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Abstract 
Within the complex and dynamic environment of the airline industry, any disturbance to 
normal operations has dramatic impact, and usually imposes high additional costs. Because of 
irregular events during day-to-day operations, airline crew schedules are rarely operated as 
planned in practice. Therefore, disrupted schedules should be recovered with as small changes 
as possible. In this article, we propose a genetic algorithm (GA) based approach, in which 
disrupted flights are reassigned within an evolutionary process. Because of the slow 
convergence rate achieved by conventional GA, a special local improvement procedure is 
applied in this approach. Computational results are reported for several disruption scenarios on 
real-life instances from a medium-sized European airline. 

Keywords: airline crew recovery, airline crew rescheduling, airline crew scheduling, 
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1. Introduction 

During the past decades, the airline crew scheduling problem (CSP) has been 
systematically studied by researchers in operations research, and significant results 
have been achieved by applying various algorithms and techniques. Basically, the 
major task of  the CSP is to create a set of  crew schedules with minimum operational 
cost. Every crew schedule consists of several sequences of  flights and other types of  
activities, assigned to crews in a way that each flight is covered exactly (or at least) 
once by the required crew complement (the crew positions and the number of crew 
members required by a flight, e.g., a flight is usually assigned to one captain and one 
first officer for a short-haul cockpit crew problem). 

Apart from the consideration of  operational cost, labor regulations and agreements 
imposed by civil aviation authorities, union contracts, and company policies have to 
be fulfilled, and the workload should be evenly and fairly distributed among home 
bases and crew members [Suhl (1995); Kohl and Karisch (2004)]. More recently, due 
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to the increasing demand for a high quality-of-life level for crews, such problems 
become even more difficult to solve. 

However, frequent disruptions, such as aircraft mechanical problems, severe weather 
conditions, crew unavailability, and air congestions, often imply high additional costs 
in today's complex operational environment. In practice, schedules are seldom 
operated exactly as planned; they are rather constantly disrupted by irregular events 
during day-to-day operations. Consequently, disturbances to normal operations 
change the planned schedule totally or at least partly. More importantly, tremendous 
costs have to be paid in order to recover from them. Throughout this article, we use 
the term crew recovery problem (CRP) for this type of problem. 

Prior to the discussion of recent research on CRP in Section 2, we first refer some 
work on the CSP within past decades, because of the similarity between both 
problems. The CSP is typically divided into two sequential sub-problems [Barnhart et 
al. (1999)]: First, in the airline crew pairing problem (CPP) a set of pairings is 
generated that minimizes operational cost in such a way that each flight belongs to 
exactly one pairing. Second, the airline crew assignment problem (CAP) or airline 
crew rostering problem assigns generated pairings together with other pre-scheduled 
activities (trainings, vacations, and requested off-duty periods), which usually 
includes three practical approaches: bidlines, personalized rostering and preferential 
bidding [Kohl and Karisch (2004)]. Some researchers recently focus on integrated 
approaches combining the two steps into one [Guo et al. (2003)]. [Hoffman and 
Padberg (1993)] proposed a branch-and-cut method to solve the CSP optimally, while 
more recent approaches based on the branch-and-price technique show the capability 
to reduce the total solution time by tuning for specific problems [Barnhart et al. 
(1998)]. Our previous work on airline CSP was based on a so-called state-expanded 
aggregated time-space network flow approach [Mellouli (2001); Guo et al. (2003)]. In 
that approach, we developed the basic idea of applying states used by the vehicle 
maintenance routing problem to solve the airline CSP, and combined crew pairing 
and crew assignment in a partially integrated way that a certain interaction between 
these two steps is realized. Some heuristic approaches have been developed for the 
airline CSP as well, such as a GA-based approach for solving the airline CAP by [El 
Moudani et al. (2001)]. 

