

Q2 Q3 Q4 Q5 Q6 Q?

[] Extent join

1
Q8 Q9 Qlo Qll Q12 Q13 Q14 Q15 Q,6 Q17 Qls Q19 Q~o

Fig.6. Extent join (XMark).

Cuo-Ren II,~ng et al.: RPE Query Processing and Optimization Techniques for XML Databases 235

trees is a natural result-reconstructing procedure.
As for Q5, the reason why top down outperforms
extent join is similar to Q3.

100,000
I-'1 Top down O Extent .join

Z?
"2 1,000

0.[
Q1 Q',. (33 04 Q~ Q~ Q7 Qs

Fig.7. Extent join (XMach).

Figs.8 and 9 are the performance comparison
between top down and extent join for the two real
data sets, respectively. First, consider DBLP where
most of queries are very long and have predicates at
the end. Extent join is much better than top down
(Q2, Q3, Q4, Q5 and Q6). There exists a con-
taining operator in Q1 and the path expressions in
it are relatively short. All these factors cause top
down to be bet ter than extent join for this query.
The performance of extent join on Q7 and Q8 is
very bad and we cannot get performance results.
The reason may be that they all contain several
(4 or 5) long path expressions with more than 10
steps.

i0,000

1,000

100

10

1

F1 Top down i-1 Extent join

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Qs

Fig.& Extent join (DBLP).

I00,000

~, I0,000

.~ 1,000

I00
e~

io

f'l Top down I"l Extent join

Qi Q2 Q3 Q4 Q5 Q6 Q7 Qs

Fig.9. Extent join (Shakes).

From Fig.9, we can also see that the extent join
performance for some queries (Q1, Q3, Q4 and Q5)

outperforms the top down performance. From sys-
tematic analysis, we can see that the performance
of top down heavily depends on the portion of XML
trees navigated while the performance of extent join
mainly depends on the number of joins. So we have
proposed some techniques to improve the perfor-
mance of the extent join approach and the perfor-
mance evaluation is given in the next section.

5.3 Q u e r y O p t i m i z a t i o n

Figs.10 and 11 show the performance compari-
son between extent join and optimized for XMark
and XMach, respectively. The optimized approach
is the winner in all query results, and queries are
divided into several categories.

(1) Query performance is improved greatly. Ex-
amples are Q5, Q6, QT, Q18 and Q20 of XMark,
whose path expressions are shortened greatly, and
these queries have no predicates or the predicates
are at the last step of the paths. In these cases, the
optimized approach can be 10 ~ 200 times faster
than extent join.

(2) Query performance is improved moderately.
Q1, Q2, Q3, Q4, QS, Q9, Q10, Q l l , Q12 and
Q17 belong to this category. They are either
queries that can only be shortened a little by path-
shortenin 9 rule and the saved extent join opera-
tions take relatively small costs (Q1), or queries
that have some other high-cost operations, for ex-
ample, join on values, ordered access and reference
chasing. In this category the benefits of query opti-
mization rules cannot be seen dearly (Q2, Q3, Q4,
QS, Q9, Q10, Q l l , Q12). They also may be queries
whose complementary paths are still very complex
(Q17). For queries of this category, the optimized
approach can save the evaluating time by 10%
400%. Most queries fall in this category.

(3) Query performance is improved slightly.
Q13, Q14, Q15 and Q16 of XMark fall in this cat-
egory and the benefit of the optimized approach
for them is only 0.3% ~-, 8%. The reasons are
that these queries have operations of very high cost
(Q13: complex result reconstruction, Q14: full text
scanning) or they are expressions of very long path
and can only be shortened little (Q15:2 out of 12,
Q 1 6 : 2 out of 14). The XMach results in Fig.11
also indicate the similar result (Q2, Q3, q4, Q5,
Q6 and Q7 belong to category 1, Q8 belongs to
category 2 and Q1 belongs to category 3).

Figs.12 and 13 are the performance comparison
between extent join and optimized for the two real
data sets, DBLP (Fig.12) and Shakes (Fig.13).

