
J. of C o m p u t .  Sci. & Technol .  March  1996 Vol.11 No.2 

N N F  and N N P r F  Fuzzy Petr i  N e t s  Based  
on Neura l  Network  for K n o w l e d g e  

Representat ion ,  Reason ing  and Learning 

Zhou  Yi ( N  "~) and  W u  ShiLin ( ~ - ~ )  

Department of Computer Science, Fudan University, Shanghai 200433 

Received December 14, 1994; revised July 7, 1995. 

A b s t r a c t  

This paper proposes NNF - -  a fuzzy Petri Net system based on neural 
network for proposition logic representation, and gives the formal definition 
of NNF. For the NNF model, forward reasoning algorithm, backward reason- 
ing algorithm and knowledge learning algorithm are discussed based on weight 
training algorithm of neural network - -  Back Propagation algorithm. Thus 
NNF is endowed with the ability of learning a rule. The paper concludes with a 
discussion on extending NNF to predicate logic, forming NNPrF, and proposing 
the formal definition and a reasoning algorithm of NNPrF. 

Keywords :  Fhzzy Petri net system, NNF, NNPrF, neural network, forward 
reasoning, backward reasoning, learning. 

1 I n t r o d u c t i o n  

1.1 B a s i c s  o f  N e u r a l  N e t w o r k  

A neural network is composed of processing units (corresponding to neurons 
in human brain) and the connections linking them into a whole. Fig.1 shows the 
working model  of a processing unit. (Note: In Fig.1 xi is the i-th element of the 
n-dimension input vector; wi is the weight of the connection between the i-th input 
element and the processing unit; 0 is the threshold of the processing unit; y is the 
ou tpu t  of the  processing unit.) Fig.2 shows three kinds of usually used f u n c t i o n / .  
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Fig. 1 Fig.2 

A lot of neurons are interlinked to make up a neural network. A neural network 
can work dynamically. To some extent, it is similar to human thinking, and it does 
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imitate human brain. A neural network is characterized by its high efficiency, self- 
organization, fuzzy representation and reasoning, and the ability of self-learning. 
It has been applied to the domains of pattern recognition, signal processing and 
knowledge engineering, and has been proved to have good efficiency. 

1.2 S h o r t c o m i n g s  o f  t h e  P r e s e n t  M o d e l s  o f  P e t r i  N e t  in  R e p r e s e n t -  
ing  F u z z y  L o g i c  

Murata [2] has proposed the ways for representing proposition logic by using 
P /T  nets, representing first-order predicate logic by using P r / T  nets and developed 
the ways for logic inference. In the reasoning of the P / T  net model of proposition 
logic, if there is a token in a place, then we consider that the statement the place 
corresponds to is true, else we consider the statement is false. So, given the flowing 
character of tokens, we can only see that there are no tokens in these places after 
they have flowed through places. Then we consider the statements corresponding to 
these places to be false, or we don't know whether the statements are true or false. 
But actually, these are statements we have conceived as true. This is of course an 
error in logic. Moreover, the flowing character of tokens brings about the conflict 
of transition firing. But this conflict doesn't exist in logic inference. So there is 
inconsistency between proposition logic and P / T  net model. This inconsistency 
also exists between predicate logic and P r /T  net model. And it is brought into the 
representation of fuzzy logic based on P / T  net and P r / T  net models. 

Fig.3 
In Fig.a, vl is the belief strength of rule tl ,  0 __ vl <_ 1, and the truth value of 

the token in A is x. In the present fuzzy Petri net models, after firing t l ,  x = x * v l ,  

then x will become smaller and smaller. This is also an error in logic brought in by 
the flowing of tokens. 

The present fuzzy Petri net models for knowledge representation and reasoning 
have brought in the concepts of truth values of the conditions and conclusion in a 
rule and the belief strength of the rules. But when they are to decide which rule 
will be used, they still insist on that it is only when all of the conditions of a rule 
are matched that the rule can be used. That is to say, the transition is enabled 
only when every input place of a transition has tokens. This is a way that  equally 
processes every condition. But in practice, the importance of different conditions 
of a rule is different. So we shall give different conditions different weights. For 
example, in the rule "if a thesis demonstrates originality, its proposition is correct, 
and it is written clearly, then the thesis can be published", it is obvious that the 
first two conditions are more important than the last one. 

So, based on neural networks, we can propose NNF - -  a new fuzzy Petri net for 
proposition logic. NNF has token propagation property, and uses weighted fuzzy 
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logic.  F r o m  th i s  we  e x t e n d  N N F  to  f i r s t - o r d e r  p r e d i c a t e  logic  a n d  f o r m  N N P r F  - -  

f u z z y  P e t r i  ne t  for  f i r s t - o r d e r  p r e d i c a t e  logic.  

2 C o n c e p t s ,  R e a s o n i n g  and  Learn ing  o f  N N F  A 
N e w  Fuzzy  Petr i  N e t  B a s e d  on N e u r a l  N e t w o r k  for 
P r o p o s i t i o n  Logic 

2 . 1  C o n c e p t s  

2.1 .1  F o r m a l  D e f i n i t i o n  o f  N N F - N e t  

= ( P , T , F , W , V , O , a , Y ,  Mo) is an NNF,  iff 
(1) (P,  T, F )  is a finite Petr i  net. P is a finite set  of  places, and  T is a finite set  of t ransi t ions.  

A t rans i t ion  in N N F  is someth ing  like a neuron  in a neura l  network.  F is a finite set  of  
arcs  connect ing places and transi t ions.  T h e y  have the charac ters  of: 

P N T  = r  _C ( P  • T)  U (T  x P) ;  
P U T ~ r dora( f )  U cod( f )  = P U T, 

where  dom(F)  = {x IY , (x , y )  E f } ,  cod(F) = {x IY , (y , x )  E F} ;  Vt E T, t has only one 
o u t p u t  place. 

(2) W : F --+ [0, 1] is an associat ion weight function.  
V f  E F, W ( f )  = wi, w, is the weight of  arc f ,  w, E [0, 1]. 

(3) V :  T ~ [0, 1] is an associat ion function. 
Vt E T, V( t )  -- vt, vt is the belief s t r eng th  of the  p roduc t ion  rule cor responding  to 
t rans i t ion  t. 