In this article, we propose a genetic algorithm based approach to solve the airline 
CRP. We introduce a novel two dimensional representation that is encoded with a 
matrix indicating the direct assignment of the flights. We first briefly describe the 
problem characteristics and the formulation in Section 2. It is followed by a detailed 
introduction to the genetic algorithm in Section 3. Furthermore, we introduce 
dedicated heuristics together with a local improvement procedure. Section 4 reports 
computational results tested on real-life instances from a medium-sized European 
airline. 
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2. The Crew Recovery Problem 

In this section, we describe the airline crew recovery problem regarding its specific 
characteristics, and discuss a mathematical model for such problem. 

2.1 Process and Problem Characteristics 

As mentioned above, the process associated with the CRP takes care of disrupted 
situations in which original crew schedules require several or major modifications. 
When disruptions occur, a series of flights have to be delayed and even cancelled, and 
often additional crews and flights are required. The main task of rescheduling is to 
reassign disrupted flights as well and quickly as possible, and substantially assist 
airline coordinators in evaluating the updated plan. 

Basically, three resources must be recovered in disrupted situations: aircraft, crew, 
and passengers. Each resource has a dramatic impact. For example, a shortage of 
aircraft may cause not only unexpected delays and cancellations, but also additional 
difficulties to the later crew rescheduling, i.e., crew may lose their connections or get 
stuck in an unfavorable airport. Usually, the complete recovery problem is usually 
decomposed into sub-problems, each is solved independently. The aircraft recovery is 
solved first to restore a flight schedule with respect to all maintenance requirements. 
The impact of disruptions upon passengers is reduced as much as possible by 
minimizing their inconvenience, and missing connections. Finally, crew has to be 
rescheduled under the updated situation. The way to decompose the entire recovery 
problem differs from airline to airline because of heterogeneous company rules. The 
reason of applying a sequential approach relies on the fact that a complete integration 
of the three phases is unrealistic from a practical point of view. However, better 
overall solutions may be achieved by allowing collaborations between the three steps 
of the sequential approach, and the first research results on this type of integrated 
disturbance measurement have appeared recently [Carmen Systems AB (2004)]. 

To our opinion, the work in solving the airline CRP is only at the beginning today. 
[Wei et al. (1997)] proposed an optimization model for handling disruptions, while 
[Yan and Lin (1997)] described the rescheduling problem caused by the closure of 
airports. Further systematic studies of the crew recovery problem were conducted by 
[Stojkovi6 et al. (1998)], in which they solve such a problem as an integer nonlinear 
multi-commodity network flow model with time windows and additional constraints. 
Dantzig-Wolfe decomposition combined with a branch-and-bound method is 
described in detail. Furthermore, [Lettovsk~ et al. (2000)] proposed a pairing 
generation method working together with special branching strategies. [Yu et al. 
(2003)] described an award-winning real-life application employed by Continental 
Airlines in the US, in which the problem is treated as a set covering problem and a so- 
called generate-and-test heuristic is applied to generate rosters. Moreover, some 
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studies about airline irregular operations are also discussed by [Irrgang (1995)] and 
[Rosenberger et al. (2003)]. 

2.2 Problem Formulation 

In the following, we assume that the aircraft recovery problem has been solved. In 
other words, there exists a modified flight schedule where some flights may be 
cancelled, delayed, rerouted or added. We define all these flights as "affected flights". 
The goal is now to provide an adequate crew for each (affected or not affected) flight, 
so that the updated crew rosters, with minimal variation from previously planned 
rosters, produce as little additional cost as possible. In addition, we consider different 
crew positions separately, i.e. captain or first officer, as it may reduce the size of the 
problem without influencing the quality of the final result. 

Similar to the airline CSP, the airline CRP can be mathematically formulated as a set 
partitioning type model, where a set of affected flights caused by disruptions needs to 
be assigned or reassigned exactly once. These disrupted flights grouped with 
previously planned flights are chained into a huge amount of rosters, which represent 
all possible individual schedules for crew members within the recovery period (an 
interval of time usually started from the earliest disruption, and ended within the day 
or some days later, within which the rescheduling is carried out). Each crew member, 
therefore, will be finally assigned at most one revised schedule for the examined time 
period with respect to all regulations and rules. 

