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A b s t r a c t  Measures relating word frequencies and expectations have been constantly of interest in Bioinfor- 
matics studies. With  sequence data  becoming massively available, exhaustive enumeration of such measures have 
become conceivable, and yet pose significant computat ional  burden even when limited to words of bounded max- 
imum length. In additiou, the display of the huge tables possibly resulting from these counts poses practical 
problems of visualization and inference. 

VERBUMCULUS is a suite of software tools for the efficient and fast detection of over- or under-represented 
words in nucleotide sequences. The inner core of VERBUMCUL[,S rests on subtly interwoven properties of statistics, 
pat tern matching and combinatorics on words, that  enable one to limit drastically and a priori the set of over- 
or under-represented candidate words of all lengths ill a given sequence, thereby rendering it more feasible both 
to detect and visualize such words in a fast and practically useful way. This paper is devoted to the description 
of the facility at the outset and to report experimental results, ranging from simulations on synthetic data to tim 
discovery of regulatory elements on the upstream regions of a set. of genes of the yeast. 

The software VERBUMCULUS is accessible at h t t p  ://www. cs .  ucr. edu/" s t e lo /Verbumculus /  or h t t p  ://wwwdbl. 
de i .  tmipd, i t /Verbumculus /  
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1 I n t r o d u c t i o n  

Over one decade  af ter  Na t iona l  Research Coun-  
cil m a p p e d  out  the  p lan  for the  H u m a n  Genome  
Pro jec t ,  the  p ro jec t  has been developed into a full 
f ledged research field - -  Genomics,  which t rans-  
forms biology researches from cot tage  endeavor  
into enterpr ise  ope ra t ion .  Genomic  researches are 
main ly  organized a r o u n d  two areas: high th rough-  
pu t  DNA sequencing and genome-wise de tec t ion  
of gene expression.  Sequence d a t a  in b o t h  pub-  
lic and  p r iva te  d a t a b a s e s  have been accumula t ing  
at  exponent ia l  r a te  unde r  cont inuous improvemen t  
of sequencing technology  and s t eady  increase  of 
funding [1'~1. Who le  genome sequences have been  
cons tan t ly  churning ou t  from the genomic centers  
a round  the world s ince the  first whole genome se- 
quence was published[a].  Over fifty whole genome 
sequences are cu r r en t l y  available for p rokaryo t ic  
and  eukaryot ic  o rgan isms .  

High densi ty  a r ray  technologies such as D N A  
mic roa r ray  and gene chip not  only  provide a sys- 
t e ma t i c  and global  snapshot  of genome expres-  
s ion in re la t ion to deve lopmenta l  s tages,  a na tom-  
ical s t ruc tures ,  a u d / o r  ex te rna l  cues, bu t  Mso of- 
fer a powerful  means  to c luster  genes b ~ e d  on 
the i r  t empora l ,  spa t i a l  and  a m p l i t u d e  p a t t e r n s  of 
express ion [4-71. Together  wi th  sequence da ta ,  ex- 
press ion d a t a  would enable  the  ass ignment  of func- 
t iona l  in format ion  to genes of o therwise  unknown 
funct ions.  The  conceptua l  a s s u m p t i o n  of the  ap-  
p roach  is tha t  genes t ha t  exhib i t  s imi la r  expression 
p a t t e r n s  con t r ibu te  to the  same biological  process  
or functions.  Therefore  such genes share  more or  
less common regula tory  domains  in the  u p s t r e a m  
regions for the  coord ina ted  control  of  gene expres-  
sion. 

A large number  of nucleot ide  mot i fs  show dis- 
t inc t  d i s t r ibu t ion  pa t t e rn s  wi th in  the  genomes of 
var ious  organisms,  and  can be d i s t ingu ished  from 
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each other. Moreover, during tile ex'olulionary pro- 
cess, living organisms have accunmh~ted ('ertain 
biases towards or against some specific motiils in 
their genomes, which are used as reguhttory ele- 
ments. Highly reeurring nucleotide words ar(' o f  
ten observed to correspond to regulatory regions or 
protein binding sites of genes. Vice versa, rare nu- 
cleotide motifs may be discriminated against due to 
s t r u c t u r a l  c o n s t r a i n t s  o f  g e n o m e s  o r  s p e c i f i c  r e s e r -  

v a t i o n s  for global t ranscript ion conlrols, such as in 
early cascade of embryo development.  

Whole genome sequences together  with geno- 
me-wise expression data  offer a global view of ge- 
nomic s tructm'e and functions of a living system. 
However. it is a great  challenge to assign funclions 
to DNA sequences. For example, out  of circa 30- 
40 thousands genes in huln&ll genome, only ab()ul 
iO,O00 are associated with known Ethel ions. Thus.  
global and systelnatic search fbr seqttence pat terns  
ill. g e n o n m s  is a n e c e s s a r y  s t e p  t o  [ ink  s t r u c t u r a l  se-  

q u e n c e s  to defined functions. This paper  describes 
our software developntent (VERBU.MCt:LI'S) ill it 

C " ') fo r  (iv(w- Ull.(l('l'- g e n o l l l e - w i s e  s e a r  h l n g  sys t . en l  ()r 

rei}resented nu{'leoti{Ie ntotifs, and our initial etf(>rt 
to a t t r ibute  bioh)gical functi{,ns to those motifs. 
The  main advantages brought  about  by VI';III~[ 'M- 

CtrLUS are in terms of si}eed, flexibility and visual- 
ization efficiency. This rests on tile {'{)re s t ructure  
of the program, which takes advantage of st r{,ng 
properties at the intersection of statistics. I}attern 
matching and combinatorics on words [s'uJ. The fa- 
cility at the outset  can conduct  global l}attern dis- 
covery in linear time and space. 

In general, the task of detecting, enumerat ing  
and testing nucleotide word frequencies in large 
genomes, which are typical cases for eukaryotic 
organisms, requires significant computational re- 
sources even when limited to the words up to 
some maximum length. It often becomes infeasi- 
ble to detect and visualize such words in a fast and 
practically useful way. Among the tools available 
for these purposes, we list WORDUP [10], YEAST- 
TOOLS [11], and R'MES [12'1a]. Conceived primarily 
as an aid in intercepting conserved segments in re- 
lated sequences in a family, WORDUP is based on 
a first order Markov model. It detects statistically 
significant sequence motifs of 6-10 nucleotides in 
a family of sequences by comparing the expected 
number of sequences containing a given pattern 
with the number of observed sequences that contain 
that pattern. The facilities under YEAST-TOOLS 
comprise tables of frequencies for nucleotide words 
of up to 10 bases as observed in all coding and non- 

coding regions of tile yeast genome .  The related 
analyses of frequencies and expectat ions invest the 
entire target genonm, with the objective' of identii)'- 
ing r<,latively siml,le statist ically relevant pat terns  
rvl,r('sented by short reel if; with a highly conserved 
c()rv. [{'MES is a general-purpose set of t)rogran)s 
to &-teet words that  ai)l)ear in a given DNA se- 
quence with unexpected frequmlcv. Two classes of 
models are used to model  the sequence: s ta t ionary  
Marker  chains and a-periodic s ta t ionary  Marker  
chains. Under either probabilist ic model, the nmn- 
])er  of  o ( , ' e l l r r ences  Of a word ill  a se( i l le l l ( ' e  is ( 'oll- 

si(h,r~'d to be statisticalh, inlerest.ing if it diflers my-' 
niticantly fl'(,m an es t imator  of its expected value. 
Est imators  of the expected counts are obtained us- 
ing a Gaussi~m or (fbr long words) a comt)ound 
Poisson approximation.  In either case. FI'MtCs in'o - 
rides at score indicating whether  the word is under- 
or  o v e r - t e l ) r e s e n t e d .  

The search for unexpectedly  frequelH or rare 
substrings is only one component, of the bro- 
ader quesl for interesting pa t te rns  of more gen- 
eral kinds. Along these lines, pa t terns  and fanfilies 
thereof have been variously characterized, and cri- 
teria, algori thms and software developed in corre- 
spondence. Without  pre tending to be exhaustive. 
we mention Spt::xs [11I5], ~IEME [lti], P m v r T  [~r'~sl, 
'YEBIS[ | ! ) ]  Si ,LA:,i l l[2~ T E I R E S I A S  [2I]. CONSENSUS[22].  

@IBBS S AMt'L[::I~. [2:3'2 tJ , \ \ I N  NOW E I{- [2:;2~;] , 

PROJEC'rloN[~7], \VEEDER [2s] .~llTl{A [29], among  
others. The peribrmmwe of these tools has been 
increasing dramatical ly over the years, though the 
hardest challenges (e.g., [25]) are still terrain for 
( 'Ol l tes ts .  

This paper  is organized as follows. In the next 
three sections, we describe the basic structure and 
Datures of the VERBUMCULUS facility, leaving out 
most algorithmic and combinator ia l  details, for 
which we refer to [8, 9]. Following that ,  we show 
the results of its application to the test analysis of 
regulatory motifs of genes. 

