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Abstract  Measures relating word frequencies and expectations have been constantly of interest in Bioinfor-
matics studies. With sequence data becoming massively available, exhaustive enumeration of such measures have
become conceivable, and yet pose siguificant computational burden even when limited to words of bounded max-
imum length. In addition, the display of the huge tables possibly resulting from these counts poses practical
problems of visualization and inference.

VERBUMCULUS is a suite of software tools for the efficient and fast detection of over- or under-represented
words in nucleotide sequences. The inner core of VERBUMCULUS rests on subtly interwoven properties of statistics,
pattern matching and combinatorics on words, that enable one to limit drastically and a prior: the set of over-
or under-represented candidate words of all lengths in a given sequence, thereby rendering it more feasible both
to detect and visualize such words in a fast and practically useful way. This paper is devoted to the description
of the facility at the outset and to report experimental results, ranging from simulations on synthetic data to the
discovery of regulatory elements on the upstream regions of a set of genes of the veast.

The software VERBUMCULUS is accessible at http://www.cs.ucr.edu/ stelo/Verbumculus/ or http://wwwdbl.
dei.unipd.it/Verbumculus/

Keywords Verbumculus, unusual words, subword statistics, pattern discovery. regulatory elements, suffix trees

1 Introduction High density array technologies such as DNA
microarray and gene chip not only provide a sys-
tematic and global snapshot of genome expres-
sion in relation to developmental stages, anatom-
ical structures, and/or external cues, but also of-
fer a powerful means to cluster genes based on
their temporal, spatial and amplitude patterns of
expression*~7]. Together with sequence data, ex-
pression data would enable the assignment of func-
tional information to genes of otherwise unknown
functions. The conceptual assumption of the ap-
proach is that genes that exhibit similar expression
patterns contribute to the same biological process
or functions. Therefore such genes share more or
less common regulatory domains in the upstream
regions for the coordinated control of gene expres-
sion.

A large number of nuclectide motifs show dis-
tinct distribution patterns within the genomes of
various organisms, and can be distinguished from

Over one decade after National Research Coun-
cil mapped out the plan for the Human Genome
Project, the project has been developed into a full
fledged research field — Genomics, which trans-
forms biology researches from cottage endeavor
into enterprise operation. Genomic researches are
mainly organized around two areas: high through-
put DNA sequencing and genome-wise detection
of gene expression. Sequence data in both pub-
lic and private databases have been accumulating
at exponential rate under continuous improvement
of sequencing technology and steady increase of
funding!!?l. Whole genome sequences have been
constantly churning out from the genomic centers
around the world since the first whole genome se-
quence was published[®l. Over fifty whole genome
sequences are currently available for prokaryotic
and eukaryotic organisms.
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cach other. Moreover, during the evolutionary pro-
cess, living organisms have accunulated certain
biases towards or against some specific motifs in
their genomes. which are used as regulatory cle-
ments. Highly recurring nucleotide words are of-
ten observed to correspond to regulatory regions or
protein binding sites of genes. Vice versa, rare nu-
cleotide motifs may be discriminated against duc to
structural constraints of genomes or specific reser-
vations for global transcription controls. such as in
early cascade of embryo development.

Whole genome sequences together with geno-
me-wise expression data offer a global view of ge-
nomic structure and functions of a living system.
However. it is a great challenge to assign functions
to DNA sequences. For example. out of circa 30-
40 thousands genes in hwunan genouie. only about
10,000 are associated with known functions. Thus.
global and systematic search for sequence patterus
in genomes is a necessary step to link structural se-
quences to defined functions. This paper describes
our softwarc development (VERBUMCULUS) n a
genome-wise searching svstem for over- or under-
represented nucleotide motifs, and our initial cffort
to attribute biological functions to those motifs.
The main advantages brought about by VERBUA-
CULUS are in terms of speed, flexibility and visual-
ization efficiency. This rests on the core structure
of the program. which takes advantage of strong
properties at the intersection of statistics. pattern
matching and combinatorics on words®%. The fa-
cility at the outset can conduct global pattern dis-
covery in linecar time and space.

In general, the task of detecting, enumerating
and testing nucleotide word frequencies in large
genomes, which are typical cases for eukarvotic
organisms, requires significant computational re-
sources even when limited to the words up to
some maximum length. It often becomes infeasi-
ble to detect and visnalize such words in a fast and
practically useful way. Among the tools available
for these purposes, we list WORDUP!IY| YEAST-
toors!'ll, and R’mEs!'213] Conceived primarily
as an aid in intercepting conserved segments in re-
lated sequences in a family, WORDUP is based on
a first order Markov model. It detects statistically
significant sequence motifs of 6-10 nucleotides in
a family of sequences by comparing the expected
number of sequences containing a given pattern
with the number of observed sequences that contain
that pattern. The facilities under YEAST-TOOLS
comprise tables of frequencies for nucleotide words
of up to 10 bases as observed in all coding and nou-
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The related
analvses of frequencies and expectations invest the

coding regions of the veast genome.

eutire target genome, with the objective of identify-
ing relatively simple statistically relevant patterus
represented by short motifs with a highly conserved
core. RIMES is a general-purpose set of progras
to detect words that appear in a given DNA se-
quence with unexpected frequency. Two classes of
models are used to model the sequence: stationary
Markov chains and 3-periodic stationary Markov
chains. Under either probabilistic model, the nun-
ber of occurrences of a word in a sequence is con-
sidered to be statistically interesting if 1t differs sig-
nificantly from an estimator of its expected value.
Estunators of the expected counts are obtained us-
g a Gaussian or (for long words) a compound
Poisson approximation. Iu either case. RS pro-
vides a score indicating whether the word is under-
or over-represented.

The scarch for unexpectedly frequent or rare
substrings is ouly one component of the bro-
ader quest for interesting patterns of more gen-
eral kinds. Along these lines, patterns and families
thereof have been variously characterized. and cri-
teria. algorithms and software developed i corre-
spondence. Without pretending to be exhaustive.
we mention SpEXsU Mol Prarrl7-18]
Yesis!?, SpLasn, TriresiasPU, Consensust®
GBS SanpLerE WiINNOWERPZ26],
ProJecTion?7, WEEDERPY MITRAPY, among
others. The performance of these tools has been

increasing dramatically over the years, though the
Liardest challenges (e.g., [25]) are still terrain for
contests.

This paper is organized as follows. In the next
three sections, we describe the basic structure and
features of the VERBUMCULUS facility, leaving out
most algorithmic and combinatorial details. for
which we refer to [8, 9]. Following that, we show
the results of its application to the test analysis of
regulatory motifs of genes.

2 Statistical Analysis of Sequences

In the following, we use w to denote a generic
nucleotide word, and wy; 5 to indicate the substring
of w that begins at position i and ends at position
j. Two main notions of frequency are considered
of interest in our context. The first notion is given
in terms of the number of occurrences of w within
a single given sequence. The second is concerned
instead with the number of sequences containing at
least one occurrence of w out of the total munber
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Table 1. General Monotonicities for Scores Associated with the Counts f,
under the Hypothesis f{w) = f(wv) (We have set p(w) = E(w)/N(w) and 7 = E(wv)/E(w).)