In this approach, we apply the concept of integration, i.e., the problem is solved in an 
integrated way instead of addressing pairing generation prior to the assignment phase. 
Rosters for individual crew members are generated directly from the flight leg (a non- 
stop flight with its crew complement and fleet requirements) level. This is only 
possible because the recovery period is normally much shorter than the period 
examined in the planning phase. The problem is treated as a set partitioning model, 
where a set of rosters is given and needs to be assigned to a certain number of 
individual crew members, by which all the flights are covered exactly once. We start 
with the following definitions prior to the complete model: 

F ,  set of flights 

R ,  set of possible rosters 

W, set of crew members 

c~, operational cost of assigning the roster i to the crew member w 

Ur, additional cost, if the flight f is assigned to a standby or reserve crew 

v~', the penalty to changes (variation) from originally planned schedule 
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aj~ = 1, if fiight f is included in the roster i ,  0 otherwise 

b,.,,, = 1, if roster i belongs to crew member w,  0 otherwise 

The binary decision variables are: 

x!" = 1, if roster i is assigned to crew member w ,  0 otherwise 

yf = 1, if flight f is not assigned to any crew member in service, 0 otherwise 

Therefore, the model can be expressed as: 

min. Z Z (c; ~ + v,~)x; ~ + Z ufyf (1) 
w~W i~R .]'~F 

s.t. ~ a ~ x ] ~ + y i = l  Vf ~F (2) 
weW ieR 

_<l Vw W (3) 
ieR 

x,?~ {0,1} VieR,  w~W 

Yr ~ {0,1} V f  ~ F 

where the first part of  the objective function (1) denotes minimizing the total 

operational cost c ; ' ,  together with the disturbances to the crew v,. ~ realized by 

expressing the changes in a monetary sense, v;" equals zero, if the corresponding 

roster is identical with an original roster. Details of their calculation are given in 
Section 3.5. Those flights which can not be assigned to any crew member in service, 
requiring reserve and standby crews, which imposes additional costs u f .  Constraint 

(2) guarantees that all flights ( f  • F ) are covered exactly once, while constraint (3) 

ensures that each crew member (w  ~ W ) takes at most one roster (i  ~ R ). 

Some preliminary work was done to solve the above model with several instances. 
However, the results indicate that only relatively small real-life problems are suitable 
to be solved directly by standard integer optimizers, such as ILOG CPLEX [ILOG 
(2002)] and MOPS [Suhl (1994)]. Medium- and large-sized instances require too 
much computational time that is apparently impractical in reality, especially in the 
case that the recovery period is comparably long, e.g., for large instances it often 
takes more than 30 minutes to be solved. 
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Due to the extremely large number of possible rosters, common methods apply 
efficient roster generation procedures to build a model gradually. A number of 
approaches follow the idea of column generation to implicitly construct the model. 
Consequently, the total solution time can be significantly reduced, since only a small 
set of possible rosters is used. For further details we refer to [Barnhart et al. (1998)] 
and [Fahle et al. (2002)]. In the following sections, we will fully describe a GA-based 
approach and report our computational results. 

3. A Genetic Algorithm Based Solution Method 

Within the past years, genetic algorithms were successfully applied to many 
applications, as they can gradually find better solutions during the course of an 
evolution. A lot of research has been carried out after the basic concept of genetic 
algorithm was introduced by [Holland (1975)]. For example, as a combinatorial 
problem, the classical set covering problem (SCP) was systematically examined by 
[Beasley and Chu (1996)], who observed the potential for solving such type of 
problems. 

