
J. of C o m p u t . Sci. & Technol . March 1996 Vol.11 No.2

N N F and N N P r F Fuzzy Petr i N e t s Based
on Neura l Network for K n o w l e d g e

Representat ion , Reason ing and Learning

Zhou Yi (N "~) and W u ShiLin (~ - ~)

Department of Computer Science, Fudan University, Shanghai 200433

Received December 14, 1994; revised July 7, 1995.

A b s t r a c t

This paper proposes NNF - - a fuzzy Petri Net system based on neural
network for proposition logic representation, and gives the formal definition
of NNF. For the NNF model, forward reasoning algorithm, backward reason-
ing algorithm and knowledge learning algorithm are discussed based on weight
training algorithm of neural network - - Back Propagation algorithm. Thus
NNF is endowed with the ability of learning a rule. The paper concludes with a
discussion on extending NNF to predicate logic, forming NNPrF, and proposing
the formal definition and a reasoning algorithm of NNPrF.

Keywords : Fhzzy Petri net system, NNF, NNPrF, neural network, forward
reasoning, backward reasoning, learning.

1 I n t r o d u c t i o n

1.1 B a s i c s o f N e u r a l N e t w o r k

A neural network is composed of processing units (corresponding to neurons
in human brain) and the connections linking them into a whole. Fig.1 shows the
working model of a processing unit. (Note: In Fig.1 xi is the i-th element of the
n-dimension input vector; wi is the weight of the connection between the i-th input
element and the processing unit; 0 is the threshold of the processing unit; y is the
ou tpu t of the processing unit.) Fig.2 shows three kinds of usually used f u n c t i o n / .

input xz output 0 _ ~ 0 fl
T ~ - - I ?A1~ - I l

n

i=O i=O

Fig. 1 Fig.2

A lot of neurons are interlinked to make up a neural network. A neural network
can work dynamically. To some extent, it is similar to human thinking, and it does

Research supported by the National High-Tech R/D Programme of China.

~h

134 J. of Comput. Sci. & Technol. Vo1.11

imitate human brain. A neural network is characterized by its high efficiency, self-
organization, fuzzy representation and reasoning, and the ability of self-learning.
It has been applied to the domains of pattern recognition, signal processing and
knowledge engineering, and has been proved to have good efficiency.

1.2 S h o r t c o m i n g s o f t h e P r e s e n t M o d e l s o f P e t r i N e t in R e p r e s e n t -
ing F u z z y L o g i c

Murata [2] has proposed the ways for representing proposition logic by using
P /T nets, representing first-order predicate logic by using P r / T nets and developed
the ways for logic inference. In the reasoning of the P / T net model of proposition
logic, if there is a token in a place, then we consider that the statement the place
corresponds to is true, else we consider the statement is false. So, given the flowing
character of tokens, we can only see that there are no tokens in these places after
they have flowed through places. Then we consider the statements corresponding to
these places to be false, or we don't know whether the statements are true or false.
But actually, these are statements we have conceived as true. This is of course an
error in logic. Moreover, the flowing character of tokens brings about the conflict
of transition firing. But this conflict doesn't exist in logic inference. So there is
inconsistency between proposition logic and P / T net model. This inconsistency
also exists between predicate logic and P r /T net model. And it is brought into the
representation of fuzzy logic based on P / T net and P r / T net models.

Fig.3
In Fig.a, vl is the belief strength of rule tl , 0 __ vl <_ 1, and the truth value of

the token in A is x. In the present fuzzy Petri net models, after firing t l , x = x * v l ,

then x will become smaller and smaller. This is also an error in logic brought in by
the flowing of tokens.

The present fuzzy Petri net models for knowledge representation and reasoning
have brought in the concepts of truth values of the conditions and conclusion in a
rule and the belief strength of the rules. But when they are to decide which rule
will be used, they still insist on that it is only when all of the conditions of a rule
are matched that the rule can be used. That is to say, the transition is enabled
only when every input place of a transition has tokens. This is a way that equally
processes every condition. But in practice, the importance of different conditions
of a rule is different. So we shall give different conditions different weights. For
example, in the rule "if a thesis demonstrates originality, its proposition is correct,
and it is written clearly, then the thesis can be published", it is obvious that the
first two conditions are more important than the last one.

So, based on neural networks, we can propose NNF - - a new fuzzy Petri net for
proposition logic. NNF has token propagation property, and uses weighted fuzzy

No.2 N N F and N N P r F 135

logic. F r o m th i s we e x t e n d N N F to f i r s t - o r d e r p r e d i c a t e logic a n d f o r m N N P r F - -

f u z z y P e t r i ne t for f i r s t - o r d e r p r e d i c a t e logic.

2 C o n c e p t s , R e a s o n i n g and Learn ing o f N N F A
N e w Fuzzy Petr i N e t B a s e d on N e u r a l N e t w o r k for
P r o p o s i t i o n Logic

2 . 1 C o n c e p t s

2.1 .1 F o r m a l D e f i n i t i o n o f N N F - N e t

= (P , T , F , W , V , O , a , Y , Mo) is an NNF, iff
(1) (P, T, F) is a finite Petr i net. P is a finite set of places, and T is a finite set of t ransi t ions.

A t rans i t ion in N N F is someth ing like a neuron in a neura l network. F is a finite set of
arcs connect ing places and transi t ions. T h e y have the charac ters of:

P N T = r _C (P • T) U (T x P) ;
P U T ~ r dora(f) U cod(f) = P U T,

where dom(F) = {x IY , (x , y) E f } , cod(F) = {x IY , (y , x) E F} ; Vt E T, t has only one
o u t p u t place.

(2) W : F --+ [0, 1] is an associat ion weight function.
V f E F, W (f) = wi, w, is the weight of arc f , w, E [0, 1].

(3) V : T ~ [0, 1] is an associat ion function.
Vt E T, V(t) -- vt, vt is the belief s t r eng th of the p roduc t ion rule cor responding to
t rans i t ion t.

(4) 0 : T --* [0, 1] is an associat ion function.
Vt E T, 8(t) --- 0i, 0~ is the threshold of t rans i t ion t.