(4) 0 :  T --* [0, 1] is an associat ion function. 
Vt E T, 8(t)  --- 0i, 0~ is the threshold of t rans i t ion  t. 

(5) a :  Vp E P, if there  is a token cr in p, then  a(cr) = a l  E [0, 1], a ,  is the  t r u t h  value of 
the  token ~,. Token a in p with the t ru th  value of a i  represents  t ha t  the t r u t h  value of 
the  s t a t e m e n t  corresponding to place p is hi .  

(6) Y : T --- the  set  of different kinds of o u t p u t  functions,  Vt E T, t is assigned an ou tpu t  
funct ion f .  Fig.4 shows two kinds of ou tpu t  functions f used in NNF,  i.e. f~, f~. 

f f[ f ~f: 
/ 

+1 / 

gt, .... / /  0.5 ' 

e F.~l  *~1 F.~,l *~1 

Fi ;.4. Two kinds of output functions used in NNF. 

We in t roduce  two kinds of f in N N F  - -  f~, f~. 

�9 f v ~ , ~ , ~ , ,  o<(F_,~,,~,-o),v~<l 
f~(~,  0, ~ w, �9 ~,) = / 0, E w, * ~, - 0 < 0 

1, (~-~'~ wl * xi -- O) * vt > 1 

' / ~ / ( ~ + ~  . . . .  (E~"~'-~ E ~ , , ~ , - 0 > 0  
f ; ( v t ,  0, ~--~ w, * x , )  : 0, ~-~wi * x ,  -- 0 < 0 

k 

(7) M0 -- (c~0, . . . ,  c ~ . . . ) ,  c~ is the t ru th  value of the token in place Pi. M0 initializes the 
d i s t r ibu t ion  of tokens with belief s t rength  in NNF.  
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2.1 .2  Trans i t ion  R u l e  

In Fig.5 of transition t, input places are P0, - - .  ,P,~-I, the t ru th  values of the 
tokens in them are x 0 , . . . ,  x,~-l, the weights of the arcs connecting P0,. �9 �9 P,~-t to 
t are w0 , . . .  ,w,~-l, the threshold of t is 0, and the belief s t rength of t is yr. The 
outplace of t is P;  the weight of the arc connecting t to p is w. 

I f  ~ wl * xi  < 0, t h e n  t c a n n o t  be  fired; 
else t is fired; 

The t ruth  value of the token in P is y' = max(y,  w �9 f ( ~  wi * xi - 0)). (y is the 
t ru th  value of the token in P before firing t. If there is no token in P before firing 
t, then y = 0.) Fig.5 shows the procedure of transition firing. 

vo C:: po . " .  ,"": ; .~  ,..oO* 

..... i . . . . . .  ~" 
~ ) P  

W . W 

P ~ - I  P a - 1  

before firing t after firing t 

2.1 .3  I n c i d e n c e  M a t r i x  
Fig .5  

In an NNF-net  that  has n transitions and m places, its incidence matrix is 
C -= [Cij] (1 < i < n, 1 < j < m). Every row of C represents a transition; every 
column represents a place, Cij = w(  t i ,pj)  - w(pj ,  ti). 

2 .2  N N F  M o d e l  f o r  P r o p o s i t i o n  L o g i c  

NNF separates  facts from rules. The NNF-net  s t ructure only represents rules. 
In an NNF-ne t  with m places, facts are represented by M0 = ( a 0 , . . . ,  h i , . -  �9 a m - t ) .  

If ai  = 0, then there is no token in Pi. 
If 0 < ai < 1, then ai is the true value of the token in Pi - -  the t ru th  value of 

the fact which Pi is corresponding to. 
The rules tha t  can be represented in NNF are weighted product ion rules. Every 

rule has two parts:  conditions and conclusions, which are all weighted conjunctive or 
disjunctive forms. And we call the two kinds of forms as weighted s ta tement  forms. 
One character  of NNF is that. i t  doesn' t  distinguish weighted conjunctive forms from 
disjunctive forms, because computat ions of the t ruth  value of the two kinds of forms 
are the  same. The following is our explanation. 

D e f i n i t i o n  1. 1. Every atomic s tatement  P is a weighted s tatement  form,  whose 
truth value is T ( P )  - -  the truth value of P .  

2. Let x be a weighted statement form, then ~x  is also a weighted s ta tement  form,  
which is called "the negation of x ' ,  whose truth value is - T ( x ) .  So F ( x )  = - T ( x )  

is called "the false value of x ". 
3. Let X l , . . . , x n  be all weighted statement  forms and w l , . . . , w n  be weights, 

wi = 1, and wi > O, then 
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X = W l X l  A �9 �9 �9 A W n X n  = A n = _ l w i x i  

is a weighted s t a t e m e n t  f o r m ,  which is called "a weighted con junc t i ve  f o r m  of  x i s " .  

The  truth value o f  X is T ( X )  = ~ wi * T ( x j .  

4. Let x be a weighted s t a t e m e n t  f o r m ,  then (x)  is also a weighted s t a t e m e n t  

f o r m ,  which is equal to x .  The truth value of  (x)  is T ( ( x ) )  = T ( x ) .  

D e f i n i t i o n  2. Let  x l , . . . , x n  and w l , . . . , w n  be the same  as Def in i t ion  1, then 

X ~-- W l X  1 V �9 " .  V W n X n  : V n : l W i X i  

is "the weighted d i s junc t ive  f o r m s  o f  x i s " .  The  fa lse  value o f  X is 

F ( X )  = E wi * F ( x i )  

So, f r o m  Def in i t ion  1, we can get 

F(X) = E wi * F(xi) = E wi * (-T(xi)) • - E wi * T(xi) = -T(X) 

and T ( X )  : E wi * T ( x i ) .  

From what is discussed above, it can be seen that  the computa t ions  of the t ruth  
value of the weighted conjunctive and disjunctive forms are the same. 

In NNF, the only thing that  decides whether a transition can be fired is whether 
the t ru th  value of the condition, a weighted s ta tement  form, is larger than 0. So we 
need only to pay at tention to the t ruth  values of conditions and conclusions. 