As an analogy to the theory of evolution in biology, a genetic algorithm basically 
works with a group of candidate solutions (individuals), called population. Each 
individual in the population is encoded into a specific representation with regard to 
the problem. The new generation (offspring) is produced from one or more 
individuals (parents) by applying recombination methods called variation operators, 
e.g., crossover and mutation. Every individual is measured and attached a value 
~tness value) showing how "good" it is. The selection of parents and the survival of 
offspring may be determined randomly or based on their fitness value. In this way, 
the convergence to an acceptable or optimal solution is accomplished. 

In our approach, we customize the conventional genetic algorithm into a hybrid 
genetic algorithm. It includes a set of heuristics with the knowledge of this specific 
problem domain, together with a so-called local improvement procedure acting as a 
supplementary local search to the genetic algorithm. Details of the approach, such as 
the coding scheme, special variation operators, and the fitness function are described 
in the following subsections. 

3.1 Chromosome Encoding 

The most natural representation of a chromosome is probably a one-dimensional 
string, such as the ordered city list for the traveling salesman problem [Michalewicz 
and Fogel (2000), chap. 7] and the activity permutation list for the resource- 
constrained project scheduling [Hartmann (1998)]. However, according to our 
experience, string representation is not suitable to solve the airline CSP and CRP 
because of the complex structure of their solutions. We propose a two-dimensional 
matrix to represent a direct assignment of flight legs to crew members. Part of the 
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chromosome can be seen in Fig. 1. Each column indicates a certain time slot (each 
time slot represents one hour period), within which a number of flights depart. Each 
row stands for a roster for a specific crew member, i.e., the number of  rows is equal to 
the number of crew members. All items in the cells of  the matrix represent the 
sequential numbers of  the flight legs. Pre-scheduled activities, such as vacancies, 
training and requested off-duty etc., are represented as flight legs with an additional 
characteristic that they are fixed and cannot be changed and/or removed from the 
given cell (marked with asterisk, e.g., flight leg F1 in the first column). 

Changes to 
assumptions: 

Time Slots t 

J~ 
<9 
'E o F3 t F9 I 

~ F6 F l l  | == 
E ~. FI* 

~.~ 
~o F5 I FIO" 

1 F4 I F8 I 

Figure 1. Two-dimensional representation 

the crew schedule in such a representation underlie the following 

Flight legs can only be moved between rows but cannot be moved to different 
columns as the departure times are fixed to exactly one time slot (column) 

�9 One cell in the matrix can only contain at most one flight leg, because no pair 
of two sequential flight legs depart within the same time slot. (it is impossible 
to service two flights in less than one hour) 

�9 A flight leg can only be assigned to one crew member, as only one crew 
position is involved at a time, i.e., each flight leg is unique within one matrix. 

3.2 Initialization 

Initialization is a process to generate the initial population which allows the 
application of variation operators. A certain number (population size) of individuals, 
exhibiting equal or similar genome structures, is created either randomly or 
heuristically. Generally speaking, seeding with a randomly generated solution in the 
initial population comes along with wide diversity. However, some researchers have 
reported that a population with a higher quality starting solutions obtained from 
dedicated procedures can help the algorithm perform faster and find better solutions 
[Reeves (1993), chap. 4], but the risk of premature convergence also increases. 

Apart from the random initialization of  the population, two other strategies are 
applied to generate initial individuals: The first initialization heuristic checks the 
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arrival time of the previous flight leg, once a flight leg has been assigned. If the flight 
leg does not fit in a specific position of the matrix, another crew member needs to be 
evaluated. If no further row is found, the flight leg is assigned randomly. By using 
this heuristic, the individuals start with a higher fitness value, although most of them 
may be still infeasible. However, the drawback is that individuals sometimes get very 
similar and the risk of ending up in local optima increases. 