2 Stat i s t i ca l  A n a l y s i s  o f  S e q u e n c e s  

In the following, we use w to denote a generic 
nucleotide word, and wit.j] to indicate the substring 
of w that begins at position i and ends at position 
j. Two main notions of frequency are considered 
of interest in our context. The first notion is given 
in terms of the number  of occurrences of w within 
a single given sequence. The second is concerned 
instead with the number of sequences containing at 
least one occnrrence of w out  of  the total munber  
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Table 1. General Monotonicities for Scores Associated with the Counts f,  
under the Hypothesis f(w) = f(wv) (We have set p(w) =- E(w)/N(w) and :, - E(wv)/E(w).) 

Property Conditions 

( t . t )  

(x.3) 

(t,4) 

0.5) 

(1.6) 

(t.z) 

( h s )  

f(wv) -- E(wu) f(w) -- f(w) 
> 

N(~.~,) .\-(w) 
f(wv) - E(wt,) f (w)--  E(w) 

7 ) > "(,g 

/ ( w ~ , )  - E ( , . v )  > f ( , . )  - E(w) 

f(wv) f(u,) 
E(wv) E(~) 
f(wv) - Efwv) f(w) - E(w) 

> 
E(wv) E(w) 

f(wv) - E(wv) f(w) - E(w) > 

f(wv) - E(wv) f(w) - E(u,) 

(f(wv) -- E(wv)) 2 (f(w) -- E(w)) 2 > 

N(wv) < N(w), p(wv) ~ p(w) 

N(wv) < A:(w), p(wv) <<. p(w), and f(~.) > E(,.) ̂IN('")+ N(wv) 
N(w) + N(wv) 

E(wv) < E(w) 

E(wv) < E(~) 

E(~v) < E(~) 

E(wv) < E(w) 

E(w) > E(wv), f(w) > E(w)v~ 

E(w) > E(wv), f(w) > E(w)x/'~ 

of sequences in a family. The  expressions and com- 
p u t a t i o n s  of the  expec ted  values, moments  and  re- 
l a t ed  scores of significance depend  subs tan t i a l ly  on 
the  pa r t i cu l a r  not ion  at  hand�9 We discuss first 
those  based  on a single sequence, where we iden- 
t if ied five common  scores used in the  scientific l i t-  
e r a tu re  (shown on t i le left of Table 1). 

zt(w) = f(w) - E(w) 

f(~) _-z(~) = 
E ( , . )  
f(w) - E(w) ...~(~.,) - 

f ( w )  -- E('w) ~(~) = 

f(w) -- g(w) 
~5(w) = 

max{ ~ ,  I} 

( a )  

zT(w) = c(w) - E~.(w) 

~ ( u , )  = - -  

E~.(w) 
(~(~) - S . ( ~ ) )  ~- =9(w) = 

E~.(w) 

(b) 

F i g . I .  (a)  S c o r e s  based  o n  the  n u m b e r  o f  o c c u r r e n c e s .  (b)  

S c o r e s  b a s e d  on  t h e  n u m b e r  o f  s e q u e n c e s  c o n t a i n i n g  at  l eas t  

o n e  o c c u r r e n c e .  

Here,  f ( w )  is the  number  of observed occur-  
rences of w in the  i n p u t  sequence, E ( w )  is the  num- 
ber  of expec ted  occurrences  of w under  a Bernoul l i  
(i . i .d.) model ,  V a t ( w )  is the  var iance on the  num- 
ber  of occurrences  of w under  the same model ,  and  
(rat (w)  is an  easier  to  compute ,  f i rs t -order  approx-  
ima t i on  of the  t rue  var iance,  which matches  in fact  
the  s impl i fy ing a s sumpt ion  of uncor re la ted  sym-  
bol  occurrences.  Specifically,  it is seen[ s,9] t ha t  for 
an  inpu t  sequence of  length  n and  a p a t t e r n  w of 
l ength  m ~< (n + 1) /2  we have: 

E ( w )  = - m + 

and  

Var(w)  = E ( w ) ( 1  - p(w))  - p (w)  2 

�9 ( 2 n -  am + 2 ) (m - 1) + 2p(w) 
s tt~ 

�9 } - - ~ ( n  - ,,~ + t - el,) 1 - I  p ( w [ ~ l ) ,  
/=1 j = , n - d t +  l 

where p(w)  is t i le p robab i l i t y  of occurrence  of w 
and  {dl ,  de . . . .  , d~} are ti le lengths  of t i le  pe r iods  
of w. A s t r ing w has a period z if w is a prefix of  
z k for some integer  k. Al te rna t ive ly ,  a s t r ing  z is a 
pe r iod  of a s t r ing w if w = J v  and  v is a poss ib ly  
e m p t y  prefix of z. We refer to [8, 9, 30] for de ta i l s  
and  discussion�9 Trunca t ing  Var(w)  after  the  first 
t e rm  yields ~?ar(w) = E ( w ) ( 1  - p(w)) .  Score z~ is 
af ter  Brendel  et al. for de ta i l s  (See [31]): s  is 
the  expected  frequency of w based  on the observed  
frequency of (m - 1)-mers a n d  (m - 2)-mers,  i.e., 

g(w)  : f (wi l""~-l l ) f (wt2 'ml)  

f(w[2,m-l]) 

We now tu rn  to  the scores assoc ia ted  wi th  fre- 
quencies defined on a set of s t r ings  {x l ,  x ~ , . . . ,  zk  }, 
also cal led a multisequence. For  mul t i sequences ,  
the  three  add i t iona l  scores shown on the  r ight  of 
Table  1 have been selected. Here  Ec(w)  and  c(w) 
are, respectively,  the  expec ted  and  observed num- 
ber  of sequences tha t  conta in  at  least  one occur-  
rence of w. Given k sequences of respect ive  sizes 
n~ for i 6 [1,k], Pesole e t a / .  [t~ define Ec(w)  as 
follows 

k 
E (w) : - 

i : l  

where g~(w) is the  expected n u m b e r  of occurrences  
of w in the  i - th  sequence�9 A n  e s t i m a t o r  of the  t rue  
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expectat ion is calculated after Stuckle et al. [:~21 by 
assuming a first order s ta t ionary  Markov chain 

Ei (w) = fi (w B,2])fi(wP..a])..- ~i (wp,,.-t,,,,]) 

f~(~E~. l ) f~(~ ' r3 ] )  . . .  / ~ ( ~ I  . . . . .  1j) ' 

where f i (w)  is the observed number  of occurrences 
of w in the i- th sequence. 

In a typical, on-line application, parameters  
such as the probabilities of the individual symbols 
are est imated fl:om the corresponding frequencies 
in the input  sequence. Alternatively, our a lgor i thm 
allows the submission of a separate model  sequence 
from which probabilities are estimated.  Likewise, 
the analysis of the target  sequence may proceed 
considering the sequence as a whole as well as by 
performing computa t ions  independent ly  within a 
number  of consecutive segments in a suitable cover 
of the input,  and analyzing one such "window" at 
a time. 

3 M e t h o d s  

For a given choice of a probabilistic set t ing 
and score(s) one would like ideally to compute  ex- 
haustive frequency tables report ing values for all 
substrings of a sequence, or perhaps at least for 
the statistically most  "surprising" among them. 
Even sett ing aside for a moment  the effort involved 
in the computa t ion  of the necessary parameters  
and scores, the sheer number  of entries associated 
with such an exhaustive tabular  presentat ion would 
quickly become unfit for human  inspection, hence 
hardly useful at the outset.  To see this, assume to 
be given a priori a source model, one of the above 
z-scores, and some arbitrarily fixed threshold value 
t for tha t  score, whereby a word will be considered 
surprising and thus included in the ou tpu t  table 
if its score exceeds t. Now an observed sequence 
x of n bases might  in principle exceed t with all 
of its substrings. Since x may contain about  n2/2 
distinct substrings, then a sequence of a modes t  
n = 1,000 bases might  force us to ou tpu t  about  half  
a million subwords as being surprisingly frequent. 
While such an extreme case seems entirely unreal- 
istic, it does help il lustrating a point  of great  prac- 
tical relevance, namely, tha t  the volumes of da t a  
produced in this and  other tasks of mot i f  discovery 
risk to rapidly sa tura te  the perceptual  bandwid th  
of  the final user [3a] . 