NNF only represents the rules that  have the form of: 

WO * Bo A ' ' '  A Wn-1 * B n - 1  vt,~ w * A (1) 

The belief strength of the rule is vt,  the threshold of the rule is tg, and the t ruth 
values of conditions B o , . . . ,  B,~-I are x o , . . .  , x , , - 1 .  Only if E w i  * xi > 0, then we 
can get conclusion A and the t ruth value of A = w * f ( v t ,  O, ~ wi  * x i ) .  (We can 
select f{ or f '  as function f .  Fig.4 shows f{ and f ' . )  

However, we may change any kinds of rules into form (1). For example: 
If a rule has the form of: 

w0 * B0 A .- .  A w,,-1 * B,~-I w~ * A1 A . . .  A wn * A,~, 
then we can change it into: 

Ut ~ I 
wo * Bo A . . .  A Wn-1 * Bn-1  w 1 * A1, 

. . .  

wo * Bo A �9 �9 �9 A w,~_ 1 * B,~_ 1 ,~,0 w,~' * A,~. 

So it can be represented in NNF. 
If a rule has the form of: 

wo * Bo A . .  �9 A wn-1  * B, , -1  w'  1 * AI  V . . .  V w,~ * An ,  

then we can also change it into: 

wo * B o  A �9 . .  A w n - 1  * Bn-1  w 1 * A 1 ,  

. . o  

wo * B o  A �9 �9 �9 A w n - t  * B n - 1  v t , o  wnl , An.  

So it can be  represented in NNF. 
After tha t ,  we don' t  distinguish the representations of conjunctive forms from 

those of disjunctive forms in NNF. We use "A" to represent conjunct ion and dis- 
junction. 

Fig.6 shows how a rule and the propagation of tokens are represented when the 
rule is used. 
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In NNF, we introduce a transition as shown in Fig.7. The transit ion t represents 
goal: wo * Bo A -. �9 A w,,-1 * B,,-1. The t ru th  values of the tokens in B o , . . . ,  B~-I  
are x o , . . . ,  xn-1. If ~ wi * xi > 0, then goal transit ion t can be fixed. 

t3 
0 ~ =  103 = 0.5 

Bo B.-1 

,,,o ~ , , - ,  o , = o . 5 /  ~.~ / \ v = = o . 9  

=,,o A~ / 0 . ~  0.eke) 0, 
Fig.7 Fig.8 

t l  
t2 
t3 

initial state Mo= 

incidence matrix 
A B C D E 

-0 .6  -0.4 0 1 0 
0 -0 .7  -0 .3  0 1 
0 0 0 -0 .7  -0 .8  

(0.6, 0.8 0 0 0.1) 

Fig.9 

belief strengths thresholds 
0.8 0.5 
0i9 0.5 

0.5 

Example 1. We have a set of weighted production rules: 

1) 0.6A, 0.4B ~=~176 

2) 0.7B, 0.3C "=~176 

The facts are: 0.6A, 0.8B, 0.1E. 
The goal is to prove: -0 .7D,  0.8E. Let the belief s t rength of the goal be 1 and 

the. threshold of the goal be 0.5. 
The NNF representat ion of the rules in the example is shown in Fig.8. 
The incidence matrix,  initial state M0, belief s trengths and thresholds of transi- 

tions of the NNF model of the example are shown in Fig.9. 
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2 . 3  R e a s o n i n g  i n  N N F  

The  difference between the reasoning used in N N F  and  tha t  used in the  former 
fuzzy p roduc t ion  sys t em is as follows. According to the  reasoning of the  former 
fuzzy produc t ion  sys tem,  it is only when  all of the condi t ions  of a rule are t rue  t h a t  
the conclusion of the  rule can be true.  Bu t  according to the  reasoning used in NNF,  
we are not  to give up a rule even if one of its condi t ions  is false. We shall,  in t h a t  
case, proceed to process the  next  condi t ion  of the  rule. After  all the  condi t ions  of 
the rule have been processed, we say: if ~ wi * xi > 0 (0 is the th reshold  of  the rule) 
then  the  rule is usable; else it is not .  So in NNF we can carry  on reasoning even 
when only par t ia l  in format ion  is available. 

2 .3 .1  F o r w a r d  R e a s o n i n g  

NNF is used to represent  fuzzy p roduc t ion  rules. Facts  are separa ted  f rom rules. 
T h e y  are s tored in M0. W h e n  a forward reasoning begins,  we pu t  the  tokens wi th  
t r u t h  values s tored in 11//0 to their  corresponding places, then  search for t rans i t ions  
t ha t  can be fired, and  fire t h e m  one by one. At  the  same t ime,  tokens are propaga ted .  
The  t rans i t ion  firing procedure  will no t  stop,  e i ther  unt i l  the  goal  t r ans i t ion  can  be 
fired (in t h a t  case, we say the goal is t rue) ,  or unt i l  the  s ta te  of  N N F  cannot  be 
changed wi th  fu r ther  reasoning,  while the  goal t rans i t ion  remains  unfired (in t h a t  
case, we sa~ the  goal is false). 

A l g o r i t h m  1. Cn• is the incidence matrix, the goal transition is corresponding to 
the n-th row of Cnxm; M0 is the initial state that contains tokens representing facts with 
t ruth values, 3//0 is an m-dimension vector; Threshold=[Ol, . . . ,  0,~] is the threshold vector 
of transitions, and V = Iv1, . . . ,  v~] is the belief strength vector of transitions. 

A = C,,x,~; Mnew = M0; (see whether goal trazlsition can be fired) 
X = 0; conclusion=0; success=false; 
call procedurel(success, n, X, conclusion) 
if success then goto stop; 
MAXStep=MAXNUM; (define the maximum loop number to be MAD(Step) 

REPEAT 
M = Mnew; (search for transitions that can be fired, and fire them one by one) 
FOR i = 1 to n - 1 DO (see whether transition i can be fired) 

X = 0; success=false; conclusion=0 
call procedurel(success, i, X, conclusion) 
if success then 

Mnew[conclusion]=MAX(Mnew[conclusion], AIi, conclusion]*f(V[i], threshold[i], X) 
endif (see whether goal transition can be fired) 
X = 0; success=false; conclusion=0 
cM1 procedurel(success, n, X, conclusion) 
if success then goto stop; 

ENDFOR 
MAXStep=MAXStep- 1; 

UNTIL Mnew=M or Step=0 
stop: if success then goal=true 

else goal=false 
ENDalgorithml 

procedurel(success, t, X, conclusion) (see whether transition t can be fired) 