(5) a : Vp E P, if there is a token cr in p, then a(cr) = a l E [0, 1], a , is the t r u t h value of
the token ~,. Token a in p with the t ru th value of a i represents t ha t the t r u t h value of
the s t a t e m e n t corresponding to place p is hi .

(6) Y : T --- the set of different kinds of o u t p u t functions, Vt E T, t is assigned an ou tpu t
funct ion f . Fig.4 shows two kinds of ou tpu t functions f used in NNF, i.e. f~, f~.

f f[f ~f:
/

+1 /

gt, / / 0.5 '

e F.~l *~1 F.~,l *~1

Fi ;.4. Two kinds of output functions used in NNF.

We in t roduce two kinds of f in N N F - - f~, f~.

�9 f v ~ , ~ , ~ , , o<(F_,~,,~,-o),v~<l
f~(~, 0, ~ w, �9 ~,) = / 0, E w, * ~, - 0 < 0

1, (~-~'~ wl * xi -- O) * vt > 1

' / ~ / (~ + ~ (E~"~'-~ E ~ , , ~ , - 0 > 0
f ; (v t , 0, ~--~ w, * x ,) : 0, ~-~wi * x , -- 0 < 0

k

(7) M0 -- (c~0, . . . , c ~ . . .) , c~ is the t ru th value of the token in place Pi. M0 initializes the
d i s t r ibu t ion of tokens with belief s t rength in NNF.

136 J. of Comput. Sci. & Technol. Vol.ll

2.1 .2 Trans i t ion R u l e

In Fig.5 of transition t, input places are P0, - - . ,P,~-I, the t ru th values of the
tokens in them are x 0 , . . . , x,~-l, the weights of the arcs connecting P0,. �9 �9 P,~-t to
t are w0 , . . . ,w,~-l, the threshold of t is 0, and the belief s t rength of t is yr. The
outplace of t is P; the weight of the arc connecting t to p is w.

I f ~ wl * xi < 0, t h e n t c a n n o t be fired;
else t is fired;

The t ruth value of the token in P is y' = max(y, w �9 f (~ wi * xi - 0)). (y is the
t ru th value of the token in P before firing t. If there is no token in P before firing
t, then y = 0.) Fig.5 shows the procedure of transition firing.

vo C:: po . " . ,"": ; .~ ,..oO*

..... i ~"
~) P

W . W

P ~ - I P a - 1

before firing t after firing t

2.1 .3 I n c i d e n c e M a t r i x
Fig .5

In an NNF-net that has n transitions and m places, its incidence matrix is
C -= [Cij] (1 < i < n, 1 < j < m). Every row of C represents a transition; every
column represents a place, Cij = w(t i ,pj) - w(pj , ti).

2 .2 N N F M o d e l f o r P r o p o s i t i o n L o g i c

NNF separates facts from rules. The NNF-net s t ructure only represents rules.
In an NNF-ne t with m places, facts are represented by M0 = (a 0 , . . . , h i , . - �9 a m - t) .

If ai = 0, then there is no token in Pi.
If 0 < ai < 1, then ai is the true value of the token in Pi - - the t ru th value of

the fact which Pi is corresponding to.
The rules tha t can be represented in NNF are weighted product ion rules. Every

rule has two parts: conditions and conclusions, which are all weighted conjunctive or
disjunctive forms. And we call the two kinds of forms as weighted s ta tement forms.
One character of NNF is that. i t doesn' t distinguish weighted conjunctive forms from
disjunctive forms, because computat ions of the t ruth value of the two kinds of forms
are the same. The following is our explanation.

D e f i n i t i o n 1. 1. Every atomic s tatement P is a weighted s tatement form, whose
truth value is T (P) - - the truth value of P .

2. Let x be a weighted statement form, then ~x is also a weighted s ta tement form,
which is called "the negation of x ' , whose truth value is - T (x) . So F (x) = - T (x)

is called "the false value of x ".
3. Let X l , . . . , x n be all weighted statement forms and w l , . . . , w n be weights,

wi = 1, and wi > O, then

No.2 NNF and NNPrF 137

X = W l X l A �9 �9 �9 A W n X n = A n = _ l w i x i

is a weighted s t a t e m e n t f o r m , which is called "a weighted con junc t i ve f o r m of x i s " .

The truth value o f X is T (X) = ~ wi * T (x j .

4. Let x be a weighted s t a t e m e n t f o r m , then (x) is also a weighted s t a t e m e n t

f o r m , which is equal to x . The truth value of (x) is T ((x)) = T (x) .

D e f i n i t i o n 2. Let x l , . . . , x n and w l , . . . , w n be the same as Def in i t ion 1, then

X ~-- W l X 1 V �9 " . V W n X n : V n : l W i X i

is "the weighted d i s junc t ive f o r m s o f x i s " . The fa lse value o f X is

F (X) = E wi * F (x i)

So, f r o m Def in i t ion 1, we can get

F(X) = E wi * F(xi) = E wi * (-T(xi)) • - E wi * T(xi) = -T(X)

and T (X) : E wi * T (x i) .

From what is discussed above, it can be seen that the computa t ions of the t ruth
value of the weighted conjunctive and disjunctive forms are the same.

In NNF, the only thing that decides whether a transition can be fired is whether
the t ru th value of the condition, a weighted s ta tement form, is larger than 0. So we
need only to pay at tention to the t ruth values of conditions and conclusions.

NNF only represents the rules that have the form of:

WO * Bo A ' ' ' A Wn-1 * B n - 1 vt,~ w * A (1)

The belief strength of the rule is vt, the threshold of the rule is tg, and the t ruth
values of conditions B o , . . . , B,~-I are x o , . . . , x , , - 1 . Only if E w i * xi > 0, then we
can get conclusion A and the t ruth value of A = w * f (v t , O, ~ wi * x i) . (We can
select f{ or f ' as function f . Fig.4 shows f{ and f ' .)