One of the main  assets of VEB.BUMCULUS comes 
in form of a powerful proper ty  tha t  limits drasti- 
cally the number  of  surprising subwords tha t  one 
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needs to consider. The proper ty  holds under  rea- 
sonable assumptions for scores tha t  fit the general 
format  z(w) = ( f ( w )  - E ( w ) ) / N ( w ) ,  where N ( w )  
is a nonnegat ive normalizing factor  for the differ- 
ence such as, e.g., the s t andard  deviation for the 
count.  For scores of this kind, it is possible Is'v] to 
confine the computa t ion  to only a number  of can- 
didate surprising words linear in the length of the 
host sequence. Moreover, the set I/V of these candi- 
dates can be identified a priori, and their relation- 
ship to any other,  e.g., over-represented word not  
in W is as follows (under-represented words obey 
a symmetr ic  property) .  For any word w not in W 
such that  z(w)  > t, there is a word w ~ in IA2 such 
that :  

1) w ~ = wv for some n o n e m p t y  word v, i.e., the 
"neglected" word is embedded in a word of W as a 
prefix; 

2) z(w')  > z(w),  i.e., w'  is at  least as surprising 
a s  w .  

Such a drastic l imitat ion on tile order of the 
number  of candidates,  as well as their identifica- 
tion, weighing and display are all inextricably in- 
terwoven reflections of a same combinator ia l  prop- 
erty, which has to do with the score being monotone  
within certain families of pat terns .  This proper ty  
requires tha t  if w and an extension w t = wv of w 
are nonempty  substrings of the text  x such tha t  
f ( w )  = f (wv) ,  then the score of  w does not exceed 
tha t  of w t. Under  these conditions, w can be ne- 
glected as the surprise it conveys is subsumed by 
W r" 

The tables below display a collection of mono-  
tonicity results established about  the models and 
z-scores considered. We refer to [9] for the corre- 
sponding proofs and discussion. For convenience of 
notat ion,  we set p(w) =_ E ( w ) / N ( w ) ,  where N ( w )  
appears  in the score as the expected value of some 
function of w. The in terpreta t ion of the tables is 
s traightforward.  For example, P r o p e r t y  1.1 s tates  
a simple fact on the monotonic i ty  of E(w)  given 
the monotonici ty  of p(w) and N ( w ) .  Under  some 
general conditions on N ( w )  and p(w) we can prove 
the monotonici ty  of any score functions of the form 
described above. 

Borne of the properties are not  s t raightforward.  
For example, P roper ty  1.2 says tha t  these scores 
are monotonical ly decreasing when 

f < E . . . .  "yN(w) + N ( w v )  

and monotonical ly increasing when f > E*. We 
can picture the dynamics of the  score as follows. 
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Initially, we can assume E* > f ,  in which case 
the score is decreasing. As we extend the word, 
keeping the count f constant, E* decreases (recall 
that E* is always in the interval [E(wv) ,E (w)] ) .  

At some point, E* = f ,  in which case the score 
stays constant. By extending the word even more, 
E* becomes smaller than f ,  and the score starts to 
grow. Some consequences of Property 1.2 are cap- 
tured by Properties 1.7 and 1.8. Property 1.2 also 
holds by exchanging the condition p(wv)  <<. p(w) 

with f ( w )  > E ( w )  > E ( w v ) .  

Turning now to Table 2, we summarize mono- 
tonicity results for the Bernoulli, or i.i.d., model. 
In this case, each symbol is generated from the 
same probability distribution, and independently 
from its context. A comprehensive study of other 
models and scores can be found in [9]. 

As already observed, a tabular representation of 
surprising words in a sequence is bound to become 
rapidly bulky with increasing sequence length, even 
if the number of candidates is linear in that length. 
In our approach, the computation, storage and dis- 
play of the statistical parameters of interest are all 
organized around the structure of a special com- 
pact trie represented by a suitably pruned version 
of a suffix tree, the trie of all suffixes of a given 
sequence (e.g., [34-36]). By the trie being imple- 

mented in compact form it is meant that all nodes 
in it are branching nodes, whence arcs are labeled 
by substrings of the input sequence rather than by 
individual symbols. In a full-fledged tree, the leaves 
are in one-to-one correspondence with the suffixes 
of the input. Since every subword of the input is a 
prefix of some such suffix(es), then any subword of 
the input will be spelled out on a unique path lead- 
ing from the root to some leaf and ending at a node 
or perhaps in the middle of an arc. For a sequence 
of length n, the tree will have a number of leaves 
and hence also of internal nodes bounded by n, so 
that always less than 2n subwords of the input can 
end precisely at a node in any pruned version of the 
trie. The property exploited by VERBUMCULUS is 
that,  within the ample domains of monotonicity of 
the scores considered, the set 14; coincides precisely 
with the set of these subwords Is'9]. In other words, 
for a monotone score z 

the largest positive values of  z and hence 

most  over-represented words will occur at 

the internal nodes of the trie rather than 

in the middle of an arc. Symmetrically,  

the most under-represented words occur 

only as unit  symbol extensions of those 

n o d e s .  

T a b l e  2. Monotonicities for Scores Associated with the Number of Occurrences f 
under the Bernoulli Model (We set 7 -= E(wv)/E(w).) 
Property Conditions 

(2.1) E(wv) < E(w) 
(2.2) f(wv) - E(wv) > f(w) - E(w) 

(2.3) f(wv) > f(w) 
E(~) E(~) 

(2.4) f(wv) -- E(v) > f(w) - E(w) 
E(wv) E(w) 

(2.5) f(wv) - E(wv) > f(w) - E(w) 

(2.6) f(wv) -- E(wv) f(w) - E(w) 

(2.7) (f(wv) - E(wv)) ~ > (f(w) - E(w)) 2 
E(wv) E(w) 

(2.8) f(wv) - E(wv) > f(w) - E(w) 

v/E(wv)(1 - p(w)q(v)) v/E(w)(1 - p(w)) 
(2.0) var(wv) < Var(~) 

E(wv) E(w) 
(2.1o) < 

(2.11) f(wv) - E(wv) > f(w) - E(w) 

(2.12) f(wv) -- E(wv) f(w) - E(w) 

none 

f(w) = f(wv) 

f(w) = f(wv) 

f(w) = f(wv) 

f(w) = f(wv) 

f(w) -- f(wv), f(w) > E(w)v ~ 

y(w) =/(wv), f(~) > E(~)v~ 

f(w) = f(wv), p(w) < 1/2 

pm~x < 1/"r 

pmax < ~ -  1 

/(w) = f(wv), pmax < min{1/~ 4v/4-~, v/2 - 1} 

f(w) = f(wv), pmax < min{1/ ~ 4V~-~, V~ -- 1}, and 

:(~) > E(~) ~ 
+ 
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Combined with the advantages of trie visual- 
ization over table listing, this remarkable property 
opens the way to compactly displaying all of the 
unusual subwords of a sequence at once. More- 
over, the computations involved can be speeded up 
significantly. The tree itself is built in t ime linear 
in the input by a number of well-known methods. 
Once the tree is built and perhaps pruned to some 
preliminary maximum length, subword occurrences 
and other similar counts can be similarly obtained 
in linear t ime. .For  instance, the number of leaves 
in the subtree rooted at some node represents the 
number of observed occurrences of the word spelled 
out on a path  from the root to that  node or any- 
where on the immediately preceding arc. VERBUM- 
CULUS annotates the tree with one or more of the 
above scores, depending on the type of analysis one 
wants to perform. The typical process of annota- 
tion also takes linear time, which in cases like z.~ is 
achieved through resort to rather complex algorith- 
mics, due to the structure of Vat .  For scores that  
require multiple tries to be built and superimposed 
to one another, like in the computat ion of c(w) for 
z7, zs and zu, the linear time algorithm by Hui [:~71 
is used. 

4 S o f t w a r e  D e s c r i p t i o n  a n d  U s a g e  

VERBUMCULUS is composed by three modules: 
the tree builder VERBUM, the graph drawing pro- 
gram DOT, and the graphic interface TrtEEVIz. 
The entire package consists of about  ten thousand 
lines of code. 

VERBUM is writ ten in C + +  using the Standard 
Template Library which should allow great porta-  
bility under different platforms. The code has been 
compiled, without any change, under Solaris and 
Linux. VERBUM reads the input sequence(s) and 
the various parameters  supplied by the user, and 
c r e a t e s  a (possibly pruned) suffix trie annotated 
with the score selected at the beginning by the user. 
The output is a text  file representing the tree in 
the  d o t  format (see below). VERBUM is particu- 
larly fast: although the time taken for the analysis 
depends heavily on the particular score and other 
input parameters,  it is typically in the order of few 
seconds for the most  common choices. 

DOT is the graph drawing program by AT&T 
Labs, part  of the GRAPHVIZ package [3s]. It reads 
graphs in the dot  representation and outputs  draw- 
ings in a dozen of formats, among which Postscript 
and GIF. The source code and binary executables 
for common platforms are available from their site, 

and licensing is almost open source. 
TREEVIZ is the graphical user interface that  

runs on the client side, and more specifically on the 
browser of the user. It is entirely written in Java, 
and uses the Gr~APpA libraries by AT&T Labs. 

A couple of thousand lines of Perl glue every- 
thing together. Perl scripts generate the HTML 
for the input forms and control the execution of 
the various stages, handling exceptions and errors. 