One part of the objective function is to minimize the changes to the original schedule, 
i.e., parts of the final solution stay unchanged. Therefore, we take the advantage of 
such characteristics of the problem, a procedure, evolutive initialization, is 
implemented. It generates a certain number of individuals by keeping unaffected 

flights F,,,,ut f (F,,n~lr c F )  intact and assigning the rest to crew members who are able 

to provide the service (see Fig. 2). In other words, most crew members do not change 
their schedules, if they are not directly influenced by current disruptions. 

Procedure evolutive initialization 
begin 

remove_affected_flights (original_schedule) 
foreach f 

W = feasible crewmember_set (D 
w = select_crewmember_randomly (W) 
assign (fi w) 

endfor 
end . . . . . . . . . . . . . . . . . . . . .  

Figure 2. The procedure of evolutive initialization 

According to our experience, in order to apply an effective genetic algorithm, an 
initial population with a high diversification is very useful. This can be achieved by 
combining the three methods described above, i.e., random, heuristic and evolutive 
initialization procedure. 

3.3 Variation Operations 

For the string representation based genetic algorithm, two commonly applied 
operators are two-point crossover and single bit mutation. However, specific 
operators have to be introduced for this real-life complex problem structure. In this 
paper, two main categories of variation operators were applied. The crossover 
operators select two individuals as parents and recombine them; mutation operators 
are applied on only one individual. 

3.3.1 Crossover Operators 

We started with implementing a simple crossover operator, row-based crossover, in 
which a given range of rows of one p~rent are replaced by corresponding rows from 
the other parent. However, as a consequence a flight leg is often served by more than 
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one crew member in the offspring, or a flight leg is not included at all. Therefore, we 
propose a correction procedure to deal with both effects by inserting missing flight 
legs, or deleting doubled flight legs randomly. 

Figure 3. Column-based crossover operator 

In contrast to the row-based crossover, a column-based crossover was designed. Its 
basic idea is to construct new offspring in a way that each column is selected 
randomly or heuristically from the parents chosen. As illustrated in Fig. 3, in order to 
maintain the feasibility of  the offspring, this special crossover tries to preserve "good" 
ranges of  the columns containing valid pairings. Feasibilities are preserved, when two 
consecutive flight legs are connected at the same airport, or there is sufficient time 
between the two flight legs. From the illustration, one may note that the sequence of  
F9 and F 10 can express infeasibility, because the departure time of F 10 is earlier than 
the arrival time of F9, or the ground time between the two flight is not adequate. 

3.3.2 Mutation Operators 

The intention of mutation operators is to avoid getting trapped in local optima through 
increasing the diversity of the population. We introduce two mutation operators 
which have been applied in our approach. 
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Figure 4. Mutation operators 

First, a basic mutation chooses randomly one flight leg from a chromosome to be 
mutated and one crew member in the crew member set F .  If the position of the 
chosen flight leg is empty, it is moved to that position (see Fig. 4.a). If not, these two 
flight legs are swapped (see Fig. 4.b). Nothing is changed, if the new position is 
exactly the same to the current position. 

The second mutation operator, advanced mutation, includes a heuristic procedure that 
substitutes the random selection of the new crew member described above. After a 
flight leg is randomly chosen, a new crew member (one row in the matrix) is selected 
and evaluated according to certain restrictions: We take into account whether the 
possible transition and subsequent flight legs are suitable for the inserted flight leg in 
terms of checking the departure and arrival airport and the underlying times. The 
corresponding cost is calculated for assigning the flight leg which includes the cost 
for flight duty time, maximum duty period time, hotel stays and rest periods (more 
details can be found in Subsection 3.5). The crew member with the lowest cost is 
chosen, and the flight leg is then assigned to that crew member. Similarly, if some 
flights already occupy the position examined, then these two flight legs are swapped. 
Furthermore, a complete sequence of flights is moved to the new crew member, if a 
sequence of flights is recognized as "well-formed" (normally one day work for a crew 
member, see Fig. 4.c as an example). Such a sequence of flights can be identified by 
checking arrival/departure airports, as well as arrival/departure times of the flights. 