236 J. Comput. Sci. & Technol., Mar. 2004, Vol.19, No.2

1.000.00

100.00

= 10.00

= 1
~- 1.00 2 -

0.10

0.01
Q1

UI Extent join

Q2 Q3

I-3 Optimized

Q4 Q5 Q6 Q7 Q8 Q9 Qlo Qll Q12 QI3 QI4 Q15 Qt6 Q17 Ols Q19 Q20

Fig.10. Query optimization (XMark).

1,000.00
.%-

100.00

.-= 10.00

1.oo

~, o.io

O.Of

"1-1 Extent join [~ Optimized

Q, Q2 Q~ Q4 Q5 Q6 Qz Q8

Fig.ll . Query optimization (XMach).

800

600

400

~ 200

0

V1 Extent oin [7 Optimized

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Fig.12. Query optimization (DBLP).

100,000

~" 10,000

._~ 1,000

100

'~ 10

[-] Extent join [:] Optimized

ql Q~ Q3 Q4 Q5 Q~ Q7 Qs

Fig.13. Query optimization (Shakes).

From these two figures we can see that optimized
outperforms extent join overall queries in both
DBLP and Shakes. The performance analysis is
similar to benckmarks XMark and XMach.

6 C o n c l u s i o n s

In this paper, we proposed the extent join ap-
proach to evaluate regular path expressions. In or-
der to further improve the query performance, we
also proposed two novel query optimization tech-
niques: path-shortening and path-complementing.
Path-shortening reduces the number of joins by
shortening the path and path-complementing is a
technique to use an equivalent complementary path
expression to compute the original path specified in
a user query. They can reduce the path computing
cost by decreasing the length of paths and using
equivalent complementary expressions to optimize
long and complex paths. From our experimental
results, 80% of the queries can benefit from these
optimization rules, and path expression evaluating
performance can be improved by 20% ~ 400%.

R e f e r e n c e s

[1] Florescu D, Kossmann D. A performance evaluation of
alternative mapping schemes for storing XML data in
a relational database. INRIA Tech. Report, INRIA ,
No.3680, 1999.

[2] Florescu D, Kossmann D. Storing and querying XML
data using an RDBMS. IEEE Data Engineering Bul-
letin, 1999, 3: 27-34.

[3] Deutsch A, Fernandez M, Suciu D. Storing semistruc-
tured data with STORED. In Proc. the 1999 SIGMOD
Conference, Philadelphia, USA, 1999, pp.431-442.

[4] Manolescu I, Florescu D, Kossmann D et al. Agora:
Living with XML and relational. In Proc. the 26th
VLDB Conference, Cairo, Egypt, 2000, pp.623-626.

[5] Schmidt A, Kersten M, Windhouwer M e t al. Efficient
relational storage and retrieval of XML documents. In
Proc. the 3rd International Workshop WebDB, Dallas,
USA, 2000, pp.137-150.

[6] Zhou A, Ln H, Zheng S e t al. VXMLR: A visual XML-
relational database system. In Proc. the 27th VLDB
Conference, Roma, Italy, 2001, pp.719-720.

Guo-Ren Wang et al.: R P E Query Process ing and O p t i m i z a t i o n Techniques for X M L Databases 237

[7] Fegaras L, Elmasri R. Query engines for Web-accessible
XML data. In Proc. the 27th VLDB Conference, Roma,
Italy, 2001, pp.251-260.

[8] Hou J, Zhang Y, Kambayashi Y. Object-oriented rep-
resentation for XML data. In Proc. the 3rd CODAS
Conference, Beijing, China, 2001, pp.43-52.

[9] Renner A. XML data and object databases: A perfect
couple? In Proc. the 17th ICDE Conference, Heidel-
berg, 2001, pp.143-148.

[10] McHugh J, Abiteboul S, Goldman R et al. Lore: A
database management system for semistructured data.
SIGMOD Record, 1997, 3: 54-66.

[11] Shoens K, Luniewski A, Schwarz P e t al. The Rufus
system: Information organization for semi-structured
data. In Proc. the 19th VLDB Conference, Dublin,
1993, pp.97-107.