Property Conditions
flwe) = E(wr) - f{w) - E(w)
(1.1} Nwo) > N N(wv) < N( plwv) < p(w)
. flwr) — E{wy) Jlw) = E(w) yN{w) + N(we)
(1.2} N .’V(w) ‘ N{wv) < N(w), plwv) < p(w), and flw) > E{w )m)—
(1.3) flwv) — E(wr) > flw) - E(w) E(wv) < E(w)
, flwe) - flw) w
- f((u'v)) E?(w; Slw) = E(w) e
wv) — wv wp — w
(1.5) E(u,v) E(w)‘ E(wv) < E(w)
Ley Lww) ZElwn) | flw) - Ew) E(wv) < E(w)
(\/E(un) ) }/E(w)E(
flwr) — E(wv (w) — E(w)
1.7 > E(w) > E(wv), f(w) > E(:
an | — | N w) > E(wv), f(w) > E(w)y/5
w wt w) — E(w))?
(1.8) (f¢ L;: m)( )? (L )E(w)( ) E(w) > E(we), f(w) > E(w)y7
of sequences in a family. The expressions and com-  and
putations of the expected values, moments and re- 2
Var(w) = E(w)(1 - p(w)) — p(w)

lated scores of significance depend substantially on
the particular notion at hand. We discuss first
those based on a single sequence, where we iden-
tified five comimon scores used in the scientific lit-
erature (shown on the left of Table 1).

= flw) — E(w)

za(w) = f(w)

B E(w) 7(w) = c(w) — Ec(w)

oy f(w) = E(w) S

z(w) = —F/————— : {u-}=___._c(w}
y/ Var(w) - E.(w)

-’-'-1(1!)) = M Zg[w} — (C(w) - E{:(U-')}q
v/ Var(w) E.(w)
flw) = E(w)

z5(w) = ——m—o—— b

: max{/E(w), 1} )
(a)
Fig.l. (a) Scores based on the number of occurrences. (b)

Scores based on the number of sequences containing at least

one occurrence.

Here, f(w) is the number of observed occur-
rences of w in the input sequence, F(w) is the num-
ber of expected occurrences of w under a Bernoulli
(i.i.d.) model, Var(w) is the variance on the num-
ber of occurrences of w under the same model, and
Var(w) is an easier to compute, first-order approx-
imation of the true variance, which matches in fact
the simplifying assumption of uncorrelated sym-
bol occurrences. Specifically. it is seen(®9 that for
an input sequence of length n and a pattern w of
length m < {n + 1)/2 we have:

E(w) = (n —m+ 1)p(w)

(20 = 3m + 2)(m — 1) + 2p(w)

n

-i(n—m—%l—dz) H
=1

J=m—di+1

plwg),

where p(w) is the probability of occurrence of w
and {d;,dz,...,d,} are the lengths of the periods
of w. A string w has a period z if w is a prefix of
z* for some integer k. Alternatively, a string z is a
period of a string w if w = :'v and v is a possibly
empty prefix of z. We refer to [8, 9, 30} for details
and discussion. Truncating Var(w) after the first
term yields Var(w) = E{w){1 — p(w)). Score 25 1s
after Brendel et al. for details (See [31]): E(w) is
the expected frequency of w based on the observed
frequency of (m — 1)-mers and (m — 2)-mers, i.e.,

f{w[l.m~1])f(w[2.1n])
f(w['z,nL-l]) '

E(w) =

We now turn to the scores associated with fre-
quencies defined on a set of strings {z;,z2,...,Zx},
also called a multisequence. For multisequences,
the three additional scores shown on the right of
Table 1 have been selected. Here E.(w) and c{w)
are, respectively, the expected and observed num-
ber of sequences that contain at least one occur-
rence of w. Given k& sequences of respective sizes
n; for i € [1,k], Pesole et all'! define E.(w) as

follows
Z(l —e”

where &;(w) is the expect-ed number of occurrences
of w in the i-th sequence. An estimator of the true

E(w)= w))
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expectation is calculated after Stuckle et al.[3% by
assuming a first order stationary Markov chain

fi(w[1,2])fi(u'[?..3]) R f’i(w[‘m.—l,vn])
gi = ’
() filwg) filwrgy) - - fi(wpm—y))

where fi(w) is the observed number of occurrences
of w in the ¢-th sequence.

In a typical, on-line application, parameters
such as the probabilities of the individual symbols
are estimated from the corresponding frequencies
in the input sequence. Alternatively, our algorithm
allows the submission of a separate model sequence
from which probabilities are estimated. Likewise,
the analysis of the target sequence may proceed
considering the sequence as a whole as well as by
performing computations independently within a
number of consecutive segments in a suitable cover
of the input, and analyzing one such “window” at
a time.

3 Methods

For a given choice of a probabilistic setting
and score(s) one would like ideally to compute ex-
haustive frequency tables reporting values for all
substrings of a sequence, or perhaps at least for
the statistically most “surprising” among them.
Even setting aside for a moment the effort involved
in the computation of the necessary parameters
and scores, the sheer number of entries associated
with such an exhaustive tabular presentation would
quickly become unfit for human inspection, hence
hardly useful at the outset. To see this, assume to
be given a priori a source model, one of the above
z-scores, and some arbitrarily fixed threshold value
t for that score, whereby a word will be considered
surprising and thus included in the output table
if its score exceeds t. Now an observed sequence
z of n bases might in principle exceed t with all
of its substrings. Since z may contain about n?/2
distinct substrings, then a sequence of a modest
n = 1,000 bases might force us to output about half
a million subwords as being surprisingly frequent.
While such an extreme case seems entirely unreal-
istic, it does help illustrating a point of great prac-
tical relevance, namely, that the volumes of data
produced in this and other tasks of motif discovery
risk to rapidly saturate the perceptual bandwidth
of the final user(®3].

One of the main assets of VERBUMCULUS comes
in form of a powerful property that limits drasti-
cally the number of surprising subwords that one

needs to consider. The property holds under rea-
sonable assumptions for scores that fit the general
format z(w) = (f(w) — E(w))/N(w), where N(w)
is a nonnegative normalizing factor for the differ-
ence such as, e.g., the standard deviation for the
count. For scores of this kind, it is possiblel®*! to
confine the computation to only a number of can-
didate surprising words linear in the length of the
host sequence. Moreover, the set W of these candi-
dates can be identified a priori, and their relation-
ship to any other, e.g., over-represented word not
in W is as follows (under-represented words obey
a symmetric property). For any word w not in W
such that z(w) > t, there is a word w’ in W such
that:

1) w’ = wv for some nonempty word v, i.e., the
“neglected” word is embedded in a word of W as a
prefix;

2) z(w') > z{w), i.e., w’ is at least as surprising
as w.

Such a drastic limitation on the order of the
number of candidates, as well as their identifica-
tion, weighing and display are all inextricably in-
terwoven reflections of a same combinatorial prop-
erty, which has to do with the score being monotone
within certain families of patterns. This property
requires that if w and an extension w’ = wv of w
are nonempty substrings of the text x such that
f(w) = f(wv), then the score of w does not exceed
that of w'. Under these conditions, w can be ne-
glected as the surprise it conveys is subsumed by
w'.