However, we may change any kinds of rules into form (1). For example:
If a rule has the form of:

w0 * B0 A .- . A w,,-1 * B,~-I w~ * A1 A . . . A wn * A,~,
then we can change it into:

Ut ~ I
wo * Bo A . . . A Wn-1 * Bn-1 w 1 * A1,

. . .

wo * Bo A �9 �9 �9 A w,~_ 1 * B,~_ 1 ,~,0 w,~' * A,~.

So it can be represented in NNF.
If a rule has the form of:

wo * Bo A . . �9 A wn-1 * B, , -1 w' 1 * AI V . . . V w,~ * An ,

then we can also change it into:

wo * B o A �9 . . A w n - 1 * Bn-1 w 1 * A 1 ,

. . o

wo * B o A �9 �9 �9 A w n - t * B n - 1 v t , o wnl , An.

So it can be represented in NNF.
After tha t , we don' t distinguish the representations of conjunctive forms from

those of disjunctive forms in NNF. We use "A" to represent conjunct ion and dis-
junction.

Fig.6 shows how a rule and the propagation of tokens are represented when the
rule is used.

138 J. of Comput. Sci. & Technol. Vol.ll

~0 t""; e""*,

�9 o B Q . . Q ~ o v ' ?,,~:

" i ~ Y
~en_l

B.-I

Bo "3) (i)
xo B 1 ~ ~ . . 0 '~ r:

�9 W
Y

~n--I

B.-1

So

=o ~ OVt
B1 w l ~ A

: ' 0 w-o

B,,-I

Fig.6

In NNF, we introduce a transition as shown in Fig.7. The transit ion t represents
goal: wo * Bo A -. �9 A w,,-1 * B,,-1. The t ru th values of the tokens in B o , . . . , B~-I
are x o , . . . , xn-1. If ~ wi * xi > 0, then goal transit ion t can be fixed.

t3
0 ~ = 103 = 0.5

Bo B.-1

,,,o ~ , , - , o , = o . 5 / ~.~ / \ v = = o . 9

=,,o A~ / 0 . ~ 0.eke) 0,
Fig.7 Fig.8

t l
t2
t3

initial state Mo=

incidence matrix
A B C D E

-0 .6 -0.4 0 1 0
0 -0 .7 -0 .3 0 1
0 0 0 -0 .7 -0 .8

(0.6, 0.8 0 0 0.1)

Fig.9

belief strengths thresholds
0.8 0.5
0i9 0.5

0.5

Example 1. We have a set of weighted production rules:

1) 0.6A, 0.4B ~=~176

2) 0.7B, 0.3C "=~176

The facts are: 0.6A, 0.8B, 0.1E.
The goal is to prove: -0 .7D, 0.8E. Let the belief s t rength of the goal be 1 and

the. threshold of the goal be 0.5.
The NNF representat ion of the rules in the example is shown in Fig.8.
The incidence matrix, initial state M0, belief s trengths and thresholds of transi-

tions of the NNF model of the example are shown in Fig.9.

No.2 NNF and NNPrF 139

2 . 3 R e a s o n i n g i n N N F

The difference between the reasoning used in N N F and tha t used in the former
fuzzy p roduc t ion sys t em is as follows. According to the reasoning of the former
fuzzy produc t ion sys tem, it is only when all of the condi t ions of a rule are t rue t h a t
the conclusion of the rule can be true. Bu t according to the reasoning used in NNF,
we are not to give up a rule even if one of its condi t ions is false. We shall, in t h a t
case, proceed to process the next condi t ion of the rule. After all the condi t ions of
the rule have been processed, we say: if ~ wi * xi > 0 (0 is the th reshold of the rule)
then the rule is usable; else it is not . So in NNF we can carry on reasoning even
when only par t ia l in format ion is available.

2 .3 .1 F o r w a r d R e a s o n i n g

NNF is used to represent fuzzy p roduc t ion rules. Facts are separa ted f rom rules.
T h e y are s tored in M0. W h e n a forward reasoning begins, we pu t the tokens wi th
t r u t h values s tored in 11//0 to their corresponding places, then search for t rans i t ions
t ha t can be fired, and fire t h e m one by one. At the same t ime, tokens are propaga ted .
The t rans i t ion firing procedure will no t stop, e i ther unt i l the goal t r ans i t ion can be
fired (in t h a t case, we say the goal is t rue) , or unt i l the s ta te of N N F cannot be
changed wi th fu r ther reasoning, while the goal t rans i t ion remains unfired (in t h a t
case, we sa~ the goal is false).

A l g o r i t h m 1. Cn• is the incidence matrix, the goal transition is corresponding to
the n-th row of Cnxm; M0 is the initial state that contains tokens representing facts with
t ruth values, 3//0 is an m-dimension vector; Threshold=[Ol, . . . , 0,~] is the threshold vector
of transitions, and V = Iv1, . . . , v~] is the belief strength vector of transitions.

A = C,,x,~; Mnew = M0; (see whether goal trazlsition can be fired)
X = 0; conclusion=0; success=false;
call procedurel(success, n, X, conclusion)
if success then goto stop;
MAXStep=MAXNUM; (define the maximum loop number to be MAD(Step)

REPEAT
M = Mnew; (search for transitions that can be fired, and fire them one by one)
FOR i = 1 to n - 1 DO (see whether transition i can be fired)

X = 0; success=false; conclusion=0
call procedurel(success, i, X, conclusion)
if success then

Mnew[conclusion]=MAX(Mnew[conclusion], AIi, conclusion]*f(V[i], threshold[i], X)
endif (see whether goal transition can be fired)
X = 0; success=false; conclusion=0
cM1 procedurel(success, n, X, conclusion)
if success then goto stop;

ENDFOR
MAXStep=MAXStep- 1;

UNTIL Mnew=M or Step=0
stop: if success then goal=true

else goal=false
ENDalgorithml

procedurel(success, t, X, conclusion) (see whether transition t can be fired)

140 J. of Comput. Sci. & Technol. Vol.ll

F O R j = I tomDO
if Air, j] < 0 and Mnew[j] > 0 then X = Mnew[j] * A[t,j] + X
if A[t,j] > 0 then conclusion=j

ENDFOR
if X >Threshold[t] then success=true;

endprocedttrel

For example, in applying Algorithm 1 to Example 1, the reasoning can be shown
as follows (here we select f[as the output function f) :

tl
t2
t3

M0---

A B C D E
-0.6 -0.4 0 1 0

0 -0.7 -0.3 0 1
0 0 0 -0.7 -0.8

(0.6 0.8 0 0 0.1)

(0.6 0.8 0 0.544 0.1)
J. t2

(0.6 0.8 0 0.544 0.504)

M--

M=

belief strengths
0.8

~
thresholds

0.5
0.5
0.5

A 1 ~. . 0.5 ~b O 0.1 ~,~ 1 = . .