140 J. of Comput. Sci. & Technol. Vol.ll 

F O R j = I  tomDO 
if Air, j] < 0 and Mnew[j] > 0 then X = Mnew[j] * A[t,j] + X 
if A[t,j] > 0 then conclusion=j 

ENDFOR 
if X >Threshold[t] then success=true; 

endprocedttrel 

For example, in applying Algorithm 1 to Example 1, the reasoning can be shown 
as follows (here we select f[  as the output  function f ) :  

tl 
t2 
t3 

M0--- 

A B C D E 
-0.6 -0.4 0 1 0 

0 -0.7 -0.3 0 1 
0 0 0 -0.7 -0.8 

(0.6 0.8 0 0 0.1) 

(0.6 0.8 0 0.544 0.1) 
J. t2 

(0.6 0.8 0 0.544 0.504) 

M-- 

M= 

belief strengths 
0.8 

~ 
thresholds 

0.5 
0.5 
0.5 

A 1 ~. .  0.5 ~b O 0.1 ~,~ 1 = . .  

" 0 . 9 ~ v ,  a v l = l  ~. =1 
01= 0.4 C J e.,--'0.5 

Fig.lO 

Note: a, b, c are the truth values of tokens in places A, B, C. And before firing t l  and 
t2, a0 = 0.5, b0 = 0, co = 1. We select f~ as the output function. For the first time, t l  is fired, 
bl = ao*0.5 = 0.25, then t2 is fired, al = b1.0.1+0.9 = 0.925; for the second time, t l  is fired, 
b2 = h i * 0 . 5  = 0.4625, then t 2 is fired, a2 ":'- b2.0.1+0.9 = 0.94625;... ; for the i-th time, t l  is 
fired, bi = hi-l*0.5, then t2 is fired, ai = bl.0.1+0.9. So, ai = 0.5.0.05i-1 +0.9.~--]~-_- 2 0.05 k. 

From what  is discussed above, we can see that  t l  and t2 will be fired in endless 
cycles. Only by defining maximum inference step number, the endless cycles can be 
cut. 

Given 0.7 �9 0.544 + 0.8 �9 0.504 > 0.5, goal transit ion t3 can be fired, and thus we say 
goal: -0 .7D,  0.8E is true. 

The proof of the correctness of Algori thm 1: 
Algorithm 1 uses forward propagations of tokens to fire the goal transit ion. There 

are 3 cases in Algorithm 1: 
(1) If the goal is true and can be a t ta ined in the defined maximum number of 

inference steps - -  MAXStep, then the goal transition can certainly be fired by using 
Algorithm 1 in NNF. But  what is to be noted is that  MAXStep should be large 
enough so tha t  the goal transit ion can be fired by forward reasoning in MAXStep. 

(2) If tokens cannot be propagated further in MAXStep, and the goal transit ion 
hasn ' t  been fired, then Algorithm 1 considers that  the goal is false. This considera- 
tion is right for the goal is actually false. 

(3) If the goal transit ion hasn' t  been fired after MAXStep forward reasoning, 
then Algorithm 1 considers tha t  the goal is false. 

The definition of MA_XStep excludes the endless looping propagation of tokens 
in the NNF systems as shown in Fig.10. 
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2 . 3 . 2  B a c k w a r d  R e a s o n i n g  

Forward  reasoning  s t a r t s  f rom facts .  Backward  reasoning  s t a r t s  f rom the  goal. 

In backward  reasoning  we divide a goal  in to  some subgoals ,  t h e n  for eve ry  subgoal  

we search for a p rov ing  p a t h  t h a t  can  give the  subgoal  a m a x i m u m  t r u t h  value. 

A lgo r i t hm 2 is a backward  reasoning  a lgo r i t hm in NNF.  I t  can  get  the  rules p rov ing  

the  goal  and  the  sequence of  the  rules used for p rov ing  the  goal. 
Algor i thm 2. Cn• is the incidence matrix, the goal transition is corresponding to 

the n-th row of C,~x,~, M0 is the initial state that  contains tokens representing facts with 
t ru th  values, M0 is an m-dimension vector, Threshold=[01, . . .  ,0hi is the threshold vector 
of ~ransitions, and V =-- [Vl, . . . ,  v,,] is the belief strength vector of transitions. 

A = C,,x,~; M = M0; List=~; success=false; v : 0; 
MAXStep=MAXNUM; (define the maximum inference step number to be MAXStep) 
call procedure2(n, v, success, List, M, Step) 
if success then '%he goal is true" 
else "the goal is false" 
ENDalgorithm2 

Procedure2(goal, v, success, list, current__M, Current_step) 
If current_step>0 then 

X =O; 

F O R j = l t o r n D O  
IF A[goal, j]>0 then conclusion=j 
IF A[goal, j ]<0 then 

(search for a rule that can let M[j] get maximum truth value) 
BIG---M[j]; MAXLIST---~; 
F O R i =  1 t o n - 1  DO 

if A[i, j] > 0 then 
success=false; sublist=~p; v = 0; 
sub__M=current_M; substep--current_step- 1; 
call procedure2(i, v, success, sublist, sub_M, substep) 
if success and v >BIG then 

BIG=v; MAXLIST----sublist; select_M---sub_M; 
endif 

endif 
ENDFOR 
if MAXLIST# r then 

current_M[j]=BIG; List=[List[MAXLIST] 
endif 
Z = X + B I G  * (-m[goal, j]); 

ENDFOR 
IF X >Threshold[goal] then 

success=true; 
v = A[goal, conclusion]*f(V[goal], Threshold[goal], X); List=[List[goal]; 

ENDIF 
ENDIF 
Endprocedure2 

For  example ,  we app ly  Algor i thm 2 to  E x a m p l e  1. T h e  reason ing  is shown as 

follows (here  we select ][  as the  o u t p u t  func t ion  f ) :  



142 J. of Comput. Sci. &: Technol. Vol.ll 

A B C D E belief strengths thresholds 

t2 0 --0.7 --0.3 0 1 0 9 0.5 
t3 o o o - 0 . 7  - o . 8  1 o.5 

Mo--(0.6, 0.8 0 0 0.1)goal=~3=(0 0 0 - 0 . 7  -0 .8)  ~ (~) ----*List=It 1, t l ,  t3] 

g = t l = ( - 0 . 6  - 0.4 0 1 0)--* M---(0.6, 0.8, O, 0.544, 0.1) List--[t'l____~ 

goa/----t2=(O --0.7 --0.3 0 1)--* M-- (0 .6 ,  O.S, O, 0.544, 0.50a,) L is t= [= l ,  t2] 

Because 0.7,0.544 + 0.8.0.504 > 0.5, so goal transition t3 can be fired, then we say goal: 
-0.TD, 0.8E is true, and the sequence of transitions firing for proving the goal is List:It1, 
t2, t3]. 