The tables below display a collection of mono-
tonicity results established about the models and
z-scores considered. We refer to [9] for the corre-
sponding proofs and discussion. For convenience of
notation, we set p(w) = E(w)/N(w), where N{w)
appears in the score as the expected value of some
function of w. The interpretation of the tables is
straightforward. For example, Property 1.1 states
a simple fact on the monotonicity of E(w) given
the monotonicity of p(w) and N(w). Under some
general conditions on N(w) and p(w) we can prove
the monotonicity of any score functions of the form
described above.

Some of the properties are not straightforward.
For example, Property 1.2 says that these scores
are monotonically decreasing when

YN (w) + N(wv)

f<E" = EW) gy ¥ Nwo)

and monotonically increasing when f > E*. We
can picture the dynamics of the score as follows.
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Initially, we can assume E* > f, in which case
the score is decreasing. As we extend the word,
keeping the count f constant, E* decreases (recall
that E* is always in the interval [E(wv), E(w)]).
At some point, E* = f, in which case the score
stays constant. By extending the word even more,
E* becomes smaller than f, and the score starts to
grow. Some consequences of Property 1.2 are cap-
tured by Properties 1.7 and 1.8. Property 1.2 also
holds by exchanging the condition p(wv) < p(w)
with f(w) > E(w) > E(wv).

Turning now to Table 2, we summarize mono-
tonicity results for the Bernoulli, or i.i.d., model.
In this case, each symbol is generated from the
same probability distribution, and independently
from its context. A comprehensive study of other
models and scores can be found in {9].

As already observed, a tabular representation of
surprising words in a sequence is bound to become
rapidly bulky with increasing sequence length, even
if the number of candidates is linear in that length.
In our approach, the computation, storage and dis-
play of the statistical parameters of interest are all
organized around the structure of a special com-
pact trie represented by a suitably pruned version
of a suffiz tree, the trie of all suffixes of a given
sequence (e.g., [34-36]). By the trie being imple-
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mented in compact form it is meant that all nodes
in it are branching nodes, whence arcs are labeled
by substrings of the input sequence rather than by
individual symbols. In a full-fledged tree, the leaves
are in one-to-one correspondence with the suffixes
of the input. Since every subword of the input is a
prefix of some such suffix(es), then any subword of
the input will be spelled out on a unique path lead-
ing from the root to some leaf and ending at a node
or perhaps in the middle of an arc. For a sequence
of length n, the tree will have a number of leaves
and hence also of internal nodes bounded by n, so
that always less than 2n subwords of the input can
end precisely at a node in any pruned version of the
trie. The property exploited by VERBUMCULUS is
that, within the ample domains of monotonicity of
the scores considered, the set W coincides precisely
with the set of these subwords!®?). In other words,
for a monotone score z

the largest positive values of z and hence
most over-represented words will occur at
the internal nodes of the trie rather than
tn the middle of an arc. Symmetrically,
the most under-represented words occur
only as unit symbol extensions of those
nodes.

Table 2. Monotonicities for Scores Associated with the Number of Occurrences f
under the Bernoulli Model (We set v = E(wv)/E(w).)

Property

(2.1) E(wv) < E(w)

(22)  f(wo) - B(ws) > f(w) - E(w)
flwv) _ f(w)
(2.3) E(wv) > E(;)
o L) -EG) | fw) - Bw)
E(wv) E(w)
oy L) =B | fw) - Bw)
E(wv) E(w)
Qo [LE B, S Bw)
v/ E(wv) vV E(w)
on U = Bw)? | () - Ew)?
E(wv) E(w)
oy L= B flw) - Bw)
VE@v)(1 - pw)(v))  /Ew)(1 - p(w))

(2.9) Var(wv) < Var(w)
.10 E(wv) E(w)
@10 Var(wv) \/Var(w)
oy JE) =B ) - Bw)

v/ Var(wv) Var(w)
P L EL RO LY O

v/ Var(wv) v/ Var(w)

Conditions
none
fw) = f(wv)
flw) = f(wv)
f(w) = f(wv)
fw) = f(wv)
flw) = flwv), f(w) > E(w)y¥
f(w) = f(wv), f(w) > E(w)/~7
f(w) = f(wv), p(w) < 1/2
Pmax < 1/ m
Pmax < \/E"' 1
f(w) = f(wv), Pmax < mm{l/ W, \/5 - 1}
f(w) = f(wv), pmax < min{l/ ¥4am,v2 — 1}, and
Var(w Var(wv
fw) > E 7\/ (w) + /Var(wv)

\/Var(w) + \/Var(wv)
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Combined with the advantages of trie visual-
ization over table listing, this remarkable property
opens the way to compactly displaying all of the
unusual subwords of a sequence at once. More-
over, the computations involved can be speeded up
significantly. The tree itself is built in time linear
in the input by a number of well-known methods.
Once the tree is built and perhaps pruned to some
preliminary maximum length, subword occurrences
and other similar counts can be similarly obtained
in linear time. For instance, the number of leaves
in the subtree rooted at some node represents the
number of observed occurrences of the word spelled
out on a path from the root to that node or any-
where on the immediately preceding arc. VERBUM-
CULUS annotates the tree with one or more of the
above scores, depending on the type of analysis one
wants to perform. The typical process of annota-
tion also takes linear time, which in cases like z, is
achieved through resort to rather complex algorith-
mics, due to the structure of Var. For scores that
require multiple tries to be built and superimposed
to one another, like in the computation of c(w) for
z7, 23 and zg, the linear time algorithm by Hui®%7!
is used.

4 Software Description and Usage

VERBUMCULUS is composed by three modules:
the tree builder VERBUM, the graph drawing pro-
gram DoT, and the graphic interface TREEVIZ.
The entire package consists of about ten thousand
lines of code.

VERBUM is written in C++ using the Standard
Template Library which should allow great porta-
bility under different platforms. The code has been
compiled, without any change, under Solaris and
Linux. VERBUM reads the input sequence(s) and
the various parameters supplied by the user, and
creates a (possibly pruned) suffix trie annotated
with the score selected at the beginning by the user.
The output is a text file representing the tree in
the dot format (see below). VERBUM is particu-
larly fast: although the time taken for the analysis
depends heavily on the particular score and other
input parameters, it is typically in the order of few
seconds for the most common choices.

Dort is the graph drawing program by AT&T
Labs, part of the GRAPHVIZ package!®®!. It reads
graphs in the dot representation and outputs draw-
ings in a dozen of formats, among which Postscript
and GIF. The source code and binary executables
for common platforms are available from their site,

and licensing is almost open source.

TREEV1Z is the graphical user interface that
runs on the client side, and more specifically on the
browser of the user. It is entirely written in Java,
and uses the GRAPPA libraries by AT&T Labs.

A couple of thousand lines of Perl glue every-
thing together. Perl scripts generate the HTML
for the input forms and control the execution of
the various stages, handling exceptions and errors.

The user of VERBUMCULUS is presented with
the form shown in Fig.2. He has the option of sub-
mitting the input either as a raw sequence of letters
or in FASTA format. The input can be “pasted” into
the window or uploaded to the server. For analyz-
ing long sequences, we strongly advise to download
the executable VERBUM and DOT and work locally,
in order to avoid the overhead of network communi-
cations and the relative inefficiencies of Perl scripts
and Java.