The user of VERBUMCULUS is presented with 
the form shown in Fig.2. He has the option of sub- 
mitt ing the input either as a raw sequence of letters 
or in FASTA format. The input can be "pasted" into 
the window or uploaded to the server. For analyz- 
ing long sequences, we strongly advise to download 
the executable VERBUM and DOT and work locally, 
in order to avoid the overhead of network communi- 
cations and the relative inefficiencies of Perl scripts 
and .lava. 

4F~a'r~ 

t ~ * m m u ~  

l I k ~  I 

t:~1~msr '. .... 

Fig.2. VERBUMCULUS' web interface�9 

Various parameters can be adjusted. The most 
important  choice is the type of score to be used 
in tree annotation. Additionally, a wide range of 
different filters is available to limit the size of the 
tree �9  The user can set  th e  minimum and maximum 
length of the nucleotide words, a lower bound on 
the absolute value of the score, a lower bound on 
the value of the expectation (to avoid "rare" words) 
and a forbidden substring (to avoid, for example, 
words contains ThTk). 

For bet ter  performance, we have limited the vi- 
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sualization of TREEVIZ to 100 nodes: if the tree 
is bigger, VERBUMCULUS will send a Postscript  file 
with the drawing of the tree. If the user wants to 

take advantage of the interactive facilities of TREE- 
VIz,  he will have to increase the effectiveness of the 
filters in order to produce a smaller tree. 

/ ( .  ? 
, ,  . ~ C T G A C  i :  i 

; / '  CTGA - - -  - . - - -  CTC~T ! i 

..... " _ . . . . . . . . .  ~ _ -  ^rAT =.:=:::: : T -  ~ i ! 
" , - /  ATA --  - ~ - -  r " - -  "-  !i ( { 

' ~. ~ ] ] - ] ,, 
. . . . . . . .  : '  . _ _ _ 2  . . . .  I J' '~ 

I 
, : - .  ~ - ~ r - -_ :2 :~ :7  

. . . . .  T C T G C  ~ i 

-~ T C A A C  ~ ,.- i 

----  T C G T C  ~ ,. ,,,.;-,-,-,-,-,-~ :: 
~ l ; , 2  " ' i 

�9 " - G A A C G  ~ r ~ r - -  . . . . . . . . . .  := 
' " A ': ~ I i 

," . - G C G A  ~ : ~ . - ~ - - - ~  ......... i 

G C G A C  - -  
' .  " " . - G C G G T  .,,,-.- " t :"; 

i �9 . . . .  G T C G G  AAt: 

i ,  : - ~ - : : :  : . . . . . . . .  ACC:~ . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ACi! 

F i g . 3 .  E x a m p l e  o u t p u t s  o f  T R E E V I z .  

The magni tude  of a score value is t ransduced 
th rough  font size, in the sense that  for every word 
w, the higher the absolute value of the score of w, 
the bigger the font used to represent w. Words 
with a negative score are, in addition, printed in 
red italics (see Fig.3, on the left). 

Once TREEVIZ has drawn the tree, the user can 
navigate it looking for conspicuous nucleotide mo- 
tifs. At any time, clicking on an nucleotide word 
will visualize information about  its number  of oc- 
currences, the expected value of this number,  and 
the corresponding value of the z-score. Along with 
these values, a graphical representation of the po- 
sitions of the occurrences of the nucleotide word 
in the original sequence is produced and displayed 
(see Fig.3, on the right). 

Since the tree can be fairly big, TREEVIZ offers 
the option to get an overall picture of the tree by 
clicking on the "bird 's  eye" but ton,  which produces 
the small window inset of Fig.3. Finally, TREEVIZ 
can generate a drawing of the tree in Postscr ipt  or 
GIF  tha t  can be saved on the machine of the user 
for further and more accurate scrutiny. 

5 S i m u l a t i o n s  a n d  D i t h e r i n g  

Before showing the  results of using VERBUMCU- 
LUS on real biological data,  we report  on some tests 
performed on artificial sequences. In our present 
context,  this is mean t  primarily to show the effec- 
tiveness of the tool in the pat tern  discovery process. 
In practice, this or a similar procedure may be fol- 

lowed fruitflllly as a prel iminary t rea tment ,  for the 
purpose of fine tuning the sensitivity of the tool 
and adapt  it to the part icular  sequence or family 
under  study. 

An example dithering procedure  could be as fol- 
lows. First, we generate and process several pseudo- 
random strings assuming a symmetr ic  Bernoulli  
model. For every random sequence produced,  we 
generate and annota te  the corresponding tree. As 
expected, we find that  unless the r andom sequence 
is very short the tree does not display any surpris- 
ing word. 

Next, we inject into the r andom sequences a 
controlled number  of non-overlapping repeti t ions 
of words. In our example, we use the two words 
GATTA and AAAAA, in separate experiments. Since 
the process of overwriting the original random let- 
ters with occurrences of a given word changes the 
probability distribution, we have to make some ad- 
justments in the probability distribution. Let p~ 
denote the probability of symbol a G ~ in the orig- 
inal sequence and w some word of length lwl = m, 
with a proportion of a's given by q~. Forcing h 

substrings in our sequence to coincide with w will 
change the probability accounting for the "free" oc- 
currences of a outside the h copies of w into 

p~n -- h m q a  
'Pa-- 17,--h?TT, 

As Fig.4(a) displays, five occurrences of GATTA 
in a text of size 1,000 can be enough,  with our set- 
tings, in order for the program to ou tpu t  tha t  word 
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as the highest  scoring pa t t e rn .  If the  size of the  
text  is increased to 10,000, then typ ica l ly  twenty  
occurrences of the  word tu rn  out  to be enough to 
produce  the  same visual effect (see Fig .4(b)) .  

For a b roade r  analysis ,  we run  1,000 tr iaIs  for 
all choices of h = 0, 1 , . . . ,  15, n = 1,000 count ing  
the number  of t imes tha t  GATTA is the  highest  scor- 
ing p a t t e r n  in the  ent ire  tree. Fig .5(a)  shows the 
relat ive proficiency of the  scores z2, z3 and z4 in sep- 
a ra t ing  the  "signal" GATTA, from "noise". Specifi- 
cally, the  plots  show the f ract ion of the  1,000 t r ia ls  
in which the  Word GATTA was the highest  scoring 
word in the  tree,  for increasing number  h of injec- 
tions. F rom the graph  we can observe tha t  scores 

ca  and z4 have ident ical  pe r fo rmance  (as one would 
expect ,  since GATTA has no per iods)  and they  seem 
to be be t t e r  t han  z2. In F ig .5(b)  we ins tead  p lo t t ed  
th ree  pai rs  of curves respect ive ly  for scores z2, za, z4 
(it  so happens  t ha t  in this  pa r t i cu l a r  case the  pai rs  
for za and z 4  are on top  of each o ther )  wi th  increas-  
ing Immber  h of inject ions.  For  each pair ,  the  up- 
per  curve represents  the  average score for the  word 
t ha t  achieves the  largest  score in the tree, while 
the  lower curve represents  the  average score for the  
word GATTA. Some observat ions  are  in order.  F i r s t ,  
the  score of GATTA grows l inear ly  wi th  h. Second,  
the  average of the  highest  z2-score is bigger  t han  
za and z4. Th i rd .  at  some po in t  h* the lower curve 

A A A C T  

AGTTT �9 C G G A  

/ ' /: . .... C G A G T  

._~,.,, . .... C C G G A  
', ~: = 2  . . . . . . . .  ~: GGATT 

\ ,  G T G G G  

G A G T  

GATTA 
- - -  TACCT 

(a) 

CGGAG 

AATGG 
, / "  

/ATTA 

~ TCAT 

CTTT 

A1-FAA 

GATTA 

(b) 

Fig.4. (a) Trie from a random string of size 1,000 with 5 forced occurrences of ttle word GATTA. (b) Trie from another  

random str ing of size 10,000 with 20 forced occurrences of GATTA. Both tries are annotated using z:~, with threshold 3.0. 

1.0 < 

0.8 

._~ 

.o 

0 
0 

. . . . . .  i / 

/ 

'GATTA.z2.sym'  
'GATTA.z3.sym'  
'GATTA.z4.sym'  

'GATTA.z2.max'  
'GATTA.z2.sco'  
'GATTA.z3.max'  
'GATTA.z3.sco'  
'GATTA.z4.max'  
'GATTA.z4.sco'  

I 2 5  

I = 

t " " 20 
i g 

�9 15 
, O 
t i " 

8 
t q  

E 
I < 

16 

, . . .-  �9 

10ti15 .., 
,~ ~ ' 12 ~ 4 s 12 
Number  of injections (h) Number  of injections (h) 

(a) (b) 

16 20 

Fig.5. (a) The  fraction of 1,000 trials in which the word GATTA is the highest scoring word in the tree for z-scores z2, za, z4, 

versus number  of injections h. (b) Curve pairs for scores z2, z3, z4 versus h. The upper curve in each pair represents the 

average score for the word that  achieves the max imum score, the lower curve represents the average score of the word GATTA. 