The proof of the correctness of Algorithm 2: 
Since we have defined the maximum inference step number,  Algori thm 2 always 

can finish. 
tgoal 

o :ii::i: 
Fig.ll Fig.12 

Note: Ia the case of Fig.12, endless looping will happen in tl. When the loop number has 
reached MAXStep, Algorithm 2 will give up tl, and try to get solution by t2. 

In the eases as shown in F ig . l l ,  it is only when MAXStep is large enough that  
Algorithm 2 can certainly finish, successfully. Tha t  is to say, if the goal is actually 
true, then  Algori thm 2 can fire the goal transit ion and find the best solution. But 
if the goal is actually false, then the goal transit ion cannot be fired and Algori thm 
2 will report  "the goal is false". 

In the cases as shown in Fig.12, if MAXStep isn't defined, then backward rea- 
soning will proceed endlessly. In Algorithm 2, the definition of MAXStep prevents 
proceeding with the endless looping road, and Algorithm 2 will t ry  other  solution 
roads. 

2.3.3 Learning in N N F  

Since NNF has some characters of neural network, NNF can make use of the 
ways of weights training common to neural networks and acquire knowledge by 
modifying the weights of the arcs from places to transitions. 

In neural networks, a three-layer perceptron net can be used to realize an m-class 
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classifier as Fig.13 shows. 
yr~-~-I  ~ ~ , , Y ' =  , ~ k : 0  ~ * *  -0~' ) ,  0 < l < m - 1 ,  = y ( E ' / ' = o ~ j ~ , ~ - O ' ~ ) ,  O <  

k < n : - i  
' '~-~ o3), o <_ , ~  xj = f ( ~ i = 0  wii * xi -- j < - 1, f~ is selected as output  function f .  

x 0 , . . . , x ~ - i  are n elements of input sample X, while Yo, . . . ,Ym-1 represent m 
classes. 

In neural networks, the famous Back-Propagation algorithm is used in three- 
layer perceptron net to acquire knowledge by weights training. In BP algorithm, 
the difference between desired output  and actual output  is used to adjust, in the 
first place, the connection weights between the ou tput  layer and the hidden layer 
right below it, then is propagated backward in the network to layers below the top 
hidden layer, and is ultimately used to adjust connection weights between the input  
units and units above them. 

In NNF, a transition acts something like a processing unit in neural network. 
We create an NNF model of perceptron to realize classifier as Fig.14 shows. 

Yoq 

zO 

~ Y,'n-1 t~ 

ii 
~ n 2 - -  1 

s s  
z , , ! -  l 

wij 
Xn-t 

Yol 

t~' 

Pg 
output layer { 
O<_k<_n2~l, O<l<m-1 tO 
second hidden layer 

0 < j < n t - - 1 ,  0< k < n ~ - I  P~ 

first hidden layer to - 

0<  i < n -  1, 0 < j < n l  - i  
input Po ( 

Fig. 13 

o , ~  

1 

)Ym-I  

' I  
it  

- -  t . m _  1 

w"~l 0 <_ k _< n 2 -  1,0 < l _ < m -  1 
P," - 1 n 2  

w~k O<j<_nl-l,O<k<nz-1 
p:~-i  

wlj O<-i<_n-l,O<j<nl-1 
P,,-1 

Fig.14 

Note:  P0, �9 �9  P, , -1 are  i npu t  places t h a t  r ep resen t  the  cha rac t e r s  of i npu t  sample .  T h e  weight  
of t he  arc  f rom a t r a n s i t i o n  to a place is 1. f,' is se lected as t he  o u t p u t  funct ion .  Y o , . . . ,  Y,~-I  
are  o u t p u t  p laces  t h a t  r ep resen t  classes. T h e  des i red  o u t p u t  is t h a t  the re  is on ly  one  token  in 
Yo, - - - ,  Y-*-I- If  t he  token  is in Y~, t h e n  t h e  i n p u t  s ample  be longs  to  class i. 

First, we put  the tokens with t ruth  values that  represent the characters of input  
sample into corresponding places: P0 , - . . ,  P~-l-  Then the t ruth  values of tokens in 
P0,-. -, P~-I  are x0 , . . . ,  X~_l. After that,  we apply the forward reasoning algorithm 
of NNF to the perceptron shown in Fig.14. Then we can get the following. 

The t ru th  value of the token in Pj is 
i i 1) �9 j : f ' ( v j , o j , E ~ : o  ~ ~ �9 ~ )  (o < i < ~ - 1, o <_ j <_ ~1 - 

Wij is the weight of the arc from Pi to tj. 8j is the threshold of transit ion tj. vj is 
the belief s t rength of tj. 

T h e  t r u t h  va lue  o f  t h e  t o k e n  in P~' is 
, , v ,  n l - i  , _ 1) �9 ~ = f ' (v~,0~,  ~ , =  0 ~j~ , ~ )  (0 _<j _ ~ -  ~, 0 < k _< ~ - 

W t jk is the weight of the arc from Fj to t~,. 0~, is the threshold of transit ion t~. v~ is 
the belief s t rength of t~. 

The t ru th  value of the token in Yt is 
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"~ " "~" * "~ ( 0 <  k < n 2 - - 1 ,  O < l  < m - - l )  

is the weight of the to is the threshold of transition iT- is 
the belief strength of t~ t. 

We can change BP-algor i thm of neural network, and apply it to NNF to acquire 
knowledge by weights training. Algorithm 3 is the BP-algor i thm of NNF.  

A l g o r i t h m  3. 
Step 1: Set the thresholds of transitions to small random values in [0, 0.5]; set the weights 
of arcs from places to transitions to random small values in [0, 1]. 

Step 2: Input the tokens with truth values that represent the characters of input sample 
into corresponding places: P0,. .- ,P,~-I,  and we have already known the desired output: 
do, . . . ,  din-1 - -  the truth values of tokens in Yo , . . . ,  Ym-1. 
Step 3: Forward reasoning, thus we ca~ get the actual output: Y0,- �9 �9 Ym-1 - -  the truth 
values of tokens in Y0,..-, Ym-x propagated by forward reasoning. 