3.4 Local Improvement 

Although the traditional genetic algorithm works well on some problems, hybrid 
genetic algorithms, especially in combination with algorithms reflecting specific 
knowledge of the problem, perform mostly better. 
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As operators presented above might produce an infeasible solution, a dedicated local 
search procedure, local improvement, is applied under a specified probability directly 
after the generation of new offspring. Strictly speaking, the purpose of such a 
procedure is to improve one solution by finding one of its feasible neighbor solutions. 

Basically, this procedure goes through all infeasible assignments in the solution, and 
repairs them by reassigning the flights to other crew members. Flights are assigned to 
randomly selected crew members, while feasibility is maintained by adding a filter to 
select only possible crew members, or by swapping flights which will possibly 
improve the current solution. The reason why we choose such a heuristic rather than 
other well-known modern heuristics (e.g., simulated annealing etc.), is that the 
running time for those type of local searches is usually not acceptable in practice. 

3. 5 Evaluation 

According to the nature of the evolution, one has to find out which individuals may 
survive in what sense of the measurement. A proper evaluation function is the right 
way to do so. The evaluation procedure is applied to each individual, determining its 
quality compared to the whole population. In this approach, real cost, virtual cost and 
change cost are applied to the individual as the objective is to minimize the occurring 
cost calculated by the objective function. 

Real costs Cop I (operational costs) are the costs that appear in the algorithm and in 

reality if the computed solution is applied in the final schedule. They consist of hotel 
cost that arises when a crew member takes an overnight rest at another airport rather 
than his or her home base, and the proceeding cost occurring when a crew member is 
transited from one airport to another by means of taxi or train. 

Virtual costs C,.,r have been implemented as a penalty for rosters that do not comply 

with restrictions. In the case that it is impossible to create a feasible connection 
between two flight legs, a high penalty is introduced. Likewise, certain penalty is 
imposed, if the time between two flight legs is too short for check-out and check-in, 
or the next flight starts even earlier than the arrival time of the previous flight. 

In addition to these main restrictions, there are other rules and regulations which the 
algorithm has to take into account, defined by the airline, collective labor agreements 
and other regulation committees such as governmental instances. For example, the 
following regulations cause virtual cost if one or more of the restrictions is not met: 

• Maximum daily/weekly/monthly flight hours 
• Minimum rest time between flight duties 
• Maximum sequential working days and minimum weekly rest days 
• Weekly rest at crew member's home base 
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Change cost Cchg is the sum of change penalty vWi of all the rosters in the solution. It 

is calculated in such a way that a certain amount of penalty is set to each change 
depending on how much the flight is involved in the situation and which category the 

cc,,  - C f change belongs to. It can be calculated as - --~-'~f~F chg , where 

0 

c L  : ,  P1 

(d),,,,. P2 

if the change is in the disrupted period, 

and the crew member is originally affected; 

if the change is in the disrupted period, 

and the crew member is not originally affected; 

otherwise 

A constant penalty P1 is imposed if the change occurs within the disrupted period 
(the period starts from the departure time of the earliest affected flight to the arrival 
time of the latest one) and the corresponding crew member is not originally affected 
by disruptions. In other words, there is no direct need for this specific crew member 
to change his/her original schedule due to disruptions. A higher penalty is given in the 
case that the change occurs earlier or later to the disrupted period. While d is the 
number of days away from disrupted period; D is the total examined time period in 
days; P2 is the penalty for those changes. The exponent sl is set to 1 in this 
approach. 

The evaluation is an adaptive function that depends on the stage of the evolution 
process. In the early stage, most of the individuals are infeasible, therefore, the quality 
measurement is realized by considering the first two costs, real and virtual cost. After 
a certain number of generations or reaching a given percentage (e.g., 80% in our 
approach) of feasible solutions in the population, the operational cost and change cost 
become the major part of the evaluation. 