The curves for z3 and z4 are hardly distinguishable due to substant ial  overlap. 
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touches the upper curve and the pattern is "discov- 
ered". Note that the lower curve touches the upper 
curve sooner for za and z4 than z2. 

If the pattern is periodic, like e.g., MtAAA, then 
we need fewer copies, i.e., a smaller value of h in 
order to obtain a comparable visual impact. Fig.6 
displays the results using four forced occurrences in 
a sequence of size 1,000 and ten in a sequence of size 
10,000. We run the same simulation on 1,000 trials 
as before, this time injecting h = 0, 1 , . . . ,  15 occur- 
rences of AAAAA (see Fig.7(a)). We were expecting 
the score z4 to have an advantage over the other 
because of the high periodicity of the word. Sur- 
prisingly, the figure shows that the score that de- 
tects sooner the presence of AhAAA is z3. In Fig.7(b) 
we collected as before the average scores for the 
words achieving the largest score in the tree (upper 

curve), and the average score for the word AAAAA 
(lower curve). This time, the tree families of curves 
corresponding to z2, za and z 4 are clearly distin- 
guishable. The function that  returns the biggest 
scores is again z2, followed by z3 and then Z4. For 
all three, the score of AAAAA grows linearly with h. 
Note, however that  z2 and z3 have different slopes 
than z4. 

6 Tests and Exper iments  

We report here some results on experiments 
r u n n i n g  VERBUMCULUS on the upstream regions of 
some genes of the yeast. The upstream region of 
a gene is the untraslated region that  precedes the 
start codon ATG of size 500-1,000 base pairs, when 
reading the sequence in the standard orientation 5' 

TACGG / 
TGGGA A A A A  

/ AAAAA 
/ /AAAA ~ //ATCGG 

~ -  ~A~G / /  
GAACT ~ ATTTA 

t \GGCGCG GAFF 

GCTGA CTTGA 
(a) (b) 

AAAAA 

AAAAC 

Fig.6. (a) Trie f rom a r a n d o m  s t r ing  of size 1,000 wi th  4 forced occurrences  of  the  word hhhhh.  (b) Trie f rom another  

r a n d o m  s t r ing  of  size 10,000 wi th  10 forced occurrences  of  AAAAA. Bo th  trees are annota ted  us ing  z3, w i th  th reshold  3.0. 
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< ~ 0 . 8  < 

.~. 
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0 

'::.:> . . . . . . .  7AAAAA' .z2 .sym'  . _ _  

: ' A A A A A . z 3 . s y m '  
: ' A A A A A . z 4 . s y m '  

/ '  
/ .  

// 
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/ 
/ 
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/ 
/ 

, . J  
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O u 
~ 10 
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0 ,;. ~ ~'2 16 o ~ li~ 20 

N u m b e r  of injections (h) 

' A A A A A . z 2 . m a x '  -- 
'AAAAA.z2 . sco '  
' A A A A A . z 3 . m a x '  �9 . / / i i  
'AAAAA.z3 . s co '  . 
' A A A A A . z 4 . m a x '  . . - -  / " 

' A A A A A . z 4 . s c o '  �9 .... ": 

/"  

; t'2 
N u m b e r  of inject ions (h) 
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Fig.7. (a) Fract ion of  t i m e s  versus  h t ha t  AAAAA is the  highest scor ing word in the tree, for z-scores,  z2, z3, z4. (b) Curve  

pairs  for t h e  word AAAAA and the highes t  scoring words  unde r  scores z2, za, z4. 
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to 3'. It is usually known to contain several control 
signals tha t  regulates the product ion of the mRNA,  
called promoters or regulatory sites. Finding such 
motifs is usually the first step in unders tanding how 
genes interact  with the environment  and with each 
other. 

The first dataset  we analyze is related to ten 
families of genes isolated by van Helden et al. [lq. 
Each family contains a set of co-regulated genes, 

tha t  is, genes tha t  have similar expression under 
the same external conditions. The hypothesis is 
tha t  in each family the ups t ream region will contain 
some common  motif. Moreover, one can also expect 
tha t  such signals are going to be over-represented 
across the family. In this first experiment we use 
the same parameters  and score type on all the mul- 
tisequences to test the general performance of our 
tool. 

Table  3. van Helden Dataset of Co-Regulated Genes 
Family k Motif van Helden et al. VERBUMCULUS 

NIT 7 GATAAG CTGATAAGA 

CCGCGC 

CGGCAC 

ACATCT 

MET II TCACGTG GTCACGTG 

AAAACTGTGG AACTGTGGC 

ATATAT 

TATATA 

GCTTCC 

PHO 5 GCACGTGGG CGCACGTGGG 

GCACGTTTT CACGTTT 

CTGCAC 

TGCCAA 

GATAA - - -  

/ '  GCACGG 

/ / 
/ ~ AAGA . . . . .  A A G A A  - - . -  

// �9 

/ ATAAGA ]/,' 
~!," CTTATC 
~ CCGCGC r 
),) c0cGoG 

,, C C C C T C  

CGCGCG 
TTT 

NIT X5 L6 TTTT AAAA TATA 

A A G A A A  

GTGGTGG 
/ ~ T'rr T'n'CTTG 

i /  . . . . . . .  @ 

\ \ \ ' ~  
\ - - |  

T r c r r  
/ 

T//~AcCAC 
GTG 

/ ~ A G ~  / ~ .  c G T G - C G T G c  

~ ...CGT CGTCG 

GCA - -  GCAC --(GCACG) 

GCAGC 
pHOI X3 L5 TTT A/kA 

(to be continued) 
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T a b l e  3. van [leiden Da ta se t  of  Co-Regula ted  Genes  (cont inued)  
PDR TCCGCGGA 

GAL CGGNSWN5CCG 

T C C G { C I T } G G A A  

GCGCGA 
AGGCACC 

GGGCCCGT 

C C G C A G A G  

/ 
CCGTGGA C C G T G G A A  

C G T G G A A A  

T C C G T G G A  

- .  CTA . . . .  CTAG 

/ CTGCT 
' - C'Fr . CTTC 

, /  A G A A G  

:!/ AT  A T C  

t~  A A  

ii V GAA GAAG 
i ~',. C3A T GA TC 

?, GACGA 
f ~  

TT 
TA TAG 

TCTTC 
G/~ x~ Ls n ~ A  r r r  

CTTCC 

GAAGG 

Family, k Mot i f  van Helden et al. VHtlII'MC'I:Lt:~ 
GCN 38 RRTGACTCTTT A{GIA}TGACTC{AIT} 

CAGCGG 

AACCGGC 

CATCGAA 

AGAGAG 

CCGCTG 

,:za 

CTCTCT 

.CAGCGG 

CAGCAG 

" GACTCA 

ATATAT 

'\\ ~ AA - -  AAGAA 

_ . . . . . .  

\ ~" ~ TA - - -  rag 

�9 TCTFCT x., TATATA 

TAA 
GCN X6 L6 TTT AAA 

INO 10 CATGTGAAWT CAACAA{CJG} 
CATGTGAA 

TCTTCA 
GTTCAA 
GTCGCA 

CCACTG 
/ C C l ~ l l  
, CAACAA 

. C A C A T G  

,!,I c,,,,, 
!,, GAAAA 
#I ~ GTrGT 

GCGGCA 
'[:~ ACAAGA 

" AACAA 
i!., AGAACA 
\ - TG"CTG 
:! TGTGCC 
, - T T T T  . T I -FTT  

-- TTGTT T T G T T G  
TCTFC 

TTTTTT 

(to be cont inued)  
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Table 3. van Helden Dataset of Co-Regulated Genes (continued) 
H A P  8 CCAA{TIC} AGAGAGA 

ATGGGGC 
ACAAG 

i AOT 
~ G ~ -  AAGAA 

! ! ' /  AA  - -- A A G  
AAGG 

i~ f  AGAAC 

�9 _ _  _ 7~-AG 
/ ' ,  TcTr  ~ ~ 4 - -  

] -FCTG 
~;;' T C T C T  I-FCT - ~  

, f f ~ / "  TT . L ~ ' / T T G  - ~  ] q c T r  

~i TA - -  T A T A T - ~  ]~ -GC - -  - -  ] qGCA 

;! ?, ,~ 
GT~fA ,t : GGAA 

~'\ " GGGG - GGGGA 

; GGGCC 

GCCCC 

YAP 16 TTACTAA 

TUP 25 KANW4ATSYG4W 

CGTTCCGT 
CATTAC 
CTGAAG 

CGAAGA 

..... CTTC 

....... AAA 

/ /  AAGAA 

A G G C G G  

TA 
T G C C T T  

..... T T C  - -  ] q - C T  - - -  T T C q ~ T  

' T T T -  T T T C -  r l q - c r r  

" TCTTC - - -  TCTTCT 

" "  GAAGA - -  G A A G A A  

~GAACG 

T T { C I T } { C I G } N G 4 { T I C } { A I C }  
AGGCACGGG 
AAA{AJG}AA 
AAGGAGGA 
ACAAACA 
CTCCGC 

{TIC}CTGCA 
CGTCGC 

GAA 
/ 

GA T 

/ / /  GCA 

~ AT / TAG rAOT 

T,4A 

\ \ r  T T  . . . .  
~ : \  , .  ~ TTCC 
,i\"X" Tc~ Trc 

~ ' ; C 7  A C O C O  TrCT 

CTr CTTC 
TUF~ XS.L4 z3 A.~A --Ff" 

The second dataset  comes from the work on the 
sporuZation of the budding  yeast conducted by Chu 
e t a / .  [71. Seven families of co-regulated genes have 
been characterized using DNA micro-array technol- 

ogy. Again, one of the purposes of the investigation 

is to find unusual words in the upstream regions of 

these genes. Here we concentrate on a couple of 

[amilies and we show the sensitivity of our tool to 

different choices of parameters and score functions. 