[12] Fernandez M, Florescu D, Kang J e t al. Catching the
boat with Strudel: Experiences with a Web-site manage-
ment system. In Proc. the 1998 SIGMOD Conference,
Seattle, USA, 1998, pp.414-425.

[13] Schoning H. Tamino - - A DBMS designed for XML. In
Proc. the 17th ICDE Conference, Heidelberg, Germany,
2001, pp.149-154.

[14] Goldman R, Widom J. DataGuides: Enabling query for-
mulation and optimization in semistructured databases.
In Proc. the 23rd VLDB conference, Athens, Greece,
1997, pp.436-445.

[15] Milo T, Suciu D. Index structures for path expressions.
In Proc. the International Conference on Database
Theory, Jerusalem, Israel, 1999, pp.277-295.

[16] Li Q, Moon B. Indexing and querying XML data for
regular path expressions. In Proc. the 27th VLDB Con-
ference, Roma, Italy, 2001, pp.361-370.

[17] Chamberlin D, Robie J, Florescu D.:Quilt: An XML
query language for heterogeneous data sources. In
Proc. 3rd International Workshop WebDB, Dallas,
2000, pp.l-25.

[18] Fankhauser P. XQuery formal semantics: State and
challenges. SIGMOD Record, 2001, 3: 14-19.

[19] Deutsch A, Fernandez M, Florescu D et al. Xml-
qh A query language for XML. 1999, http://www.w3.
org /TR/NOTE-xml-ql / .

[20] Robie J, Lapp J, Schach D. XML query language (XQL).
1998, http: / /www.w3.org/TandS / Qa / Q L98 / cfp.

[21] Cark J, DeRose S. XMP path language (XPath). Tech-
nical Report REC-xpath-1999il16, W3C, 1999.

[22] Abiteboul S, Quass D, McHugh J et al. The Lorel query
language for semistructured data. International Jour-
nal on Digital Libraries, 1997, 1: 68-88.

[23] Schmidt A, Wa~s M, Kersten M L et al. XMark: A
benchmark for XML data management. In Proc. 28th

VLDB Conference, Hong Kong, China, 2002, pp.974-
985.

[24] Wang G, Lu H, Yu G, Bao Y. Managing very large docu-
ment collections using semantics. Journal of Computer
Science and Technology, 2003, 18(3): 403-406.

[25] Cattel R G G, Barry D, Berler M e t al. The Object
Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[26] Rahm E, Bohme T. XMach-l: Multi-user evaluation
of XML data management systems with XMach-1. In
Proc. 1st VLDB Workshop on Efficiency and Effec-
tiveness of XML Tools, and Techniques (EEXTT2002),
Hong Kong, China, 2002, pp.148-158.

dimensional indexing,

G u o - R e n W a n g is a pro-
fessor at Nor theas tern Univer-
sity, China. He received his B.E.
degree, M.E. degree and Ph.D.
degree from Northeasern Uni-
versity in 1988, 1991 and 1996,
respectively. His research inter-
ests include XML da ta manage-
ment, query processing and op-
t imizat ion, bioinformatics, high-
and parallel da tabase systems.

B i n g S u n is a Ph.D. candidate at Nor theas tern
University, China. His research interests include XML
da ta management , query processing and opt imizat ion.

J i a n - H u a L v is a Ph.D. candidate at Nor theas tern
University, China. His research interests include XML
da ta management , query processing and opt imizat ion.

G e Y u is a professor at Nor theas te rn University,
China, and a supervisor of Ph.D. students. He re-
ceived his B.E. degree and M.E. degree from North-
easern Universi ty in 1982 and 1986, respectively, and
his Ph.D. degree from Kyushu University, J apan in
1996. He is a member of IPSJ , ACM, and A C M SIG-
MOD. His research interests include dis t r ibuted and
parallel databases system, objected-or iented database
system, mul t i -database and informat ion integrat ion,
da t a warehousing and da ta mining, t ransact ional work-
flow management , and Web-service.