3.6 Selection and Replacement Strategies 

To guarantee an appropriate selection and reproduction according to the fitness value 
of an individual, a dedicated probability is calculated. Since the variance between 
fitness values can be quite large, the risk that some individuals dominate the whole 
population after a few generations must be taken into account. Hence, ranking-based 
selection strategies rather than strategies based on the absolute fitness value seem to 
be more applicable for this specific problem. For more discussion we refer to 
[Michalewicz and Fogel (2000)] and [Yhierens and Goldberg (1994)]. 
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[B61te and Thonemann (1996)] discussed a selection scheme which operates based on 
the ranking of individuals. However, in order to differentiate individuals more 
precisely, a revised formula is used in this approach. In (4), let R(i) be the rank of an 

individual i according to its fitness value and n be the total number of individuals in 
the population. Then, the probability P(i) that  individual i is selected for 

reproduction is calculated with the following formula: 

R(i)" 
P(i) = (4) 

n 

)-~.j=, (R(j)")  

With parameter s, it is possible to control the probabilities according to the ranks 
more specifically. If s > 1, the differences between two probabilities of individuals 
increases, so that better individuals have not only a higher but an exponentially higher 
chance to be selected. 

In comparison to [Holland (1975)], the population in this approach is not replaced by 
the new offspring as a whole, and the best individual is always preserved during each 
iteration. A certain percentage of individuals in the population is replaced by their 
offspring. In our approach a value around 80% is usually adopted in the experiments. 

4. Computational Results 
Several experiments were conducted based on the real-life practical setting of a 
medium-sized European tourist airline. The network is a point-to-point type of 
network with several home bases (in contrast to the hub-and-spoke structure often 
observed in the US). Within such a network, multiple home bases are located in 
Germany, while many other airports are mainly spread out around Europe. The input 
data are the real life flight schedules of one fleet together with the information 
regarding the crew members' availability and their home bases and destination 
airports. An overview of the seven tested instances is shown in Table 1. 

Before elaborating on the details of the observed results, a brief introduction to the 
testing scenarios is given (see Table 2). We classify all disruptions into three main 
categories by their scale of severity, namely, minor, medium, and major disruptions. 
This can be understood as the total number of affected flights together with those 
subsequent flights which are influenced by them, indicating how many flights have to 
be rescheduled at least. In addition, the number of affected home bases and crew 
members as well as the length of the recovery period are further crucial factors for the 
difficulty of the instances. 
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Table L Problem instances 

Instance Home Hotel Airports Flights Crew Duration 
bases bases members (day) 

A1 6 8 52 159 47 15 
A2 5 10 57 228 42 15 
A3 6 13 66 268 42 10 
A4 6 14 65 275 42 10 
A5 6 14 66 406 42 15 
A6 6 16 69 415 42 15 
B1 11 21 66 1287 188 10 

The approach described in this article has been implemented in ANSI C++ language, 
and numerous tests were conducted on a regular PC with Intel Pentium IV 2.2 GHz 
CPU, 2 GB main memory, running Microsoft Windows XP Professional operating 
system. 

Table 2. Disruption scenarios 

Category Scenario Affected Aggregated Affected Affected Recovery 
flights affected home crew period 

flights bases members (hours) 

Minor 

A1S1 1 1 1 1 15 
A2S2 1 2 1 1 12 
A3S3 2 3 1 2 16 
A4S4 2 2 2 2 20 

Medium 
A5S5 4 5 1 4 24 
A5S6 4 5 1 4 36 
A6S7 4 3 2 4 40 

Major A5S8 5 7 1 5 72 
BIS9 13 15 1 13 111 

After a number of tests, the results show that the best parameter setting for one 
instance does not perform the same in all the other instances, e.g., the number of 
generations for solving a small instance is relatively lower than that for large 
instances. Furthermore, a larger population size normally produces better results (see 
Fig. 5, the test is based on instance A5), the best size, however, varies from instance 
to instance. Based on the results of the experiments, a population size of 25 shows 
more efficiency for most medium-sized and large-sized of  instances, while a setting 
with 45 or more performs better for small instances. 
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Figure 5. Effect of the population size 