Both experiments also expose the limitations of our 

~pproach. 

6.1 R e g u l a t o r y  S i t e s  in  Y e a s t  

The metabolism of the yeast has been widely 

studied and provides several examples of known 

regulatory sites. In many cases, the transcriptional 

factor involved in the common response is known, 

as well as its binding site. van Helden et al. se- 

lected ten families of genes based on prior biologi- 

cal knowledge on their activity. For each gene in a 

family its 800bps upstream sequence was extracted. 

The set of all upstream sequences belonging to the 
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same family constitutes the multisequence on which 
we performed the analysis using VERBUMCULUS. 

The parameters  of the analysis are as follows. 
We use scores based on the number of occurrences 
(za and z4), a threshold between 3 and 10 depend- 
ing of the maximum size of pattern,  the latter be- 
ing between 5 and 8 symbols. We adjusted the 
threshold to obtain a tree of about twenty nodes. 
We also filtered out words containing one or more 
of the subwords TATA, AAAA and TTTT, when these 
words were predominant.  

Table 3 summarizes the results of our tests. For 
each multisequence we report  the identifier, the 
number k of sequences, the motif  previously known 
and characterized by experiments, the motifs found 
by van Helden et al., and the trees produced with 
VERBUMCULUS. For the sake of clarity, we manu- 
aIly circled the words that  match the biologically 
significant motif. 

VERBUMCULUS is capable of discovering the 
biologicalIy significant patterns in families NIT,  
MET, PHO, PDR, GAL, GCN and TUP, although 
sometimes partially. Moreover, these motifs can be 
found among the highest scoring words. Also note 
that  other pat terns  which are also scoring high are 
usually in a suitix-prefix relation with the highest, 
suggesting that  their occurrences are correlated. 

However, in the multisequences INO, HAP and 
YAP VERBUMCULUS assigns low scores to the mo- 
tifs and therefore they do not show up in the final 
tree. In two of these three cases, though, the tool 
by van Helden et al. is also not capable of detecting 
these pat terns as shown in the Table. Addition- 
ally, the tool by van Helden et el. does not give 
any satisfactory answer for the GAL family, where 
instead VERBUMCULUS catches CGGCG and GCCGC 
which correspond the beginning and the end of the 
motif�9 Finally, note that ,  in general, VERBUM- 
CULUS has great difficulty to handle motifs con- 
tains multi-valued symboIs, for example, the ones 
for GAL and TUP families. 

6.2 Sporu la t ion  o f  the  Yeast  

We report  here some results from testing VER- 
BUMCULUS on the dataset  involved in the work 
on sporulation conducted at Stanford by Chu et 
al. iT]. The authors used DNA micro-array technol- 
ogy to expose the temporal  pat terns of gene ex- 
pression of Saccharomyces  Cerevisiae during meio- 
sis and spore formation. This was done along the 
lines of a rather  s tandard procedure, as follows. 
First, changes in the concentration of mRNA tran- 
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script from known genes of the budding yeast were 
measured during seven consecutive intervals. Next, 
the average expression profiles were used to clas- 
sify the genes. Fig.8 reproduces an adapta t ion 
of the image at the outset, available in fuii view 
at http://cmgm, stanford, edu/pbrown/sporulation/ 
figures/figbss.html. As usual, higher and higher 
degrees of expression translate into darker and 
darker shades of red, while lower concentra- 
tions yield progressively darker shades of green. 
Seven clusters were produced in this particu- 
iar experiment, labeled as Me tabo l i c ,  E a r l y ( I ) ,  
E a r l y ( I I ) ,  Ea r lyMidd le ,  Middle, MidLate, and 
Late. 

Hours 0 1/2 2 5 7 9 11 

cd flit 
co ~ 

r N  

Fig.8. Genes of the Early(I) cluster induced or repressed 
during sporulation. Adaptated, by kind permission, from 
a figure at http://cmgl~.stanford.edu/pbrown/sporul- 

at ion/f ig-ure s / f ig5 s s. html 

The two bands of columns with blue bars in 
Fig.8 identify genes of which the promoters con- 
tain a putat ive URS1 or MSE regulatory sequence, 
respectively�9 The degree to which the sequence 
matches the consensus for each of these regula- 
tory elements is indicated by the brightness of the 
bar: the best matches are represented by the bright 
blue bars that  appear  to be concentrated towards 
the left of each band, the less stringent matches 
cause the darker blue bars more visible towards the 
right. The most stringent match  for the URS1 site 
is 5'-TCGGCGGCTDW-3', and the least stringent is 5'- 
GGCGGC-3'. The most stringent match  for the MSE 
site is 5'-HDVKNCACAAAAD-3', and the least stringent 
is 5'-DNCRCAAAWD-3'. 

Fig.5 of I?] shows that the upstream sequences 
relative to the genes in the clusters Metabolic, 
Early(I), and Early(II) contain several occur- 
rences of the regulatory element URS1, while the 
ones in the clusters EarlyMiddle and Middle con- 
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ta in  m a n y  M S E  sites. \'~> repor t  here resul ts  re- 
gard ing  the  analysis  of the c luster  E a r l y ( I )  wi th  
the  ob jec t ive  to  expose the URS1 site. We also 
repor t  a less sa t i s fac tory  analysis  of the  c lus ter  
Middle. 

6.3 The Early(I)  Cluster 

The cluster Early(I)  contains 36 genes, namely 
RTS2, MEK1, NDJ1, MNE1, EHD2, DBP1, IPL1, 
VPS30, UGA3,.PCH2, SEO1, CIT2, SCC2, KIP3, 

RAD51, IME4, ZIP1, DMC1, RAD54, HFM1, 
LEU1, PAD1, ATP10, CIK1, FKH1, HOP1, 
SPS19, KIN2, ECM17, RPM2, CCP1, BAT1, 
IME2, SPO13, RED1, SMT4. We extracted the 
upstream region of 600 base pairs (allowing over- 
laps with other ORFs) using the tool developed by 
VanHelden et al.bq. 

Table 4 shows the trees produced by VERBUM- 
CULUS on the family of 36 upstream regions and 
annotated with the scores z2, z3, z4, z8 and z9, 
maximum length 6 bps. Only patterns with a score 

T a b l e  4. Early(I)  Cluster as Seen Through VI:I{III!MCUIA;S, T is the Threshold 
Score T \ ' r  I '~RI}U M ( ' I  : I - { 'S 

z2 4.0 

z4 8,0 

z9 I0.0 

GCGCGC 

G C G G C T  
GCCGGC 

GCCGCC 
GGCGG 

GGGCGG 

CGGCTA 

CGGCGG 
cTr~c 

CCGCCG 

CCGGCA 

AAAAAA 

ACCGGC 

AGCCGC 

GGCGGC 

Score 
Z;$ 

T V E I { I ~ I  ; M C I J I A  ~S 

8.0 

t , ~ C G ~ t  

G ~  

GGCGGC 
r ~ c  rrrrcT 

TTT TTTT 
! r c r r r  rrTrv~ 

cTmc 

~ A  

AAAA AAAAA AAAAAA 

Earlyl.600bps.z2.L6.X4 
G C G G C T  

GAAA GAAAA GAAAAA 

GGCGGC 

TCF 

FA 

TTTTC TTTTCT 
] T r r  

CT'tTrc /V~G AAAAG 

A/~AAG 
AAA AAAA A A A A A  

A A A A A A  AAGA/~ 

A G ~  

Earlyl.600bps.z4.L6.X8 

. . . . . .  GCGGCT 
GCCGCC 

 GoGG G G C G G C  t ~ T  

TAGCCG 

C~CT C G G C T A  

CGGCGG 

cTrrrc 
CCE CCGCCG 
c c ~  

Ac.a~c 
~ATA 

AGCCGC 
E arlyLEO0bps.zg,L6. X I O 

Zt~ 9.0 

Earlyl.600bps.z3.L6.X8 

GCGGCT 
GCCGGC 

GCCGTG 

G C C G C C  

GGCGGC 
GGGCGG 
T A G C C G  

C G G C T A  

CGGCGG 
CGCCGA 

CCGCCG 
CCGGCG 
CGGGCA 
AGCGGC 
AGGACC 

A G C C G C  

Earlyl.600bps.z8.L6.X8 
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higher than 4.0 (in absolute value) are shown. For 
comparison purposes, Tabte 5 lists a few most no- 
table words along with their statistics. In [7] it is 
reported that  43% of the upstream regions of the 
genes in the cluster E a r l y ( I )  have a core URS1 
motif, while we found only 33%. However, the ex- 
pected number of GGCGGC is so small that  the re- 
ported occurrences of this word have to be consid- 
ered surprising by any measure, whether in terms 
of total  number of occurrences or number of se- 
quences containing it. 