Step 4: Adjust weights of the arcs from places to transitions. Adjusting weights starts from 
Y0,.-., Ym-1, propagates b~ckward to P0, .- . ,  P~-I- That is, from top layer to bottem layer, 
adjust weights of the arcs from places to transitions. 

The weight wij (the weight of the arc from place i to transition j )  at the next time point 
is wij(t  + 1) = wi j ( t )+  71.6j * x~. j is the sequence-number of the transition j; x~ is the truth 
value of the token in place i, x~ can be the initial input or the result of forward reasoning; 
7/is the gain item, ~/E [0, 1]; 5j is the error item. 

(s If j is one of the sequence-numbers of transitions t ~ , . . . ,  t"m_l, then 6j -- yj * (1 - 
yj) * (dj - yj), 

�9 t '  I or to , . . . , t ,~  I ,  (~) If j is one of the sequence-numbers of transitions t ~ , . . ,  ,,~ - 
then 6j = x'.j* (1 - x~.) * ( ~ k  6k * wj~). 

Note: x~ is the truth value of the token in the output place of transition j .  k ranges 
over all of the transitions above transition j which the output place of transition j connects 
to; w3. k is the weight of the arc from the output place of transition j to transition k. 

Moreover, if we introduce momentum item to BP-algorithm, then the speed of weights 
training will be accelerated. 

So, wij(t  + 1) = w,j(t) + 71.6j  . x~ + a *  (w~j(t) - w , j ( t -  1)) (0 < a < 1) 

Step 5: If the algorithm has reached the desired error precision or has cycled for limited 
times, then exit; else goto Step 2. 

The proof  o f  correctness: 
Algorithm 3 is obtained by revising the famous BP-Mgori thm in neural  network 

to make it runable  in the NNF model�9 So if BP-aJgorithm can succeed, then Algo- 
rithm 3 can succeed too. And we all know that  BP-algori thm is successful. 

After training weights by using Algorithm 3, we can delete the arcs whose weights 
are very small from NNF model�9 Then the places will not connect to all the tran- 
sitions above them, and the places will connect only to certain transit ions above 
them where the  places, a transition above them, and the ou tpu t  place of the tran- 
sition can form a rule, the transition represents a rule, and the input places of the 
transition represent  conditions of the rule, and the outplace of the t ransi t ion repre- 
sents the conclusion of the rule. So, by weights training, NNF can learn the rules of 
classification. 
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3 N N P r F  

3 . 1  C o n c e p t s  

3 . 1 . 1  T h e  F o r m a l  D e f i n i t i o n  o f  N N P r F  

= ( P , T , F , W , D , V , % A p ,  A T , A F ,  BS,  O,a,Y,  Mo) is an N N P r F ,  iff 
(1) P is a finite set  of places, T is a finite set of t ransi t ions .  A t rans i t ion  in N N F  is 

someth ing  like a neuron in a neural  network,  F is a finite set  of arcs connect ing between 
places and transi t ions.  T h e y  have charac ters  of: 

P A T = C ;  F c _ ( P • 2 1 5  
P u T ~ r dorn(F) LJ cod(F) = P u T,  Vt E T, t has  only  one o u t p u t  place. 

(2) W :  F ~ [0, 1] is an associat ion weight function.  
V f  E F, W ( f )  = wi, wi is the  weight of  arc )r wi E [0, 1]. 
(3) D: the individual  set of NNPrF .  fl is the  given set  of ope ra to r s  on D. 
(4) V: the  set of  variables  of D. 
(5) ~r: the set of dynamic  predicates  on D.  
(6) Ap: P --, 7r. Vp E P, if Ap(p)  is an n -a ry  predicate ,  then  p is called an n - a ry  

predicate .  
(7) AT : T --* fD, fD is the formula  set on D. 
Vt E T, AT(t)  can only be a s ta t ic  pred ica te  or an ope ra to r  in ~'1. 
(8) AF : F ---* Ss, Ss is the  symbol ic  sum on D.  
Vp E P, if (t ,p) E F or (p,t) E F, then  AF(t ,p)  or A v (p , t )  is an n - a ry  symbolic;  

o therwise  AF(t ,p)  or AF(p, t) equals zero. 
(9) S S :  T --* [0, 1] is an associat ion function. 
Vt E T, B S ( t )  = vt, vt is the belief s t r eng th  of the p roduc t ion  rule cor responding  to 

t rans i t ion  t. 
(10) 0 :  T --* [0, 1] is an associat ion function. 
Vt E T, 0(t) -- 0i, 0i is the threshold of t rans i t ion t. 
(11) a : Vp E P, if there  is a token a in p, then  a(~r) -- a i  E [0, 1], a i  is the t r u th  value 

of ~. If  token  a has the  s t ruc ture  of ( u t , . . .  ,u,~) and  the t ru th  value of hi ,  then  token r 
in place p represents  t ha t  the t ru th  value of Ap(p) ,  the  n - a ry  p red ica te  corresponding to p 
wi th  the  p a r a m e t e r  vector  of ( u l , . . . ,  urn), is hi.  

(12) Y : T --* the  set of different kinds of ou tpu t  functions,  Vt E T, t is assigned an 
o u t p u t  funct ion f .  T h e  kinds of ou tpu t  functions used in N N F  can be used in N N P r F  too. 
T h e y  are shown in Fig.4. 

(13) M0 = ( . . . , {v~j~(aj i l , . . . ,a j i ,~ j ) l (a j i l , . . . ,a j i , , j )  is a token in P j } . . . ) ,  0 < a j ,  <_ 
1, aj i  is the  t rue  value of Av(Pj ) (a j i l , . . .  , aji,~j). 

M0 initializes the d is t r ibut ion of tokens with belief s t reng th  in NNF.  
Note: A n o n e m p t y  and  finite set D,  a n o n e m p t y  and  finite set  V have the  following 

relat ions.  
(~) I f  symbol s  in V denote  members  in D,  then  we call V the  var iable  set  on D,  and call 

the  symbols  in V the  variables  on D.  