Fis Edt Vew On Comrmueosir tmp

bttt s o s, ¥ et

Rld I

Farmat of U g
AFASTA
€ Uplaaed 0 bla.
[ =1 .
|
Ingem AT wd parms & souancs i
3 1aaple toquence 2 !
—— ! |
T e | |
! i
I i
I |
b T |
|
- ;
|
B M i o st maberngs - :
Parsmators bﬁ_meq“- ]
]
[y —rRp— {
» Meppeeen [0 5] i :
pr pa— 1
= (= :
e | e

Fig.2. VERBUMCULUS' web interface.

Various parameters can be adjusted. The most
important choice is the type of score to be used
in tree annotation. Additionally, a wide range of
different filters is available to limit the size of the
tree. The user can set the minimum and maximum
length of the nucleotide words, a lower bound on
the absolute value of the score, a lower bound on
the value of the expectation (to avoid “rare” words)
and a forbidden substring (to avoid, for example,
words contains TATA).

For better performance, we have limited the vi-
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sualization of TREEVIZ to 100 nodes: if the tree
is bigger, VERBUMCULUS will send a Postscript file
with the drawing of the tree. If the user wants to
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take advantage of the interactive facilities of TREE-
Viz, he will have to increase the effectiveness of the
filters in order to produce a smaller tree.

— o .
CTGAC . - P~ s ui
7 CTGA - CTGAT . ;(C:;i((:: :';—"—""
/ e ATAT S Zho Tcatc T
Al — m =cami— . - GAACG i wmoe s
\ - . GACGA I o—ee —
‘ i s  GCGAC — = ==
S . GCGGT . __ f
. : : __ GTCGG B AA(
e - VU T AACG R AA(
e % T T AcGA : ACC
T— R — — L \ ____________________ ACGCA ]

Fig.3. Example outputs of TREEVIZ.

The magnitude of a score value is transduced
through font size, in the sense that for every word
w, the higher the absolute value of the score of w,
the bigger the font used to represent w. Words
with a negative score are, in addition, printed in
red italics (see Fig.3, on the left).

Once TREEVIZ has drawn the tree, the user can
navigate it looking for conspicuous nucleotide mo-
tifs. At any time, clicking on an nucleotide word
will visualize information about its number of oc-
currences, the expected value of this number, and
the corresponding value of the z-score. Along with
these values, a graphical representation of the po-
sitions of the occurrences of the nucleotide word
in the original sequence is produced and displayed
{see Fig.3, on the right).

Since the tree can be fairly big, TREEVIZ offers
the option to get an overall picture of the tree by
clicking on the “bird’s eye” button, which produces
the small window inset of Fig.3. Finally, TREEV1z
can generate a drawing of the tree in Postscript or
GIF that can be saved on the machine of the user
for further and more accurate scrutiny.

5 Simulations and Dithering

Before showing the results of using VERBUMCU-
LUS on real biological data, we report on some tests
performed on artificial sequences. In our present
context, this is meant primarily to show the effec-
tiveness of the tool in the pattern discovery process.
In practice, this or a similar procedure may be fol-

lowed fruitfully as a preliminary treatment, for the
purpose of fine tuning the sensitivity of the tool
and adapt it to the particular sequence or family
under study.

An example dithering procedure could be as fol-
lows. First, we generate and process several pseudo-
random strings assuming a symmetric Bernoulli
model. For every random sequence produced, we
generate and annotate the corresponding tree. As
expected, we find that unless the random sequence
is very short the tree does not display any surpris-
ing word.

Next, we inject into the random sequences a
controlled number of non-overlapping repetitions
of words. In our example, we use the two words
GATTA and AAAAA, in separate experiments. Since
the process of overwriting the original random let-
ters with occurrences of a given word changes the
probability distribution, we have to make some ad-
justments in the probability distribution. Let p,
denote the probability of symbol a € ¥ in the orig-
inal sequence and w some word of length |w| = m,
with a proportion of a’s given by g,. Forcing h
substrings in our sequence to coincide with w will
change the probability accounting for the “free” oc-
currences of a outside the h copies of w into

_ Pan — hmgq,
7 n—hm

As Fig.4(a) displays, five occurrences of GATTA

in a text of size 1,000 can be enough, with our set-

tings, in order for the program to output that word
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as the highest scoring pattern. If the size of the
text is increased to 10,000, then typically twenty
occurrences of the word turn out to be enough to
produce the same visual effect (see Fig.4(b)).

For a broader analysis, we run 1,000 trials for
all choices of A = 0,1,...,15, n = 1,000 counting
the number of times that GATTA is the highest scor-
ing pattern in the entire tree. Fig.5(a) shows the
relative proficiency of the scores z3, z3 and =, in sep-
arating the “signal” GATTA, from “noise”. Specifi-
cally, the plots show the fraction of the 1,000 trials
in which the word GATTA was the highest scoring
word in the tree, for increasing number h of injec-
tions. From the graph we can observe that scores

- AAACT
AGTTT
CGGA

- CGAGT

. CCGGA

GGATT
GTGGG
GAGT

GATTA

TACCT
(a)

CGGAG

=y and z,; have identical performance (as one would
expect, since GATTA has no periods) and they seem
to be better than z,. In Fig.5(b) we instead plotted
three pairs of curves respectively for scores z,, 2y, 24
{1t so happens that in this particular case the pairs
for z3 and z; are on top of each other} with increas-
ing number h of injections. For each pair, the up-
per curve represents the average score for the word
that achieves the largest score in the tree, while
the lower curve represents the average score for the
word GATTA. Some observations are in order. First,
the score of GATTA grows linearly with h. Second,
the average of the highest z,-score is bigger than
zy and z;. Third. at some point A* the lower curve

AATGG

/ ATTA — ATTAA
[

l/

&
e — GATTA

\
A
\

\TGA'IT

CcTTT

/ GTCAT
/

(b)

Fig.4. (a) Trie from a random string of size 1,000 with 5 forced occurrences of the word GATTA. (b) Trie from another

random string of size 10,000 with 20 forced occurrences of GATTA. Both tries are annotated using z3, with threshold 3.0.

1.0 - - - 25 . : .
= ‘GATTA.z22.sym’ = ‘GATTA.z2.max’
E: b=l ‘GATTA.z3.sym’ 2 ‘GATTA.z2.5c0’
< g 0.8} ‘GA’I"I‘A‘ztl,sym’ = 20} ‘GATTA.z3.max’
& 2 ‘GATTA.z3.sco’ .
5 ¥ S ‘GATTA.z4.max’ e
£ § 06 . - - ‘GATTA.z4.5¢c0’ -

B H ] -
g - ' 3 - _:"'/
b= g g e
o) 04} | S 10 S
== ":.." % ./,{"'
2 _9_1} @ 7
g; 0.2} & 5
3 z
[« .

0 Wl . . 0 — . N
0 4 8 12 16 0 4 8 12 16 20

Number of injections (h)

(a)

Number of injections (h)

(b)

Fig.5. (a) The fraction of 1,000 trials in which the word GATTA is the highest scoring word in the tree for z-scores z3, 23, 24,

versus number of injections A. {b} Curve pairs for scores 23, 23, z4 versus h. The upper curve in each pair represents the

average score for the word that achieves the maximum score, the lower curve represents the average score of the word GATTA.