Table  5. Explicit Statistics for Some Most Devious 
Words (in term of number of occurrences and/or num- 
ber of sequences containing at least one occurrence) in 
the 36 Sequences that Form Cluster Ear ly ( I )  (The indi- 
vidual symbol probabilities are .31 for A and T and .18 for 
G and C.) 

occurrences sequences 

w E(w) f(w) Ec(w) c(w) 
AAAAAA 26.44 109 25.74 22 
TTTTTT 29.38 110 27.63 25 
GGCGGC 1.15 25 1.51 12 
TAGCCG 2.43 9 2.11 9 

Observe that  the words in the z2-tree of Table 
6 are not independent. Instead, prefixes of some 
words are suffixes of others, which suggests that  
their occurrences might be correlated. We used se- 
quence alignment (e.g., [40]) to "assemble" short 
sequences in longer sequences (see Tables 6-8). As 
seen in this example, the alignment step can be 
used to partially overcome the limitation of VER- 
BUMCULUS to discover exact motifs. 

Table  6. Alignment of Four Highly Overlapping Words 
Picked from the z2-Wree of Table 4 

C G G C G G - 

g G G C G G - 

- G G 'C G G - 

- G G C G G C 

C G G C G G C 

Table  7. Alignment of Four Other Highly Overlapping 
Words Picked from the Tree of z2-Tree of Table 4 

G g G C G G - - - 

G C G C G c - - - 

- - G C G G C T - 

- - - C G G C T A 

G C G C G G C T A 

Tab le  8. AIignment of Five Other Highly Overlapping 
Words Picked from the z2-Tree of Table 4 

A G C C G C - - - 

- G C C G C - G - 

- G C C G C C - - 

- - C C G C g G - 

- - C C G g C - A 

A G C C G C C G A 

Table 6 shows an alignment produced by 
using four such overlapping words from the 
tree. The consensus of the alignment TCGGCGGCA 
exactly matches two motifs in the Transcrip- 
tion Element Search System (TESS/  TRANS- 
FAG) database [41'421, namely Y$HSP70_02 and 
Y$SSAI_01. This pa t te rn  contains the core 
GGCGGC, mentioned repeatedly in [7]. 

Next, we used four more motifs from the 
tree to build another alignment (see Table 7). 
The consensus TGCGCGGCT matches one motif  in 
TESS, Y$G3PDH_01, that  is already known in the 
literature[431. 

Finally, we chose five motifs from the tree and 
build the multiple alignment of Table 8. The 
consensus TAGCCGCGGA exactly matches five mo- 
tifs in TESS, namely Y$CARI_02, Y$CAR2_01, 
Y$MESI_01, Y$SPO13_01, YSTOPI_01. For exam- 
ple, Y$SPO13_01 is known to be a key regulatory 
of nitrogen repression and meiotic development [~41. 
However, the authors of [7] did not report  the find- 
ing of this regulatory element. 

In conclusion, VER.BUMCULUS not only suc- 
ceeded in identifying the regulatory elements we 
were looking for, but also found some other inter- 
esting new pat terns in the cluster that  were possi- 
bly overlooked. At the same time, in the z2-tree of 
Table 4 there were also pat terns  such as CTTTTC, 
AAAAAA, and ACCGGC. The former two have been 
detected as elements in scaffold/matrix attach- 
ment regions (MARs) of eukaryotic genomes[ 4~'46]. 
MARs are basic components for high level genome 
compaction and organization, therefore are highly 
frequent in genomic sequences[ 47'4s]. In addition, 
biological experiments have shown that  they an- 
chor genomic sequences to proteinaceous nuclear 
matr ix  and affect gene expression [4s-5~ For the 
latter pattern,  we have not found any biological 
significance yet. 

We went on producing a few more suffix trees 
annotated with other scores. Table 4 shows the 
tree decorated with scores z3, z4, zs and z9. Some 
remarks are in order. The z3 and g 4 trees are quite 
similar except for the following: the tree for z3 en- 
hances GCCGCC, TTTTT while the tree for z4 does not. 
Vice versa, the tree for z4 emphasizes TA as being 
under-represented, a phenomenon that  is missed in 
the tree annotated with z3. 

The word GGCGGC appears again in both z3- and 
z4-trees. However, in the case of z3 the pat tern  
GGCGGC is no more the highest scoring one. GGCGGC 
ranks the fifth after AAAAAA, AAAAA, AAAA, AAA. In 
fact, as one would expect, the approximation of 
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the variance used in z3 does affect in particular the 
scores of highly periodic words. 

It is somewhat surprising that the families of 
words A + and T + appear as strongly marked in the 
tree under z4. The pervasive over-representation 
of AAA, TTT, TAT, ATA have been reported by 

Nussinov [Sq, Brendel et a/. [31] and Leung et aL [39]. 
They  correspond to the highly occurring 'A box' 
(AATAAAYAAA) and 'T box' (TTWTWTTWTT) binding 
sites of MARs across different species [45,46'4s'5~ 
In any case, it is comforting to see that the word 
GGCGGC is still the highest scoring moti f  in the tree. 

Table 9. Early(I) Cluster, Score z2, Threshold 4.0, M is the Order of the Markov Chain 
M VERBUMCULUS M "V'ERBUMCULUS 
o 1 

. . . .  GCGCGC 

G C G G C T  
GCCGGC 

/ 

,~, GCCGCC 
~, oocoo . . . .  G G C G G C  
f ' / ~  GGGCGG 

( / "  CGGCTA 

i: ~ c ~ c ~  
C C G C C G  

T ~ - ~GGCA 

' ACCGGC 

A G C C G C  

G C G G C T  
/ 

/ 

J f -  G C C G G C  

~/ G C C G C C  / , /  /'/"//11- 
, / ,  GGCGGC 

- -  CGGCTA 
cGGcGG 

\, ------ C C G C C G  

~ - - - -  A G C C G C  
EAttyI.X4,Z2.M2 

GTGAGG 

GGCGG 

GGGGT 

CCCGCA 
Earlyl,X4.z2.M4 

G C G G C T  
/ 

/ GCCGGC 

i' GCCGCC 

~ ,  GGCGGC ~ ' "  GGGCGG 

"I" ,, CGGCTA 
Y 

C G G C G G  'r 

,. C C G C C G  

A C C G G C  

A G C C G C  
e~J x4 ~M1 

AGGACC 
EaHyI.X4.Z2.M3 
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The zs- and zg-trees pertain both to scores de- 
fined in terms of sequence families. It is inter- 
esting to compare the tree for the score Zs with 
the tree for z2. The tree for zs exposes GCCGTG, 
TAGCCG, CGCCGA, CCGGCG and AGGACC while the tree 
annotated with z2 does not. Vice versa, the tree 

for z2 shows GCGCGC, GGCGG, CTTTTC and AAAAAA. 

The fact that these trees are very similar seems to 

suggest that, under our conditions, words that oc- 

cur at least once in unexpectedly many sequences 

in a family might be spotted just by looking for 

words with a high occurrence score in the fam- 
ily as a whole. The flmction z9 (defined as in 
WORDUP) happens to assign a high score the two 
motifs GGCGGC and GCGGCT. Surprisingly, it exposes 
at least two words present in the tree for the score 
z2 but not appearing in the tree for zs, namely, 
GGCGG and CTTTTC. 