(~) T h e  var iables  on D or member s  in D are called t e rms  on D.  I f  g('*) is an n -a ry  
o p e r a t o r  on D, vt ,v2, . . . ,vr~ are t e rms  on D, then  g('~) (v l ,v2 , . . . , v ,~)  is a t e r m  on D.  
The re  is no o the r  t e rm  on D. 

(~) An n - a r y  vector  ( v l , . . . ,  v,,) (n _> 1) is called an n- tup le  on D if each of its componen t s  
is a t e r m  on D.  

(~) T h e  formal  sum which is formed by the connect ion of finite n u m b e r  of  n- tuples  on 
D with  " + "  is called the  n -a ry  symbolic  sum on D.  
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@ The formulas on D include: vi = v2, where vi and v2 are terms on D; ~p, where p 
is a formula on D; p V q, where p and q are formulas on D; (3x)p, where x is a variable on 
D, and p is a formula on D. There is no other formula on D. 

@ p(D) = { ( d i , . . . ,  dn)lp(dl,..., d,,)}. If p(D) is static, then we call p an n-ary static 
predicate on D; otherwise, we call p an n-axy dynamic predicate on D. 

3 .1 .2  T r a n s i t i o n  R u l e  

In Fig.15, t r ans i t i on  is t, i npu t  places are P1, .  - . ,  P,~, and  the  t r u t h  values of  the  

tokens  in t hem are x l , . . .  , xn ,  the  weights and  the  symbol ic  sums of  the  arcs  con- 

nec t ing  P 1 , - . . ,  Pn to  t are  w i , . . . ,  w,~ and  (Xl l ,  x 1 2 , . . . ,  x l m l ) , . . . ,  ( x n l , . . . ,  Xnmn), 
the  th resho ld  of t is 0, the  bel ief  s t r eng th  of  t is vt. T h e  ou tp l ace  of  t is P ,  the  weight  

and  the  symbol ic  sum of  the  arc connec t ing  t to  P is w and  ( Y l , - - . ,  Yt)- 

If ~ wl * x, > 0 and ( x l , ,  x12 , . . . ,  x l , , i ) , . . . ,  (xn l , . . . ,  xnm,,), (Y i , . . - ,  Y,) is unifiable 
then t is fired. Apply the unification to the variables, and get the token ( u l , . . .  ,ul)  which 

should be put  into the output  place P; the truth value of the token ( u i , . . . , u l )  in P is y '  = 
max(y ,w ,  f ( v t , O , ~ w l  * xi)). (y is the t ruth value of token ( u i , . . . , u , )  in P before firing t. If 
there is no token ( u l , . . .  ,ul)  in P before firing t, then y = 0.) 

else t cannot be fired. 

Fig.15 shows the  p r o c e d u r e  of t rans i t ion  firing. 

/:h ""': ""': Pt 
zl ( ~ ( z l  . . . . . .  z l . , )  "":~ r zl ( ~ z l ,  ..... z l . , )  

0 v, .... ' ;  

before firing t after firing t 

Fig.15 

3 . 1 . 3  I n c i d e n c e  M a t r i x  

In an  N N P r F - n e t  t h a t  has n t rans i t ions  and  m places, its inc idence  m a t r i x  is 

C = [Cij] (1 < i < n,  1 < j < m) .  Eve ry  row of  C represen ts  a t r ans i t ion ,  eve ry  

c o lumn  represen t s  a place,  Cij = w(ti ,pj)  * AF(t i ,pj)  - w(pj, ti) * AF(Pj, t i) .  

3 . 2  N N P r F  M o d e l  f o r  P r e d i c a t e  L o g i c  

N N P r F  sepa ra t e s  facts  f rom rules. T h e  N N P r F - n e t  s t r u c t u r e  represen t s  rules 

only. In  an  N N P r F - n e t  t h a t  has m places , facts are r ep resen ted  by  M0 = ( {a l i (a l i l ,  
�9 . . ,  a l i ,~ l ) l (a ln , . . . ,  M i n i )  is a token  in P1}, �9 �9 �9 {(~ji(aj i l , . . . ,  a j in j ) I (a ju , . . . ,  ajinj) 
is a token  in P j }  . . . ,  { a m i ( a m i l , . . . ,  ami,~m)l(amil, . . . ,  ami,,~) is a t oken  in pro}),  

0 < cr < 1. a is the  t r u t h  value of its co r responding  token  - -  the  t r u t h  va lue  of  a 

fact.  

As in NNF,  the  rules t ha t  can  be represen ted  in N N P r F  have the  fo rm of: 

wi */~ ( x l i , . .  , xlmi) A . . .  A w ,  * P,~(xnl xnmn) ~t,o �9 , . . . ,  w *  P ( Y l , . . . , Y t )  
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(vt and 0 are the belief s t rength and threshold of the rule). The NNPrF  model of a 
rule is shown in Fig.16. 

Z i P~-"~ ~! (2:11 . . . . .  zlml ) 

~.~ p (9, ..... ~) ~,(z11,. 1 ) 
\ ~.~r . . . . . . .  ~n..) 

z ,  ( , . J~ , (z ,~l  . . . . .  z,~,..) t ----x-A__v = 1,8 

F ig .16  F i g . 1 7  

As in NNF, a transition is introduced in Fig. 17 to represent goal: wl */>1 (x 11, �9 �9 �9 
x lml)  A. . .  A w~ * P,~(xnl,..., xnm,). The t ru th  values of the tokens in P1 , - - . ,  P,~ 
are x l , . . .  ,x,~. If ~ w ~  �9 xi > 8, then goal transit ion t can be fired. 

Example 2. We have a set of weighted production rules: 

1) 0.3 �9 DOG(x), 0.4 �9 BARK(x), 0.3 �9 JUMP(x) ~=0.9,a~0.5 Terrible(x); 

2) 1.0 * At(P, w) ~=~176 At(F, w); 

3) 0.4 * At(z, A), 0.4Man(z) v=0.8,o~0.5 Friendly(z). 

The facts are: 1.O,DOG(F), 0.8,BARK(F), 0.8,JUMP(F), 0.9,At(P, A), 1.0, 
Man(A). The goal is to ask: -0.45Terrible(y),  0.45At(y, A). Let the belief s trength 
of the goal be 1 and the threshold of the goal be 0.5. 