The curves for z3 and z3 are hardly distinguishable due to substantial overlap.
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touches the upper curve and the pattern is “discov-
ered”. Note that the lower curve touches the upper
curve sooner for z3 and z4 than z;.

If the pattern is periodic, like e.g., AAAAA, then
we need fewer copies, i.e., a smaller value of A in
order to obtain a comparable visual impact. Fig.6
displays the results using four forced occurrences in
a sequence of size 1,000 and ten in a sequence of size
10,000. We run the same simulation on 1,000 trials
as before, this time injecting A = 0,1,..., 15 occur-
rences of AAAAA (see Fig.7(a)). We were expecting
the score z4 to have an advantage over the other
because of the high periodicity of the word. Sur-
prisingly, the figure shows that the score that de-
tects sooner the presence of AAAAA is z3. In Fig.7(b)
we collected as before the average scores for the
words achieving the largest score in the tree (upper

TACGG

-

TGGGA

e

r
S

)

I/ AAAA ~
e —

|-
< GAACT

L

-

i AAAAA

T AAAAG

|\ GGGGG

NG
\ GCGCG
"
GCTGA
(a)
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curve), and the average score for the word AAAAA
{lower curve). This time, the tree families of curves
corresponding to zg,z3 and z4 are clearly distin-
guishable. The function that returns the biggest
scores is again 29, followed by z3 and then z;. For
all three, the score of AAAAA grows linearly with A.
Note, however that zo and z3 have different slopes
than z4.

6 Tests and Experiments

We report here some results on experiments
running VERBUMCULUS on the upstream regions of
some genes of the yeast. The upstream region of
a gene is the untraslated region that precedes the
start codon ATG of size 500-1,000 base pairs, when
reading the sequence in the standard orientation 5’

 AAAAA
AAAA

Y T AAAAC
ATCGG

ATTTA

TTeTCC

o

\ TGATT

.
CTTGA
(b)

Fig.6. (a) Trie from a random string of size 1,000 with 4 forced occurrences of the word AAAAA. (b) Trie from another
random string of size 10,000 with 10 forced occurrences of AAAAA. Both trees are annotated using 23, with threshold 3.0.
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Fig.7. (a) Fraction of times versus h that AAAAA is the highest scoring word in the tree, for z-scores, z2, 23, z4. (b) Curve

pairs for the word AAAAA and the highest scoring words under scores z3, 23, z4.
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to 3'. It is usually known to contain several control
signals that regulates the production of the mRNA,
called promoters or regulatory sites. Finding such
motifs is usually the first step in understanding how
genes interact with the environment and with each
other.

The first dataset we analyze is related to ten
families of genes isolated by van Helden et al.(ll].
Each family contains a set of co-regulated genes,
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that is, genes that have similar expression under
the same external conditions. The hypothesis is
that in each family the upstream region will contain
some common motif. Moreover, one can also expect
that such signals are going to be over-represented
across the family. In this first experiment we use
the same parameters and score type on all the mul-

tisequences to test the general performance of our
tool.

Table 3. van Helden Dataset of Co-Regulated Genes

Family &

Motif van Helden et al. VERBUMCULUS
NIT 7 GATAAG CTGATAAGA
€CGCeC GATAA —-
CGGCAC / acacee
ACATCT /,
/ /' AAGA - —-—- — AAGAA —— ~ AAGAAA
i
/7 ATAAGA
o
/< CTTATC
‘ \f- CCGCGC
L
‘t\\ CCCGCG
\‘7 ceeete
\\ CGCGCG
NIT XS L6 TTTT AAAA TATA
MET 11 TCACGTG GTCACGTG
AAAACTGTGG AACTGTGGC araeTea
ATATAT /o me . e
TATATA /.-
| we D
FERCTETS
N\t S —
s
N
\ @
K X7.L7 TTTT ARRWTALA
PHO 5  GCACGIGGG CGCACGTGGG
GCACGTTTT CACGTTT TTCTT
CTGCAC
TGCCAA TGCAC
/ ACGTG
AAGAA CGTG — CGTGC

CGT — CGTCG

GCA<GCAC

GCAGC

PMO..X3.L5.TTT.AAA

(to be continued)
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Table 3. van Helden Dataset of Co-Regulated Genes (continued)

PDR 7 TCCGCGGA TCCG{CIT}GGAA
GCGCGA GGGCCCaET
AGGCACC
CCGCAGAG
[
| CCGTGGA CCGTGGAA
CGTGGAAA
TCCGTGGA
GAL 6  CGGN WN°CCG ? CTAG
CTTC - CTTCC
ATC
GAAG GAAGG
GAT - . GATC
Y. GACGA
v T
’ A TAG
TCTTC
GAL X4 L5 23 AAA TTT
Family & Motif van Helden et al. VERBUMCULUS
GCN 38 RRTGACTCTTT  A{GIA}TGACTC{A|T} P
CAGCGG /[ om
AACCGGC / ereTeT
CATCGAA _crra
AGAGAG
T - GACTCA
T ATATAT
: =~ AA AAGAA
- _Te - Ter — TeTT
ST =
\‘\ TA - - rag
M rerter S TATATA
T raa
GCNLXE L6 TTT AAA
INO 10 CATGTGAAWT CAACAA{CIG} CoACTG
CATGTGAA " CCTTTT
TCTTCA " CAACAA
GTTCAA | . CACATG
GTCGCA i errrT
i GAAAA
” GTTGT
_ GCGGCA
T ACAAGA
h T AACAA
©. AGAACA
\ - T6TTG
s TGTGCC

CoTTTT L TTTIT O TTITUT
~TIeT - TTGTTG

(to be continued)
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Table 3. van Helden Dataset of Co-Regulated Genes (continued)

HAP 8 ccaa{Tic} AGAGAGA ACAAG
ATGGGGC e
oA - A = MO T AAGAA
i AAGG
i AGAAC
[//- CCTTG AG
i/ Terr AT
} TGTCT ¢ Trer Trere
ety il i I e
K\ " TA — TATAT TTGC —-— TTGCA
'\‘\\ “acee . TAG
':-\\_"‘* 6T __ S raar
i coan T GTTA
"\ GGGG -- GGGGA
iV GGGCC
Geeee . -
YAP 16 TTACTAA CGTTCCGT
c
CATTAC - COAAGA
CTGAAG L cric
[ AAA
I .. AAGAA
. AGGCGG
3 TA
1 TGCCTT
7 TTC —— TICT — TICTIT
% TTT —— TTTC - TI7CTT
\\ =~ TCTTC ~—— TCTTICT
|~ GAAGA — GAAGAA
GGAACG
TUP 25 kanwiaTsye®w tr{CiT}{clGIng*{TIC}{alC}
AGGCACGGG
AAA{AIG}AA
AAGGAGGA
ACAAACA
CTCCGC
{TIc}cTGCA AA e BAG
CGTCGC ATC
AT TAG raGr

cTic
TUP.X5.L4.23 AAATTY

The second dataset comes from the work on the
sporulation of the budding yeast conducted by Chu
et all”l. Seven families of co-fegulated genes have
been characterized using DNA micro-array technol-
ogy. Again, one of the purposes of the investigation
is to find unusual words in the upstream regions of
these genes. Here we concentrate on a couple of
families and we show the sensitivity of our tool to
different choices of parameters and score functions.
Both experiments also expose the limitations of our
approach.