The local improvement procedure usually produces faster convergence and better 
results. The comparison indicating the difference between using and not using the 
local improvement procedure can be seen in Fig. 6. In this example, we take the 
scenario A6S7, and the improvement procedure starts after 300 generations. As one 
can see, the best individual is always better than the one found by the algorithm 
without the local improvement after 300 generations. Because the local improvement 
method maintains feasibility of new offspring, the speed of improving solutions, 
therefore, can be much faster. 
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Figure 6. Comparison between using and not using local improvement 
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Table 3. The performance of different crossover operators 

Row-based Column-based Mixed 
Instance & crossover crossover crossover 

scenario 
Cost * Time ** Cost Time Cost Time 

A1S1 1300 9.6 1300 9.6 1300 9.6 
A2S2 6950 12.9 6780 13.2 6880 12.8 
A3S3 8260 14.2 8260 14.7 8260 14.2 

A4S4 11000 14.3 11590 14.5 11320 14.5 
A5S5 16390 21.8 16165 22.3 16125 22.3 

A5S6 15750 22.4 15890 22.6 15870 22.3 

A6S7 18635 22.7 18195 22.7 18430 23.3 
A5S8 15965 23.2 16470 23.2 15315 29.9 

B1S9 26290 372.8 25945 363.2 26530 482.8 

* Operational cost. ** Computational time for each generation in millisecond 

The result produced by the column-based crossover operator is slightly better than 
that produced by the row-based crossover. Interestingly, the combination of these two 
operators with a certain probability (0.5 used in the example) sometimes performs 
even better than one crossover alone, but it needs mostly more computational time. 
The best solutions found by using the two different crossovers and the combination of 
both are listed in Table 3. In Fig. 7, the general performance on instances A5S5 and 
B 1 $9 is presented, in which the column-based crossover in both examples produces 
faster convergence and better final solutions. 
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Figure 7. The performance of  crossover operators 

Regarding the quality of the final solution, the algorithm can find an optimal solution 
rather fast for small-sized instances, but it turns out to be difficult to find an optimal 
solution for larger problems, e.g., A6 and B1. This is true especially when the 
recovery period is comparably long, i.e., the total number of  involved flights is large. 
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However, the solutions finally found by this algorithm are all reasonable in terms of 
the minimization of operational cost and the variation from the original crew 
schedule. The results also show that the final solution, for most instances with minor 
or medium disruptions, are feasible, and do not produce any further operational cost. 
In addition, for most cases only a limited number of notifications is required, which is 
acceptable in practice. Most importantly, the overall solution time required, usually a 
few minutes at most, is much shorter than what a column generation-based approach 
needs, and reasonable solutions can be found. It is particularly useful in the situations 
under time pressure. 

5. Conclusions 
In this article, we present a GA-based heuristic which aims to solve the difficult real- 
life airline CRP for unexpected operational situations caused by disruptions. We 
propose a new structure for the chromosome representation. Accordingly, several 
variation operators were implemented, and the paper shows their capability of finding 
"better" solutions step by step. 

With the help of our previous experience in studying the airline CSP, various 
heuristics we applied show the efficiency in a way that these ad hoc methods aim to 
account for specific characteristics of the problem. And the proposed solution strategy 
in this paper has proven to be effective. This was only achieved because several 
dedicated heuristics described above have been used to support the exploration of the 
solution space. Nevertheless, the genetic algorithm has to be customized for each 
problem instance that is solved, especially for large instances. Therefore, deeper 
investigations on the examined instances need to be conducted in the future, so that 
the combination of several cooperative fine-tuned operators and more reasonable 
parameter settings will perform even more efficiently. 
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