We also analyzed the dataset replacing the un- 
derlying model with a Markov chain. We produced 
five trees assuming models of order ~'lI = 0 , . . . ,  4. 
Order M = 0 corresponds to the i.i.d, model, 
whereas higher orders /l] > 0 assumes that  the 
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source is generating symbols with a probabili ty 
distribution which depends on the M preceding 
symbols. Table 9 shows the trees computed by 
VERBUMCULUS using a common score and param- 
eters. To clarify the differences we produced an- 
other figure where we removed the tree, we con- 
nected common words with a red line, and we cir- 
cled in green the singletons. We observe that  for 
M = 0,1,2 there is some general agreement: in 
particular the word GGCGGC consistently achieves 
the highest score. However, for the order 3 we are 
left only with one word (AGGACC) that  does not ap- 
pear anywhere else. If we had lowered the thresh- 
old to 3, GGCGGC would have appeared among other 
fifteen words. The fourth order tree contains the 
prefix GGCGG, although other three unknown words 
scores a little higher. This phenomenon can be ex- 
pected, since we train our model on the sequences 
themselves. As the size of the model grows its capa- 
bility of prediction grows as well. Therefore there 
are less and less surprising words. In order to get 
roughly the same amount  of nodes in the trees, we 
should have lowered the threshold as M increases. 

M M 0  M M 1  M M 2  

GCGG C T " - " ' ~ T ~ " "  GCG G C T ~ "  ~ G C G G C T  
G C C G G C  

G C C G G C ~  - -  C C . 3 ~  G C C G G c  

.... GCCGCC 

G G C G G C  G G C G G C  - -  - -  G G C G G C  

~ T A  o 

CGGCGG ~ ~ -'-------caGcrA'--------"---~ CG G CTA 
@ ~ C G G C G G  "" ' -~CGGCGG 
CCGCCG 

-- CCGCCG ----------- -- CCGCCG 

. ACC GGC - - " - - ' - " - - ~  - - - - - . ~  A G C C G C  

AC-K~CGC AGCC~ 

MM3 MM4 

GTGAGG 

~ G G C G G  

Fig.9. The collection of words from Table 9. Identical words are connected with lines, while singleton words are circled. 

6.4 T h e  Middle C l u s t e r  

We describe tests conducted with VERBUMCU- 

LUS on other cluster in the same dataset  from [7]. 
This will show that  when the core of consensus 
is not a fixed pa t te rn ,  but admits instead multi- 
valued positions, then it becomes more difficult to 
find by our method.  

The cluster Middle is composed by 63 genes, 
namely: STE5, PBP2,  MRPL37, A P C l l ,  YSW1, 
UBC1, EKI1, CDC10, SPS2, SPS1, SPR6, GPI8,  
CDC26, CDH1, ISC10, CLB6, SUT1, HXT10, 
PES4, SPR28, CDC20, GNP1, SPR3, YCK3. 

FET5,  CDA2, CDA1, SPS18, CDC5, REV7, 
PIG1, NMT1, MIP6, SPO20, CNM67, YCK2, 
SUR4, TEP1, RNHT0, BNR1, CDC3, KARl ,  
CWP1, HYM1, ORC1, NDT80, SPO12, FUS2, 
ORC3, APC9, CDC16, SSP1, PCT1,  STO1, BBP1, 
MUD13, AUT1, HXT14, SPS4, U B C l l ,  SPR1, 
HST1, ECM23, SSP2. 

The family of upstream sequences should dis- 
play frequent occurrences of the MSE sites rang- 
ing from HDVKNCACAAAAD (most stringent, appear- 
ing in 7 sequences) to DNCRCAAAWD (least stringent, 
appearing in 31 sequences). The complication for 
VERBUMCULUS is that  these pat terns  are not fixed 
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str ings but  r a the r  regular  expression,  however t r iv-  
ial: for example ,  N is a wi ldcard denot ing  any le t te r  
in the  set A, C, G, T, whereas R cart be subst i -  
t u t ed  only wi th  a purine (A or G), Y with  a pyrirni- 
dine (C or T), etc. 

We would like to isolate the core CAAA or, even 
be t t e r ,  CACAAA from the ups t r eam regions re la t ive  
to the  genes in the  c luster  H i d d l e .  Six sequences 
share ano ther  p rominen t  motif ,  namely  CWBYSCTTT. 

Unfor tunate ly ,  it seems difficult to catch CACAAA 
in H i d d l e .  T h e  z2-tree in Table 11 shows the 15 
words wi th  highest  z2 score: CACAAA does not  show 
up among them.  We have to lower the  th resho ld  
on tha t  score to 5.0 before we can see CACAAA, bu t  
this  has the  s imul taneous  effect of rais ing the t ree 

size to a lmost  100 nodes. The  same happens  when 
we look for CAAA (see Table  l l - r i g h t ) .  However,  at  
least  CTTT pops  up now among  the  highest  scoring 
motifs.  Table  10 shows the s t a t i s t i c s  of these  and 
o the r  notable  words. 

T a b l e  10. S ta t i s t i cs  for Some Notab le  Words of the 
Clus ter  Middle  (63 Sequences) 

occurrences sequences 

,JJ E(tv) f(w) E,,(w) e(w) 
CAAA 242.76 349 62.37 63 
CTTT 197.31 346 60.82 62 
I rtT 350.02 884 6"2_.65 63 

CACAAA 14, I I ,I0 16.09 37 
TTTTTT 19.8.'2 78 30.,12 46 

T a b l e  11. Middle Cluster ,  T i s  the Threshold  
Score T VI'RI:II:MCt'I,[:S Score T VFt(BUM('UIA;S 

7.0 3.0 -"2 

z4 I0.0 

z0 12.0 

AAAAAA 
CGCCGC 
CTFFFr 
CAGGCG 
C C l l l l  
GTGCGG 

GCGCCA 
GCCACA 
GCCAGC 
TTTGTG TTTTTG 

TTTTT TTTTTT 
l l l t C C  l l l l l C  

Mid.600bps .z2 .L6.X7 

z 2  

cm cTrrT c ' r r r~  

T,~ "r'r'r'r~G 

~cm - c ~  
~ c  11111 I I I I I 1  

TTT 

T r l - r  ~ ~ c  

M~I.600bps,z4.L6.X 10 

CGCATA 
CTCTCT 

CAGGCG 
CACAAA 

CCGCAT 
CCACAA 

GACACA 
GTGCGG 
GCGACG 

GCGCCA 
GCCACA 
GGAAAG 

TGTGTC 
TACTGG 
TACCCG 

rCTC~ 
TCC~C 

-I-rTGTG 
ITGTGT 

Mid.600bps.z9.L6.X12 

z8 6.0 

AAGA 
AAAA 
AAAG 
AGAA 
CGCC 
CTTT 
GAAG 
GAAA 
GCCA TTTC 
TTT TTTG 

TTCT T T T T  
Mid.600bps.z2.L4.X3 

AGGCGG 
CAGGCG 

CCGCAT 
GTGCGG 
GCGACG 
GCGCCA 
TGTGTC 
TACCCG 

Mid.600bps.z8.L6.X6 
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W e  used  o t h e r  scores to  see if  we cou ld  ge t  

CACAAA s o m e w h e r e .  Tab le  11 shows  t h e  z4- t ree  

for t h e  c lu s t e r  M i d d l e  t h a t  suffers aga in  f r o m  t h e  

p r e sence  o f  t h e  fami ly  of  words  A + a n d  T +,  b u t  

no CACAAA. I t  also shows the  zs - t ree ,  b u t  a g a i n  

no CACAAA. Fina l ly ,  a surpr ise .  T h e  z9- t ree  shows  

CACAAA in t h e  h igh  scor ing  p a t t e r n s .  

7 C o n c l u s i o n  

T h i s  p a p e r  desc r ibes  a g e n o m e - w i s e  s ea rch ing  

s y s t e m  for over-  or  u n d e r - r e p r e s e n t e d  n u c l e o t i d e  

mot i f s ,  ca l led  VERBUMCULUS. T h e  m a i n  a d v a n -  

t ages  b r o u g h t  a b o u t  by this  too l  a re  speed ,  low 

m e m o r y  r e q u i r e m e n t s  and  v i s u a l i z a t i o n  capab i l i -  

t ies.  T h i s  res t s  on  the  core  s t r u c t u r e  of  t he  al- 

g o r i t h m ,  wh ich  t akes  a d v a n t a g e  of  s t r o n g  p r o p e r -  

t ies  a t  t h e  i n t e r s ec t i on  of  s ta t i s t i cs ,  p a t t e r n  m a t c h -  

ing  a n d  c o m b i n a t o r i c s  on words.  As a resu l t ,  t h e  

fac i l i ty  a t  t h e  o u t s e t  can  de t ec t  over-  or  u n d e r -  

r e p r e s e n t e d  p a t t e r n s  in l inear  t i m e  a n d  space  for 

m o s t  o f  t he  scores  in use. An  a r ray  of  e x p e r i m e n t a l  

t es t s ,  r a n g i n g  f r o m  s i m u l a t i o n s  on s y n t h e t i c  d a t a  

t o  t h e  d i s cove ry  o f  r e g u l a t o r y  e l e m e n t s  on  t h e  up-  

s t r e a m  reg ions  o f  a set  of  genes  o f  t h e  yeas t ,  was 

used  to  d e m o n s t r a t e  t he  s t r e n g t h s  as well  as s o m e  

l i m i t a t i o n s  of  t h e  tool .  
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