6.1 Regulatory Sites in Yeast

The metabolism of the yeast has been widely
studied and provides several examples of known
regulatory sites. In many cases, the transcriptional
factor involved in the common response is known,
as well as its binding site. van Helden et al. se-
lected ten families of genes based on prior biologi-
cal knowledge on their activity. For each gene in a
family its 800bps upstream sequence was extracted.
The set of all upstream sequences belonging to the
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same family constitutes the multisequence on which
we performed the analysis using VERBUMCULUS.

The parameters of the analysis are as follows.
We use scores based on the number of occurrences
(z3 and z4), a threshold between 3 and 10 depend-
ing of the maximum size of pattern, the latter be-
ing between 5 and 8 symbols. We adjusted the
threshold to obtain a tree of about twenty nodes.
We also filtered out words containing one or more
of the subwords TATA, AAAA and TTTT, when these
words were predominant.

Table 3 summarizes the results of our tests. For
each multisequence we report the identifier, the
number k of sequences, the motif previously known
and characterized by experiments, the motifs found
by van Helden et al., and the trees produced with
VERBUMCULUS. For the sake of clarity, we manu-
ally circled the words that match the biologically
significant motif.

VERBUMCULUS is capable of discovering the
biologically significant patterns in families NIT,
MET, PHO, PDR, GAL, GCN and TUP, although
sometimes partially. Moreover, these motifs can be
found among the highest scoring words. Also note
that other patterns which are also scoring high are
usually in a suffix-prefix relation with the highest,
suggesting that their occurrences are correlated.

However, in the multisequences INO, HAP and
YAP VERBUMCULUS assigns low scores to the mo-
tifs and therefore they do not show up in the final
tree. In two of these three cases, though, the tool
by van Helden et al. is also not capable of detecting
these patterns as shown in the Table. Addition-
ally, the tool by van Helden et al. does not give
any satisfactory answer for the GAL family, where
instead VERBUMCULUS catches CGGCG and GCCGC
which correspond the beginning and the end of the
motif. Finally, note that, in general, VERBUM-
CULUS has great difficulty to handle motifs con-
tains multi-valued symbols, for example, the ones
for GAL and TUP famniilies.

6.2 Sporulation of the Yeast

We report here some results from testing VER-
BUMCULUS on the dataset involved in the work
on sporulation conducted at Stanford by Chu et
all”l. The authors used DNA micro-array technol-
ogy to expose the temporal patterns of gene ex-
pression of Saccharomyces Cerevisiae during meio-
sis and spore formation. This was done along the
lines of a rather standard procedure, as follows.
First, changes in the concentration of mRNA tran-
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script from known genes of the budding yeast were
measured during seven consecutive intervals. Next,
the average expression profiles were used to clas-
sify the genes. Fig.8 reproduces an adaptation
of the image at the outset, available in full view
at http://cmgm.stanford.edu/pbrown/sporulation/
figures/figbss.html. As usual, higher and higher
degrees of expression translate into darker and
darker shades of red, while lower concentra-
tions yield progressively darker shades of green.
Seven clusters were produced in this particu-
lar experiment, labeled as Metabolic, Early (1),
Early(II), EarlyMiddle, Middle, MidLate, and
Late.
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Fig.8. Genes of the Early(I) cluster induced or repressed
during sporulation. Adaptated, by kind permission, from
a figure at http://cmgm.stanford.edu/pbrown/sporul-

ation/figures/fighss.html

The two bands of columns with blue bars in
Fig.8 identify genes of which the promoters con-
tain a putative URS1 or MSE regulatory sequence,
respectively. The degree to which the sequence
matches the consensus for each of these regula-
tory elements is indicated by the brightness of the
bar: the best matches are represented by the bright
blue bars that appear to be concentrated towards
the left of each band, the less stringent matches
cause the darker blue bars more visible towards the
right. The most stringent match for the URS1 site
is 5’-TCGGCGGCTDW-3’, and the least stringent is 5’-
GGCGGC-3'. The most stringent match for the MSE
site is 5'-HDVKNCACAAAAD-3’, and the least stringent
1s 5’-DNCRCAAAWD-3’.

Fig.5 of [7] shows that the upstream sequences
relative to the genes in the clusters Metabolic,
Early(I), and Early(II) contain several occur-
rences of the regulatory element URS1, while the
ones in the clusters EarlyMiddle and Middle con-
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tain many MSE sites. We report here results re-
garding the analysis of the cluster Early(I) with
the objective to expose the URSI site. We also
report a less satisfactory analysis of the cluster
Middle.

6.3 The Early(I.) Cluster

The cluster Early(I) contains 36 genes, namely
RTS2, MEK1, NDJ1, MNE1, EHD2, DBP1, IPL1,
VPS30, UGA3, PCH2, SEO1, CIT2, SCC2, KIP3,

RAD51, IME4, ZIP1, DMC1, RADS54, HFMI,
LEU1, PAD1, ATP10, CIK1, FKHI, HOPI,
SPS19, KIN2, ECMI17, RPM2, CCPl, BATI,
IME2, SPO13, RED1, SMT4. We extracted the
upstream region of 600 base pairs (allowing over-
laps with other ORFs) using the tool developed by
VanHelden et al.l'1),

Table 4 shows the trees produced by VERBUM-
CULUS on the family of 36 upstream regions and
annotated with the scores za, 23, 24, 28 and zg,
maximum length 6 bps. Only patterns with a score

Table 4. Early(I) Cluster as Seen Through VERBUMCULUS, T is the Threshold

Score T VERBUMCULUS Score T VERBUMCULUS
29 4.0 GCGCGE =y 8.0
GCGGCT
GCGGCT
GCCGGC .
GAAA GAAAA GAAAAA
. GCCGCC
GGCGG G G C G G C GGCGGC
!' GGGCGG | rree wrrrer
CGGCTA P b A ot
CGGCGG —
CTTTTC s AMAG ARAAAL
CCGCCG AAA
CCGGCA
¢ o PARA L AAARA  AAAAAA
ACCGGC
AGCCGC
Earlyl.600bps.z2.L.6.X4 Earlyl 600bps.z3.L6.X8
24 8.0 GCGGCT = 90 GCGGCT
GCCGGC
GAAA GAARA  GAAAAA GCCGTG
 GGCGGC GCCGCC
J TJITTC TITTCT G G C G G C
aas ™ GGGCGG
| g TAGCCG
o , CGGCTA
CGGCGG
E CTTC A asaac CGCCGA
AARAAAG
YV CCGCCaG
AAAA - AAAAA AR CCGGCG
AAAA CCGGCA
AAGAAA ACCGGC
AGGACC
AGCCGC

Earlyl.600bps.z4.L6.X8

Earlyl 600bps.z8.L6.X8

29 10.0 o

- GCGGCT

i GCCGCC
=es  GGCGGC
i TAGCCG
| CGaCT CGGCTA
CGGCGG

! c:v‘:;c

cesee CCGCCG

CCGGC ccaaca

Ry
2GaACC
AGTATA

AGCCGC
Earlyl.600bps.29.LE.X10
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higher than 4.0 (in absolute value) are shown. For
comparison purposes, Table 5 lists a few most no-
table words along with their statistics. In [7] it is
reported that 43% of the upstream regions of the
genes in the cluster Early(I) have a core URS1
motif, while we found only 33%. However, the ex-
pected number of GGCGGC is so small that the re-
ported occurrences of this word have to be consid-
ered surprising by any measure, whether in terms
of total number of occurrences or number of se-
quences containing it.