" 0 . 9 ~ v , a v l = l ~. =1
01= 0.4 C J e.,--'0.5

Fig.lO

Note: a, b, c are the truth values of tokens in places A, B, C. And before firing t l and
t2, a0 = 0.5, b0 = 0, co = 1. We select f~ as the output function. For the first time, t l is fired,
bl = ao*0.5 = 0.25, then t2 is fired, al = b1.0.1+0.9 = 0.925; for the second time, t l is fired,
b2 = h i * 0 . 5 = 0.4625, then t 2 is fired, a2 ":'- b2.0.1+0.9 = 0.94625;... ; for the i-th time, t l is
fired, bi = hi-l*0.5, then t2 is fired, ai = bl.0.1+0.9. So, ai = 0.5.0.05i-1 +0.9.~--]~-_- 2 0.05 k.

From what is discussed above, we can see that t l and t2 will be fired in endless
cycles. Only by defining maximum inference step number, the endless cycles can be
cut.

Given 0.7 �9 0.544 + 0.8 �9 0.504 > 0.5, goal transit ion t3 can be fired, and thus we say
goal: -0 .7D, 0.8E is true.

The proof of the correctness of Algori thm 1:
Algorithm 1 uses forward propagations of tokens to fire the goal transit ion. There

are 3 cases in Algorithm 1:
(1) If the goal is true and can be a t ta ined in the defined maximum number of

inference steps - - MAXStep, then the goal transition can certainly be fired by using
Algorithm 1 in NNF. But what is to be noted is that MAXStep should be large
enough so tha t the goal transit ion can be fired by forward reasoning in MAXStep.

(2) If tokens cannot be propagated further in MAXStep, and the goal transit ion
hasn ' t been fired, then Algorithm 1 considers that the goal is false. This considera-
tion is right for the goal is actually false.

(3) If the goal transit ion hasn' t been fired after MAXStep forward reasoning,
then Algorithm 1 considers tha t the goal is false.

The definition of MA_XStep excludes the endless looping propagation of tokens
in the NNF systems as shown in Fig.10.

No.2 NNF and NNPrF 141

2 . 3 . 2 B a c k w a r d R e a s o n i n g

Forward reasoning s t a r t s f rom facts . Backward reasoning s t a r t s f rom the goal.

In backward reasoning we divide a goal in to some subgoals , t h e n for eve ry subgoal

we search for a p rov ing p a t h t h a t can give the subgoal a m a x i m u m t r u t h value.

A lgo r i t hm 2 is a backward reasoning a lgo r i t hm in NNF. I t can get the rules p rov ing

the goal and the sequence of the rules used for p rov ing the goal.
Algor i thm 2. Cn• is the incidence matrix, the goal transition is corresponding to

the n-th row of C,~x,~, M0 is the initial state that contains tokens representing facts with
t ru th values, M0 is an m-dimension vector, Threshold=[01, . . . ,0hi is the threshold vector
of ~ransitions, and V =-- [Vl, . . . , v,,] is the belief strength vector of transitions.

A = C,,x,~; M = M0; List=~; success=false; v : 0;
MAXStep=MAXNUM; (define the maximum inference step number to be MAXStep)
call procedure2(n, v, success, List, M, Step)
if success then '%he goal is true"
else "the goal is false"
ENDalgorithm2

Procedure2(goal, v, success, list, current__M, Current_step)
If current_step>0 then

X =O;

F O R j = l t o r n D O
IF A[goal, j]>0 then conclusion=j
IF A[goal, j]<0 then

(search for a rule that can let M[j] get maximum truth value)
BIG---M[j]; MAXLIST---~;
F O R i = 1 t o n - 1 DO

if A[i, j] > 0 then
success=false; sublist=~p; v = 0;
sub__M=current_M; substep--current_step- 1;
call procedure2(i, v, success, sublist, sub_M, substep)
if success and v >BIG then

BIG=v; MAXLIST----sublist; select_M---sub_M;
endif

endif
ENDFOR
if MAXLIST# r then

current_M[j]=BIG; List=[List[MAXLIST]
endif
Z = X + B I G * (-m[goal, j]);

ENDFOR
IF X >Threshold[goal] then

success=true;
v = A[goal, conclusion]*f(V[goal], Threshold[goal], X); List=[List[goal];

ENDIF
ENDIF
Endprocedure2

For example , we app ly Algor i thm 2 to E x a m p l e 1. T h e reason ing is shown as

follows (here we select][as the o u t p u t func t ion f) :

142 J. of Comput. Sci. &: Technol. Vol.ll

A B C D E belief strengths thresholds

t2 0 --0.7 --0.3 0 1 0 9 0.5
t3 o o o - 0 . 7 - o . 8 1 o.5

Mo--(0.6, 0.8 0 0 0.1)goal=~3=(0 0 0 - 0 . 7 -0 .8) ~ (~) ----*List=It 1, t l , t3]

g = t l = (- 0 . 6 - 0.4 0 1 0)--* M---(0.6, 0.8, O, 0.544, 0.1) List--[t'l____~

goa/----t2=(O --0.7 --0.3 0 1)--* M-- (0 .6 , O.S, O, 0.544, 0.50a,) L is t= [= l , t2]

Because 0.7,0.544 + 0.8.0.504 > 0.5, so goal transition t3 can be fired, then we say goal:
-0.TD, 0.8E is true, and the sequence of transitions firing for proving the goal is List:It1,
t2, t3].