The NNPrF  representation of the rules of the example is shown in Fig.18. 
v4 = 1 v~ = 0.9 
8, = 0 .5--~ t" 82 = 0.5 Friendly 

,) 

T e r r i b l e ( ~  ~'O(F'wl 1.0(P,w> 'l'O<z) 

10< > \ 
v, = 0.9 . \ | 83 0 . 5  

\1 
DoGt)BA   )JUMP�9 AT<  AH( 

Fig.18 

The incidence matrix,  initial state M0, belief strengths and thresholds of transi- 
tious of the NNF model of the example are shown in Fig.19. 

Dog Bark Jump Terrible At Mu ~dendly Belief Thresholds 
8r 

t l - - 0 . 3 { x ) - - 0 . 4 ( z ) - - 0 . 3 ( z )  (x) 0 0 0 ' ,  0.9 ' '  0.5 , 
t2 o o o o (F,w)-1.0(P,w) 0 0 1 1 [ I [ 0 " 9  0.5 
ta o o o o -0.4(,,A) -0.40) (,) o.s 0.5 
t4 0 0 0 --0.45{u --0.45(y, A) 0 0 1.0 0.5 
M 0 ({I.0(F)) {0.8(F} } {0.8(F) } 4' {0.9{P, A)} {Io0(A) } t )  

Fig .19  

3.3  F o r w a r d  R e a s o n i n g  in  N N P r F  

It differs from NNF in that,  in NNPrF,  every place probably contains several 
different tokens, and when firing transitions, we must consider the unification of 
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variables. 
When forward reasoning begins, we put the tokens with truth values stored in 

M0 to their corresponding places, then search for transitions that can be fired, and 
fire them one by one. At the same time tokens are propagated. The transition firing 
procedure will be stopped, either when the goal transition can be fired in that case, 
we say the goal is true, or when the state of NNPrF cannot be changed with further 
reasoning, while the goal transition still cannot be fired, in that case, we say the 
goal is false. 

A l g o r i t h m  1'. C~• is the incidence matrix, C = [C~j] (1 < i < n, 1 < j < 
m), Cij = w( t , , p j )  * A f ( t i ,  pj)  -- w@j ,  ti) * AF(pj ,  tl), the goal transition is corresponding 
to the n-th row of C~xm. M0 is the initial state that contains tokens representing facts with 
truth values. M0 is an m-dimension vector. Threshold=J01, . . .  ,0,,] is the threshold vector 
of transitions. V = [Vl , . . . ,  v,~] is the belief strength vector of transitions. 

A = C=x,~; Mnew = M0; (see whether goal t ransi t ion can be fired) 
X = 0; conclusion=0; success=false; U = q); 
call procedurel ' (success,  n, X, conclusion, U) 
if success then goto stop; 
MAXStep=MAXNUM; (define the maximum loop number to be MAXStep)  

REPEAT 
M = Mnew; (search for transitions that  can be fired, and fire them one by one) 
FOR i = 1 to n - 1 DO (see whether transit ion i can be fired) 

X = 0; success=false; conclusion=0; U = ~; 
call procedurel ' (success,  i, X, conclusion, U) 
if success then token 6output = A~-(tl, Pconclnsion) * U; 

the belief s trength of 6output is B S  = W(t , ,  Pconclusion) * f(Y[i] ,  threshold[i], Z ) ;  
if Mnew[conclusion] has already contained 6output then 
the belief strength of 6output in Mnew[conclusion] 

=MAX( the  old belief strength, of 6output,  BS); 
else 

put  B S  * 6output into Mnew[conclusion] 
endif 

endif (see whether goal transition can be fired) 
X -- 0; success=false; U = (I); 
call procedurel ' (success,  n, X, conclusion, U) 
if success then goto stop; 

E N D F O R  
M A X S t e p = M A X S t e p -  1 

UNTIL Mnew = M or MAXStep---0 
stop: if success then goal=true 

else goal=false 
ENDalgor i thml '  

procedurel'(success, g, X, conclusion, U) (see whether transition g can be fired) 
FOR j = 1 to m DO 

if AF(pj, tg) in A[g,j] is ,,.iSable with a token ~f in Mnew[j] then 
the given belief strength of 6 is x i ; 
X = x i �9 W(pj ,  tg) + X; U = UUthe unifier of AF(pi,  tg) and 6; 

if W(tg,p~) in A[g,j] # 0 then conclusion=j 
E N D F O R  
if X >Threshold[g] then success=true; 

endprocedure l '  
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For example,  we apply Algor i thm 1 ~ to Example  2, the  reasoning is shown as 
follows (here we select f~ as the o u t p u t  funct ion f ) :  

Do S Baxk Jump Terrible At  Mare  Friendly Belief Thresholds 
strengths 

t l  -0.3(z) -0.4(x) -0.3(z) {z) o o o I o.9 I 0.~ 
t2 0 0 0 0 (F, to) - 1.0(P, to) 0 0 [ 0.9 [ 0.5 
,3 o o o o - 0 . 4 ( , , A )  - o . 4 ( , )  (~) o . s  o.s 
t4 . 0 0 0 --0.45(y) --0.45(y, A)  0 0 1.0 0.5 

M0 ({ 1.0(F)} {0.8(F} } (0.8(F) } 4b (0.9(P, A)} {I.0{A) } 4,) 
E 

M = ((z.o(F)} {0.s(r)} {0.S(.~)} {0.W4(F)} (0.9(P,A)} {Z.0(A)} 4,) 
~t r 

M = ({z.o(F)} {O.S(F)} {o.s~.~)} (o.'r;'4(r)} t {0.9(P, Ai} ~ {Z.0(A)} ~,) 
"{0.sl(r,A)}" 

Given 0.774 * 0.45 + 0.81 * 0.45 > 0.5 and U = { F / y } ,  goal t rans i t ion t4 can be 

fired, and  y = F .  Then  we can get the  result:  - 0 . 4 5 Te r r i b l e ( F ) ,  0.45At(F, A). 

The proof of correctness: 
Algor i thm 1 ~ in N N P r F  is ex tended  f rom Algor i thm i in NNF.  We have proved 

the correctness of  Algor i thm 1. So here Algor i thm 1 ~ is correct  too. 
Like the forward reasoning in N N P r F ,  the  backward  r ea son ing . and  learning in 

N N P r F  can easily be ex tended  from NNF.  Bu t  it  is beyond  the  scope of this  paper  
to discuss them.  
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