Table 5. Explicit Statistics for Some Most Devious
Words (in term of number of occurrences and/or num-
ber of sequences containing at least one occurrence) in
the 36 Sequences that Form Cluster Early(I) (The indi-
vidual symbol probabilities are .31 for A and T and .18 for
G and C.)

OCCUTTETICES sequences

w Ew) flw) Ee(w)  cw)
AKARAA 2644 109 25.74 22
TTITIT  29.38 110 27.63 25
GGCGCC 1.15 25 1.51 12
TAGCCG 2.43 9 2.11 9

Observe that the words in the z;-tree of Table
6 are not independent. Instead, prefixes of some
words are suffixes of others, which suggests that
their occurrences might be correlated. We used se-
quence alignment (e.g., [40]) to “assemble” short
sequences in longer sequences (see Tables 6-8). As
seen in this example, the alignment step can be
used to partially overcome the limitation of VER-
BUMCULUS to discover exact motifs.

Table 6. Alignment of Four Highly Overlapping Words
Picked from the z2-Tree of Table 4

c G G c G G -
g G G c G G -
- G ¢ ¢ e G -
- G G c G G c
Cc G I c G G c

Table 7. Alignment of Four Other Highly Overlapping
Words Picked from the Tree of zz-Tree of Table 4

¢ g & ¢ & © - = -

G c

A
A

G

Q) o®
ajo oo
aaaQ
Qla o a
Qo a1
L] B B IR

Table 8. Alignment of Five Other Highly Overlapping
Words Picked from the z3-Tree of Table 4

A 6 ¢ ¢ & ¢ - - -
- 6 ¢ ¢ 6 ¢ - @ -
- ¢ ¢ ¢ ¢ ¢ ¢ - -
- - ¢ ¢ ¢ ¢ g @ -
- - ¢ ¢ ¢ g € - A

& ¢ € & ¢ ¢ G A
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Table 6 shows an alignment produced by
using four such overlapping words from the
tree. The consensus of the alignment TCGGCGGCA
exactly matches two motifs in the Transcrip-
tion Element Search System (TESS/ TRANS-
FAC) databasel*!*3l| namely Y$HSP70.02 and
Y$SSA1.01.  This pattern contains the core
GGCGGC, mentioned repeatedly in [7].

Next, we used four more motifs from the
tree to build another alignment (see Table 7).
The consensus TGCGCGGCT matches one motif in
TESS, Y$G3PDH_01, that is already known in the
literature[*3],

Finally, we chose five motifs from the tree and
build the multiple alignment of Table 8. The
consensus TAGCCGCGGA exactly matches five mo-
tifs in TESS, namely YSCAR1.02, YSCAR2.01,
Y$MES1.01, Y$SPO13.01, Y$STOP1.01. For exam-
ple, Y$SPO13.01 is known to be a key regulatory
of nitrogen repression and meiotic development(*4l.
However, the authors of {7] did not report the find-
ing of this regulatory element.

In conclusion, VERBUMCULUS not only suc-
ceeded in identifying the regulatory elements we
were looking for, but also found some other inter-
esting new patterns in the cluster that were possi-
bly overlooked. At the same time, in the zo-tree of
Table 4 there were also patterns such as CTTTTC,
AAAAAA, and ACCGGC. The former two have been
detected as elements in scaffold/matrix attach-
ment regions (MARs) of eukaryotic genomes!43:46],
MARs are basic components for high leve]l genome
compaction and organization, therefore are highly
frequent in genomic sequences!4”*8!, In addition,
biological experiments have shown that they an-
chor genomic sequences to proteinaceous nuclear
matrix and affect gene expression(*$~5%, For the
latter pattern, we have not found any biological
significance yet.

We went on producing a few more suffix trees
annotated with other scores. Table 4 shows the
tree decorated with scores z3, z4, 2z and z9. Some
remarks are in order. The z3 and z, trees are quite
similar except for the following: the tree for z3 en-
hances GCCGCC, TTTTT while the tree for z; does not.
Vice versa, the tree for z4 emphasizes TA as being
under-represented, a phenomenon that is missed in
the tree annotated with z3.

The word GGCGGC appears again in both z3- and
z4-trees. However, in the case of z3 the pattern
GGCGGC is no more the highest scoring one. GGCGGC
ranks the fifth after AAAAAA, AAAAA, AAAA, AAA. In
fact, as one would expect, the approximation of
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the variance used in z3 does affect in particular the
scores of highly periodic words.

It is somewhat surprising that the families of
words AT and T+ appear as strongly marked in the
tree under z;. The pervasive over-representation
of AAA, TTT, TAT, ATA have bheen reported by
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Nussinov{®!| Brendel et al.[*!! and Leung et al.139].
They correspond to the highly occurring ‘A box’
(AATAAAYAAA) and ‘T box’ (TTWTWTTWTT) binding
sites of MARs across different species!43:46:48,50,52]
In any case, it is comforting to see that the word
GGCGGC is still the highest scoring motif in the tree.

Table 9. Early(I) Cluster, Score 22, Threshold 4.0, M is the Order of the Markov Chain

M VERBUMCULUS M VERBUMCULUS
0 - — GCGCGC
C GCGGCT
/ GCGGCT -
-/ GCCGGC . GCCGGC
GCCGCC / GCCGCC
[ = GGCGGC | w= = GGCGGC
[; . GGGCGG D o
/" CGGCTA .
§ CGGCGG \ CGGCTA
| . CGGCGG
\, - Ccaeee o
\\’ -+ CCOGCA . CCGCCG
. AMAAAA .
Vo ccsse ~ ACCGGC
“ AGCCGC - AGCCGC
2 GCGGCT | °
//‘
 _ GCCGGC

/. Gceaee
/- GGCGGC

TAGCCG
—~ CGGCTA

~— CCGCCG
AGCCGC

Eartyl.X4.22.M2

o AGGACC

Earlyl.X4.22.M3

4 GTGAGG

GGCGG
GGGGGT
CCCGCA

Earlyl.X4.22.M4
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The zz- and z4-trees pertain both to scores de-
fined in terms of sequence families. It is inter-
esting to compare the tree for the score zy with
the tree for z5. The tree for zg exposes GCCGTG,
TAGCCG, CGCCGA, CCGGCG and AGGACC while the tree
annotated with zy does not. Vice versa, the tree
for z; shows GCGCGC, GGCGG, CTTTTC and AAAAAA.
The fact that these trees are very similar seems to
suggest that, under our conditions, words that oc-
cur at least once in unexpectedly many sequences
in a family might be spotted just by looking for
words with a high occurrence score in the fam-
ily as a whole. The function z9 (defined as in
WoRrDUP) happens to assign a high score the two
motifs GGCGGC and GCGGCT. Surprisingly, it exposes
at least two words present in the tree for the score
2z but not appearing in the tree for zz, namely,
GGCGG and CTTTTC.