The proof of the correctness of Algorithm 2:
Since we have defined the maximum inference step number, Algori thm 2 always

can finish.
tgoal

o :ii::i:
Fig.ll Fig.12

Note: Ia the case of Fig.12, endless looping will happen in tl. When the loop number has
reached MAXStep, Algorithm 2 will give up tl, and try to get solution by t2.

In the eases as shown in F ig . l l , it is only when MAXStep is large enough that
Algorithm 2 can certainly finish, successfully. Tha t is to say, if the goal is actually
true, then Algori thm 2 can fire the goal transit ion and find the best solution. But
if the goal is actually false, then the goal transit ion cannot be fired and Algori thm
2 will report "the goal is false".

In the cases as shown in Fig.12, if MAXStep isn't defined, then backward rea-
soning will proceed endlessly. In Algorithm 2, the definition of MAXStep prevents
proceeding with the endless looping road, and Algorithm 2 will t ry other solution
roads.

2.3.3 Learning in N N F

Since NNF has some characters of neural network, NNF can make use of the
ways of weights training common to neural networks and acquire knowledge by
modifying the weights of the arcs from places to transitions.

In neural networks, a three-layer perceptron net can be used to realize an m-class

No.2 N N F and N N P r F 143

classifier as Fig.13 shows.
yr~-~-I ~ ~ , , Y ' = , ~ k : 0 ~ * * -0~') , 0 < l < m - 1 , = y (E ' / ' = o ~ j ~ , ~ - O ' ~) , O <

k < n : - i
' '~-~ o3), o <_ , ~ xj = f (~ i = 0 wii * xi -- j < - 1, f~ is selected as output function f .

x 0 , . . . , x ~ - i are n elements of input sample X, while Yo, . . . ,Ym-1 represent m
classes.

In neural networks, the famous Back-Propagation algorithm is used in three-
layer perceptron net to acquire knowledge by weights training. In BP algorithm,
the difference between desired output and actual output is used to adjust, in the
first place, the connection weights between the ou tput layer and the hidden layer
right below it, then is propagated backward in the network to layers below the top
hidden layer, and is ultimately used to adjust connection weights between the input
units and units above them.

In NNF, a transition acts something like a processing unit in neural network.
We create an NNF model of perceptron to realize classifier as Fig.14 shows.

Yoq

zO

~ Y,'n-1 t~

ii
~ n 2 - - 1

s s
z , , ! - l

wij
Xn-t

Yol

t~'

Pg
output layer {
O<_k<_n2~l, O<l<m-1 tO
second hidden layer

0 < j < n t - - 1 , 0< k < n ~ - I P~

first hidden layer to -

0< i < n - 1, 0 < j < n l - i
input Po (

Fig. 13

o , ~

1

)Ym-I

' I
it

- - t . m _ 1

w"~l 0 <_ k _< n 2 - 1,0 < l _ < m - 1
P," - 1 n 2

w~k O<j<_nl-l,O<k<nz-1
p:~-i

wlj O<-i<_n-l,O<j<nl-1
P,,-1

Fig.14

Note: P0, �9 �9 P, , -1 are i npu t places t h a t r ep resen t the cha rac t e r s of i npu t sample . T h e weight
of t he arc f rom a t r a n s i t i o n to a place is 1. f,' is se lected as t he o u t p u t funct ion . Y o , . . . , Y,~-I
are o u t p u t p laces t h a t r ep resen t classes. T h e des i red o u t p u t is t h a t the re is on ly one token in
Yo, - - - , Y-*-I- If t he token is in Y~, t h e n t h e i n p u t s ample be longs to class i.

First, we put the tokens with t ruth values that represent the characters of input
sample into corresponding places: P0 , - . . , P~-l- Then the t ruth values of tokens in
P0,-. -, P~-I are x0 , . . . , X~_l. After that, we apply the forward reasoning algorithm
of NNF to the perceptron shown in Fig.14. Then we can get the following.

The t ru th value of the token in Pj is
i i 1) �9 j : f ' (v j , o j , E ~ : o ~ ~ �9 ~) (o < i < ~ - 1, o <_ j <_ ~1 -

Wij is the weight of the arc from Pi to tj. 8j is the threshold of transit ion tj. vj is
the belief s t rength of tj.

T h e t r u t h va lue o f t h e t o k e n in P~' is
, , v , n l - i , _ 1) �9 ~ = f ' (v~,0~, ~ , = 0 ~j~ , ~) (0 _<j _ ~ - ~, 0 < k _< ~ -

W t jk is the weight of the arc from Fj to t~,. 0~, is the threshold of transit ion t~. v~ is
the belief s t rength of t~.

The t ru th value of the token in Yt is

144 J. of Comput. Sci. & Technol. Vol.ll

"~ " "~" * "~ (0 < k < n 2 - - 1 , O < l < m - - l)

is the weight of the to is the threshold of transition iT- is
the belief strength of t~ t.

We can change BP-algor i thm of neural network, and apply it to NNF to acquire
knowledge by weights training. Algorithm 3 is the BP-algor i thm of NNF.

A l g o r i t h m 3.
Step 1: Set the thresholds of transitions to small random values in [0, 0.5]; set the weights
of arcs from places to transitions to random small values in [0, 1].

Step 2: Input the tokens with truth values that represent the characters of input sample
into corresponding places: P0,. .- ,P,~-I, and we have already known the desired output:
do, . . . , din-1 - - the truth values of tokens in Yo , . . . , Ym-1.
Step 3: Forward reasoning, thus we ca~ get the actual output: Y0,- �9 �9 Ym-1 - - the truth
values of tokens in Y0,..-, Ym-x propagated by forward reasoning.

Step 4: Adjust weights of the arcs from places to transitions. Adjusting weights starts from
Y0,.-., Ym-1, propagates b~ckward to P0, .- . , P~-I- That is, from top layer to bottem layer,
adjust weights of the arcs from places to transitions.

The weight wij (the weight of the arc from place i to transition j) at the next time point
is wij(t + 1) = wi j (t)+ 71.6j * x~. j is the sequence-number of the transition j; x~ is the truth
value of the token in place i, x~ can be the initial input or the result of forward reasoning;
7/is the gain item, ~/E [0, 1]; 5j is the error item.

(s If j is one of the sequence-numbers of transitions t ~ , . . . , t"m_l, then 6j -- yj * (1 -
yj) * (dj - yj),

�9 t ' I or to , . . . , t ,~ I , (~) If j is one of the sequence-numbers of transitions t ~ , . . , ,,~ -
then 6j = x'.j* (1 - x~.) * (~ k 6k * wj~).

Note: x~ is the truth value of the token in the output place of transition j . k ranges
over all of the transitions above transition j which the output place of transition j connects
to; w3. k is the weight of the arc from the output place of transition j to transition k.

Moreover, if we introduce momentum item to BP-algorithm, then the speed of weights
training will be accelerated.

So, wij(t + 1) = w,j(t) + 71.6j . x~ + a * (w~j(t) - w , j (t - 1)) (0 < a < 1)

Step 5: If the algorithm has reached the desired error precision or has cycled for limited
times, then exit; else goto Step 2.

The proof o f correctness:
Algorithm 3 is obtained by revising the famous BP-Mgori thm in neural network

to make it runable in the NNF model�9 So if BP-aJgorithm can succeed, then Algo-
rithm 3 can succeed too. And we all know that BP-algori thm is successful.

After training weights by using Algorithm 3, we can delete the arcs whose weights
are very small from NNF model�9 Then the places will not connect to all the tran-
sitions above them, and the places will connect only to certain transit ions above
them where the places, a transition above them, and the ou tpu t place of the tran-
sition can form a rule, the transition represents a rule, and the input places of the
transition represent conditions of the rule, and the outplace of the t ransi t ion repre-
sents the conclusion of the rule. So, by weights training, NNF can learn the rules of
classification.

No.2 N N F and N N P r F 145

3 N N P r F

3 . 1 C o n c e p t s

3 . 1 . 1 T h e F o r m a l D e f i n i t i o n o f N N P r F

= (P , T , F , W , D , V , % A p , A T , A F , BS, O,a,Y, Mo) is an N N P r F , iff
(1) P is a finite set of places, T is a finite set of t ransi t ions . A t rans i t ion in N N F is

someth ing like a neuron in a neural network, F is a finite set of arcs connect ing between
places and transi t ions. T h e y have charac ters of:

P A T = C ; F c _ (P • 2 1 5
P u T ~ r dorn(F) LJ cod(F) = P u T, Vt E T, t has only one o u t p u t place.

(2) W : F ~ [0, 1] is an associat ion weight function.
V f E F, W (f) = wi, wi is the weight of arc)r wi E [0, 1].
(3) D: the individual set of NNPrF . fl is the given set of ope ra to r s on D.
(4) V: the set of variables of D.
(5) ~r: the set of dynamic predicates on D.
(6) Ap: P --, 7r. Vp E P, if Ap(p) is an n -a ry predicate , then p is called an n - a ry

predicate .
(7) AT : T --* fD, fD is the formula set on D.
Vt E T, AT(t) can only be a s ta t ic pred ica te or an ope ra to r in ~'1.
(8) AF : F ---* Ss, Ss is the symbol ic sum on D.
Vp E P, if (t ,p) E F or (p,t) E F, then AF(t ,p) or A v (p , t) is an n - a ry symbolic;

o therwise AF(t ,p) or AF(p, t) equals zero.
(9) S S : T --* [0, 1] is an associat ion function.
Vt E T, B S (t) = vt, vt is the belief s t r eng th of the p roduc t ion rule cor responding to

t rans i t ion t.
(10) 0 : T --* [0, 1] is an associat ion function.
Vt E T, 0(t) -- 0i, 0i is the threshold of t rans i t ion t.
(11) a : Vp E P, if there is a token a in p, then a(~r) -- a i E [0, 1], a i is the t r u th value

of ~. If token a has the s t ruc ture of (u t , . . . ,u,~) and the t ru th value of hi , then token r
in place p represents t ha t the t ru th value of Ap(p) , the n - a ry p red ica te corresponding to p
wi th the p a r a m e t e r vector of (u l , . . . , urn), is hi.

(12) Y : T --* the set of different kinds of ou tpu t functions, Vt E T, t is assigned an
o u t p u t funct ion f . T h e kinds of ou tpu t functions used in N N F can be used in N N P r F too.
T h e y are shown in Fig.4.

(13) M0 = (. . . , {v~j~(aj i l , . . . ,a j i ,~ j) l (a j i l , . . . ,a j i , , j) is a token in P j } . . .) , 0 < a j , <_
1, aj i is the t rue value of Av(Pj) (a j i l , . . . , aji,~j).

M0 initializes the d is t r ibut ion of tokens with belief s t reng th in NNF.
Note: A n o n e m p t y and finite set D, a n o n e m p t y and finite set V have the following

relat ions.
(~) I f symbol s in V denote members in D, then we call V the var iable set on D, and call

the symbols in V the variables on D.

(~) T h e var iables on D or member s in D are called t e rms on D. I f g('*) is an n -a ry
o p e r a t o r on D, vt ,v2, . . . ,vr~ are t e rms on D, then g('~) (v l ,v2 , . . . , v ,~) is a t e r m on D.
The re is no o the r t e rm on D.

(~) An n - a r y vector (v l , . . . , v,,) (n _> 1) is called an n- tup le on D if each of its componen t s
is a t e r m on D.

(~) T h e formal sum which is formed by the connect ion of finite n u m b e r of n- tuples on
D with " + " is called the n -a ry symbolic sum on D.

146 J. of Comput. Sci. & Technol. Vol. l l

@ The formulas on D include: vi = v2, where vi and v2 are terms on D; ~p, where p
is a formula on D; p V q, where p and q are formulas on D; (3x)p, where x is a variable on
D, and p is a formula on D. There is no other formula on D.

@ p(D) = { (d i , . . . , dn)lp(dl,..., d,,)}. If p(D) is static, then we call p an n-ary static
predicate on D; otherwise, we call p an n-axy dynamic predicate on D.