We also analyzed the dataset replacing the un-
derlying model with a Markov chain. We produced
five trees assuming models of order Al = 0,...,4.
Order M = 0 corresponds to the ii.d. model,
whereas higher orders A/ > 0 assumes that the
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source is generating symbols with a probability
distribution which depends on the M preceding
symbols. Table 9 shows the trees computed by
VERBUMCULUS using a common score and param-
eters. To clarify the differences we produced an-
other figure where we removed the tree, we con-
nected common words with a red line, and we cir-
cled in green the singletons. We observe that for
M = 0,1,2 there is some general agreement: in
particular the word GGCGGC consistently achieves
the highest score. However, for the order 3 we are
left only with one word (AGGACC) that does not ap-
pear anywhere else. If we had lowered the thresh-
old to 3, GGCGGC would have appeared among other
fifteen words. The fourth order tree contains the
prefix GGCGG, although other three unknown words
scores a little higher. This phenomenon can be ex-
pected, since we train our model on the sequences
themselves. As the size of the model grows its capa-
bility of prediction grows as well. Therefore there
are less and less surprising words. In order to get
roughly the same amount of nodes in the trees, we
should have lowered the threshold as M increases.

MMO MM 1 MM2 MM3 MM4
oescae > L GCGGCT
GCGGCT— ] coo0ee  T—GCGGCT “GTGAGG
GCCGGC— | — c GCCGGC e '
———— GCCGCC
aeeaee e GCCGCC GGCGE
GGCGGC —— GGCGGC——GGCGGC | <agaacc>
i — — JAGCCG > o T
cascae — o ——CGGCTA (GGGGGT
) ~—CGGCGG —{—__CGGCGG
s L accsee——— AGCCGC —
AGCCGE I | . AGCCGC

Fig.9. The collection of words from Table 9. Identical words are connected with lines, while singleton words are circled.

6.4 The Middle Cluster

We describe tests conducted with VERBUMCU-
LUS on other cluster in the same dataset from [7].
This will show that when the core of consensus
is not a fixed pattern, but admits instead multi-
valued positions, then it becomes more difficult to
find by our method.

The cluster Middle is composed by 63 genes,
namely: STES, PBP2, MRPL37, APC11, YSW1,
UBC1, EKI1, CDC10, SPS2, SPS1, SPR6, GPIS,
CDC26, CDH1, ISC10, CLB6, SUT1, HXTI0,
PES4, SPR28, CDC20, GNP1, SPR3, YCKS3,

FET5, CDA2, CDA1l, SPS18, CDC5, REV7,
PIG1, NMT1, MIP6, SPO20, CNM67, YCK2,
SUR4, TEP1, RNH70, BNR1, CDC3, KAR1,
CWP1, HYM1, ORCl1, NDT80, SPO12, FUS2,
ORC3, APC9, CDC16, SSP1, PCT1, STO1, BBP1,
MUD13, AUT1, HXT14, SPS4, UBC11, SPRI1,
HST1, ECM23, SSP2.

The family of upstream sequences should dis-
play frequent occurrences of the MSE sites rang-
ing from HDVKNCACAAAAD (most stringent, appear-
ing in 7 sequences) to DNCRCAAAWD (least stringent,
appearing in 31 sequences). The complication for
VERBUMCULUS is that these patterns are not fixed
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strings but rather regular expression, however triv-
ial: for example, N is a wildcard denoting any letter
in the set A, C, G, T, whereas R can be substi-
tuted only with a purine (A or G), Y with a pyrimi-
dine (C or T), etc.

We would like to isolate the core CAAA or, even
better, CACAAA from the upstream regions relative
to the genes in the cluster Middle. Six sequences
share another prominent motif, namely CWBYSCTTT.
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size to almost 100 nodes. The same happens when
we look for CAAA (see Table 11-right). However, at
least CTTT pops up now among the highest scoring
motifs. Table 10 shows the statistics of these and
other notable words.

Table 10. Statistics for Some Notable Words of the
Cluster Middle (63 Sequences)

occurrences sequences
Unfortunately, it seems difficult to catch CACAAA c:} n 25{)(‘_‘(_2 g(;‘s’)) :2 (;‘_’() Cé;”)
in Middle. The z;-tree in Table 11 shows the 15 CT'ArT 197.31 346 60.82 62
words with highest z5 score: CACAAA does not show TTTT 350.02 884 62.65 63
up among them. We have to lower the threshold CACAAA 14.11 10 16.09 37
on that score to 5.0 before we can see CACAAA, but TTTTTT 19.82 ¥ 30.42 16
this has the simultancous effect of raising the tree
Table 11. Middle Cluster, T is the Threshold
Score T VERBUMCULUS Score T VERBUMCULUS
29 7.0 z 3.0
’ AAAAAA : AAGA
CGCCGC AAAA
CTTTTT AAAG
CAGGCG AGAA
cTCTrrT CGCC
GTGCGG CTTT
GCGCCA
GCCACA GAAG
GCCAGC GAAA
TITGTG 177G GCCA TTTC
it T | T | ] TTT TTTG
e T TTTT
Mid.600bps.z2. L6 X7 Mid.600bps.z2.L4.X3
z4 10.0 — z8 6.0 AGGCGG
- e CAGGCG
e CCGCAT
o o GTGCGG
- GCGACG
B GCGCCA
o ‘ TGTGTC
MldSOObDSz;TLYEXIO c . TACCCG
R Mid.600bps.z8.L6.X6
29 120 Serer
CAGGCG
CACAAA
CCGCAT
CCACAA
GACACA
GTGCGG
GCGACG
GCGCCA
GCCACA
GGAAAG
TGTGTC
TACTGG
TACCCG
TCTCTT
1CCTTC
ﬂTGTG

GTGT
Mid.600bps. 29 L6 X12




40

We used other scores to see if we could get
CACAAA somewhere. Table 11 shows the z4-tree
for the cluster Middle that suffers again from the
presence of the family of words A* and T*, but
no CACAAA. Tt also shows the zg-tree, but again
no CACAAA. Finally, a surprise. The zg-tree shows
CACAAA in the high scoring patterns.

7 Conclusion

This paper describes a genome-wise searching
system for over- or under-represented nucleotide
motifs, called VERBUMCULUS. The main advan-
tages brought about by this tool are speed, low
memory requirements and visualization capabili-
ties. This rests on the core structure of the al-
gorithm, which takes advantage of strong proper-
ties at the intersection of statistics, pattern match-
ing and combinatorics on words. As a result, the
facility at the outset can detect over- or under-
represented patterns in linear time and space for
most of the scores in use. An array of experimental
tests, ranging from simulations on synthetic data
to the discovery of regulatory elements on the up-
stream regions of a set of genes of the yeast, was
used to demonstrate the strengths as well as some
limitations of the tool.
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