3 .1 .2 T r a n s i t i o n R u l e

In Fig.15, t r ans i t i on is t, i npu t places are P1, . - . , P,~, and the t r u t h values of the

tokens in t hem are x l , . . . , xn , the weights and the symbol ic sums of the arcs con-

nec t ing P 1 , - . . , Pn to t are w i , . . . , w,~ and (Xl l , x 1 2 , . . . , x l m l) , . . . , (x n l , . . . , Xnmn),
the th resho ld of t is 0, the bel ief s t r eng th of t is vt. T h e ou tp l ace of t is P , the weight

and the symbol ic sum of the arc connec t ing t to P is w and (Y l , - - . , Yt)-

If ~ wl * x, > 0 and (x l , , x12 , . . . , x l , , i) , . . . , (xn l , . . . , xnm,,), (Y i , . . - , Y,) is unifiable
then t is fired. Apply the unification to the variables, and get the token (u l , . . . ,ul) which

should be put into the output place P; the truth value of the token (u i , . . . , u l) in P is y ' =
max(y ,w , f (v t , O , ~ w l * xi)). (y is the t ruth value of token (u i , . . . , u ,) in P before firing t. If
there is no token (u l , . . . ,ul) in P before firing t, then y = 0.)

else t cannot be fired.

Fig.15 shows the p r o c e d u r e of t rans i t ion firing.

/:h ""': ""': Pt
zl (~ (z l z l . ,) "":~ r zl (~ z l , z l . ,)

0 v, ' ;

before firing t after firing t

Fig.15

3 . 1 . 3 I n c i d e n c e M a t r i x

In an N N P r F - n e t t h a t has n t rans i t ions and m places, its inc idence m a t r i x is

C = [Cij] (1 < i < n, 1 < j < m) . Eve ry row of C represen ts a t r ans i t ion , eve ry

c o lumn represen t s a place, Cij = w(ti ,pj) * AF(t i ,pj) - w(pj, ti) * AF(Pj, t i) .

3 . 2 N N P r F M o d e l f o r P r e d i c a t e L o g i c

N N P r F sepa ra t e s facts f rom rules. T h e N N P r F - n e t s t r u c t u r e represen t s rules

only. In an N N P r F - n e t t h a t has m places , facts are r ep resen ted by M0 = ({a l i (a l i l ,
�9 . . , a l i ,~ l) l (a ln , . . . , M i n i) is a token in P1}, �9 �9 �9 {(~ji(aj i l , . . . , a j in j) I (a ju , . . . , ajinj)
is a token in P j } . . . , { a m i (a m i l , . . . , ami,~m)l(amil, . . . , ami,,~) is a t oken in pro}),

0 < cr < 1. a is the t r u t h value of its co r responding token - - the t r u t h va lue of a

fact.

As in NNF, the rules t ha t can be represen ted in N N P r F have the fo rm of:

wi */~ (x l i , . . , xlmi) A . . . A w , * P,~(xnl xnmn) ~t,o �9 , . . . , w * P (Y l , . . . , Y t)

N o . 2 N N F a n d N N P r F 147

(vt and 0 are the belief s t rength and threshold of the rule). The NNPrF model of a
rule is shown in Fig.16.

Z i P~-"~ ~! (2:11 zlml)

~.~ p (9, ~) ~,(z11,. 1)
\ ~.~r ~n..)

z , (, . J~ , (z ,~l z,~,..) t ----x-A__v = 1,8

F ig .16 F i g . 1 7

As in NNF, a transition is introduced in Fig. 17 to represent goal: wl */>1 (x 11, �9 �9 �9
x lml) A. . . A w~ * P,~(xnl,..., xnm,). The t ru th values of the tokens in P1 , - - . , P,~
are x l , . . . ,x,~. If ~ w ~ �9 xi > 8, then goal transit ion t can be fired.

Example 2. We have a set of weighted production rules:

1) 0.3 �9 DOG(x), 0.4 �9 BARK(x), 0.3 �9 JUMP(x) ~=0.9,a~0.5 Terrible(x);

2) 1.0 * At(P, w) ~=~176 At(F, w);

3) 0.4 * At(z, A), 0.4Man(z) v=0.8,o~0.5 Friendly(z).

The facts are: 1.O,DOG(F), 0.8,BARK(F), 0.8,JUMP(F), 0.9,At(P, A), 1.0,
Man(A). The goal is to ask: -0.45Terrible(y), 0.45At(y, A). Let the belief s trength
of the goal be 1 and the threshold of the goal be 0.5.

The NNPrF representation of the rules of the example is shown in Fig.18.
v4 = 1 v~ = 0.9
8, = 0 .5--~ t" 82 = 0.5 Friendly

,)

T e r r i b l e (~ ~'O(F'wl 1.0(P,w> 'l'O<z)

10< > \
v, = 0.9 . \ | 83 0 . 5

\1
DoGt)BA)JUMP�9 AT< AH(

Fig.18

The incidence matrix, initial state M0, belief strengths and thresholds of transi-
tious of the NNF model of the example are shown in Fig.19.

Dog Bark Jump Terrible At Mu ~dendly Belief Thresholds
8r

t l - - 0 . 3 { x) - - 0 . 4 (z) - - 0 . 3 (z) (x) 0 0 0 ' , 0.9 ' ' 0.5 ,
t2 o o o o (F,w)-1.0(P,w) 0 0 1 1 [I [0 " 9 0.5
ta o o o o -0.4(,,A) -0.40) (,) o.s 0.5
t4 0 0 0 --0.45{u --0.45(y, A) 0 0 1.0 0.5
M 0 ({I.0(F)) {0.8(F} } {0.8(F) } 4' {0.9{P, A)} {Io0(A) } t)

Fig .19

3.3 F o r w a r d R e a s o n i n g in N N P r F

It differs from NNF in that, in NNPrF, every place probably contains several
different tokens, and when firing transitions, we must consider the unification of

148 J. of Comput . Sci. & Technol . Vol.11

variables.
When forward reasoning begins, we put the tokens with truth values stored in

M0 to their corresponding places, then search for transitions that can be fired, and
fire them one by one. At the same time tokens are propagated. The transition firing
procedure will be stopped, either when the goal transition can be fired in that case,
we say the goal is true, or when the state of NNPrF cannot be changed with further
reasoning, while the goal transition still cannot be fired, in that case, we say the
goal is false.

A l g o r i t h m 1'. C~• is the incidence matrix, C = [C~j] (1 < i < n, 1 < j <
m), Cij = w(t , , p j) * A f (t i , pj) -- w@j , ti) * AF(pj , tl), the goal transition is corresponding
to the n-th row of C~xm. M0 is the initial state that contains tokens representing facts with
truth values. M0 is an m-dimension vector. Threshold=J01, . . . ,0,,] is the threshold vector
of transitions. V = [Vl , . . . , v,~] is the belief strength vector of transitions.

A = C=x,~; Mnew = M0; (see whether goal t ransi t ion can be fired)
X = 0; conclusion=0; success=false; U = q);
call procedurel ' (success, n, X, conclusion, U)
if success then goto stop;
MAXStep=MAXNUM; (define the maximum loop number to be MAXStep)

REPEAT
M = Mnew; (search for transitions that can be fired, and fire them one by one)
FOR i = 1 to n - 1 DO (see whether transit ion i can be fired)

X = 0; success=false; conclusion=0; U = ~;
call procedurel ' (success, i, X, conclusion, U)
if success then token 6output = A~-(tl, Pconclnsion) * U;

the belief s trength of 6output is B S = W(t , , Pconclusion) * f(Y[i] , threshold[i], Z) ;
if Mnew[conclusion] has already contained 6output then
the belief strength of 6output in Mnew[conclusion]

=MAX(the old belief strength, of 6output, BS);
else

put B S * 6output into Mnew[conclusion]
endif

endif (see whether goal transition can be fired)
X -- 0; success=false; U = (I);
call procedurel ' (success, n, X, conclusion, U)
if success then goto stop;

E N D F O R
M A X S t e p = M A X S t e p - 1

UNTIL Mnew = M or MAXStep---0
stop: if success then goal=true

else goal=false
ENDalgor i thml '

procedurel'(success, g, X, conclusion, U) (see whether transition g can be fired)
FOR j = 1 to m DO

if AF(pj, tg) in A[g,j] is ,,.iSable with a token ~f in Mnew[j] then
the given belief strength of 6 is x i ;
X = x i �9 W(pj , tg) + X; U = UUthe unifier of AF(pi, tg) and 6;

if W(tg,p~) in A[g,j] # 0 then conclusion=j
E N D F O R
if X >Threshold[g] then success=true;

endprocedure l '

No.2 NNF and NNPrF 149

For example, we apply Algor i thm 1 ~ to Example 2, the reasoning is shown as
follows (here we select f~ as the o u t p u t funct ion f) :

Do S Baxk Jump Terrible At Mare Friendly Belief Thresholds
strengths

t l -0.3(z) -0.4(x) -0.3(z) {z) o o o I o.9 I 0.~
t2 0 0 0 0 (F, to) - 1.0(P, to) 0 0 [0.9 [0.5
,3 o o o o - 0 . 4 (, , A) - o . 4 (,) (~) o . s o.s
t4 . 0 0 0 --0.45(y) --0.45(y, A) 0 0 1.0 0.5

M0 ({ 1.0(F)} {0.8(F} } (0.8(F) } 4b (0.9(P, A)} {I.0{A) } 4,)
E

M = ((z.o(F)} {0.s(r)} {0.S(.~)} {0.W4(F)} (0.9(P,A)} {Z.0(A)} 4,)
~t r

M = ({z.o(F)} {O.S(F)} {o.s~.~)} (o.'r;'4(r)} t {0.9(P, Ai} ~ {Z.0(A)} ~,)
"{0.sl(r,A)}"

Given 0.774 * 0.45 + 0.81 * 0.45 > 0.5 and U = { F / y } , goal t rans i t ion t4 can be

fired, and y = F . Then we can get the result: - 0 . 4 5 Te r r i b l e (F) , 0.45At(F, A).

The proof of correctness:
Algor i thm 1 ~ in N N P r F is ex tended f rom Algor i thm i in NNF. We have proved

the correctness of Algor i thm 1. So here Algor i thm 1 ~ is correct too.
Like the forward reasoning in N N P r F , the backward r ea son ing . and learning in

N N P r F can easily be ex tended from NNF. Bu t it is beyond the scope of this paper
to discuss them.

R e f e r e n c e s

[1] Looney C. Fuzzy Petri nets for rule-based decision making. IEEE ~ran.~. on Syst., Man., 1988,
(Jan.): 178-183.

[2] Peterka G, Murata T. Proof procedure and answer extraction in Petri net model of logic
programs. IEEE Tran.~. on Software Engineering, 1989, 15(2): 209-217.

[3] Lin Chuang. Application of Petri nets to logical inference of HORN clauses. Journal of Software,
1993, 4(4): 33-37.

[4] Zhou Yi, Wu Shilin. The new ways of logic inference of Petri net based on resolution refutation.
(a~cepted by Chinese Journal of Computers)

{5] Shen Qing, Tang Lira. The Introduction of Pattern Recognition. Press of the University of
National Defense Science and Technology, .May 1995.

[6] He Xingui. Knowledge Processing and Expert System. Press of National Defense Industry, Sep.
1990.

Z h o u Yi received her B.S. degree from Computer Science Department of Fudan Uni-
versity in 1993. She is currently pursuing her M.S. degree in computer science from Fudan
University. Her main research interests include knowledge representation and reasoning,
machine learning, computer network, theory of Petri nets and its applications.

W u Shi l lu graduated from Mathematical Department, Fudan University in 1957. He
is now a Professor of Department of Computer Science, Fudan University. At present, he
is the Vice President of Petri Net Community, Chinese Computer Federation. The areas of
his research cover computer communication, computer network, theory of Petri net and its
applications.

