Vol.11 No.2 J. of Comput. Sci. & Technol. March 1996

NNF and NNPrF — Fuzzy Petri Nets Based
on Neural Network for Knowledge
Representation, Reasoning and Learning

Zhou Yi (A 2&) and Wu ShiLin (& #t)
Department of Computer Science, Fudan University, Shanghai 200433
Received December 14, 1994; revised July 7, 1995.

Abstract

This paper proposes NNF — a fuzzy Petri Net system based on neural
network for proposition logic representation, and gives the formal definition
of NNF. For the NNF model, forward reasoning algorithm, backward reason-
ing algorithm and knowledge learning algorithm are discussed based on weight
training algorithm of neural network — Back Propagation algorithm. Thus
NNF is endowed with the ability of learning a rule. The paper concludes with a
discussion on extending NNF to predicate logic, forming NNPrF, and proposing
the formal definition and a reasoning algorithm of NNPrF.

Keywords: Fuzzy Petri net system, NNF, NNPrF, neural network, forward
reasoning, backward reasoning, learning.

1 Introduction

1.1 Basics of Neural Network

A neural network is composed of processing units (corresponding to neurons
in human brain) and the connections linking them into a whole. Fig.1 shows the
working model of a processing unit. (Note: In Fig.1 z; is the i-th element of the
n-dimension input vector; w; is the weight of the connection between the i-th input
element and the processing unit; 6 is the threshold of the processing unit; y is the
output of the processing unit.) Fig.2 shows three kinds of usually used function f.

fo

fa fe
o 0 i) N)
input Z1: y 1

wy
://\/ output _Ol » 7] Ol 5 0‘ B

Tp-1 Wn-1

y=fQ_wirz1-6) B=Y wiez -8
=0 =0
Fig.1 Fig.2

A lot of neurons are interlinked to make up a neural network. A neural network
can work dynamically. To some extent, it is similar to human thinking, and it does

Research supported by the National High-Tech R/D Programme of China.

134 J. of Comput. Sci. & Technol. Vol.11

imitate human brain. A neural network is characterized by its high efficiency, self-
organization, fuzzy representation and reasoning, and the ability of self-learning.
It has been applied to the domains of pattern recognition, signal processing and
knowledge engineering, and has been proved to have good efficiency.

1.2 Shortcomings of the Present Models of Petri Net in Represent-
ing Fuzzy Logic

Muratal? has proposed the ways for representing proposition logic by using
P/T nets, representing first-order predicate logic by using Pr/T nets and developed
the ways for logic inference. In the reasoning of the P/T net model of proposition
logic, if there is a token in a place, then we consider that the statement the place
corresponds to is true, else we consider the statement is false. So, given the flowing
character of tokens, we can only see that there are no tokens in these places after
they have flowed through places. Then we consider the statements corresponding to
these places to be false, or we don’t know whether the statements are true or false.
But actually, these are statements we have conceived as true. This is of course an
error in logic. Moreover, the flowing character of tokens brings about the conflict
of trapsition firing. But this conflict doesn’t exist in logic inference. So there is
inconsistency between proposition logic and P/T net model. This inconsistency
also exists between predicate logic and Pr/T net model. And it is brought into the
representation of fuzzy logic based on P/T net and Pr/T net models.

A

. 131
Fig.3

In Fig.3, vl is the belief strength of rule ¢1, 0 < vl < 1, and the truth value of
the token in A is z. In the present fuzzy Petri net models, after firing t1, z = z*vl,
then z will become smaller and smaller. This is also an error in logic brought in by
the flowing of tokens.

The present fuzzy Petri net models for knowledge representation and reasoning
have brought in the concepts of truth values of the conditions and conclusion in a
rule and the belief strength of the rules. But when they are to decide which rule
will be used, they still insist on that it is only when all of the conditions of a rule
are matched that the rule can be used. That is to say, the transition is enabled
only when every input place of a transition has tokens. This is a way that equally
processes every condition. But in practice, the importance of different conditions
of a rule is different. So we shall give different conditions different weights. For
example, in the rule “if a thesis demonstrates originality, its proposition is correct,
and it is written clearly, then the thesis can be published”, it is obvious that the
first two conditions are more important than the last one.

So, based on neural networks, we can propose NNF — a new fuzzy Petri net for
proposition logic. NNF has token propagation property, and uses weighted fuzzy

No.2 NNF and NNPrF 135

logic. From this we extend NNF to first-order predicate logic and form NNPrF —
fuzzy Petri net for first-order predicate logic.

2 Concepts, Reasoning and Learning of NNF — A
New Fuzzy Petri Net Based on Neural Network for
Proposition Logic

2.1 Concepts

2.1.1 Formal Definition of NNF-Net

> =(P,T,F,W,V,0,0,Y, M) is an NNF, iff

(1) (P, T, F) is a finite Petri net. P is a finite set of places, and T is a finite set of transitions.
A transition in NNF is something like a neuron in a neural network. F is a finite set of
arcs connecting places and transitions. They have the characters of:

PNT=¢;FC(PxT)u(T x P);

PUT # ¢;dom(F)Ucod(F)=PUT,
where dom(F) = {z|y, (z,y) € F}, cod(F) = {z|y, (y,z) € F}; Vt € T, t has only one
output place.

(2) W : F - [0,1] is an association weight function.

VfeF, W(f)=w, w;is the weight of arc f, w; € [0, 1].

(3) V:T — [0,1] is an association function.
Vt € T, V(t) = v, v, is the belief strength of the production rule corresponding to
transition t.

(4) 6 : T — [0, 1] is an association function.
VYt eT, 6(t) = 8;, 6; is the threshold of transition ¢.

(8) @ : Vp € P, if there is a token ¢ in p, then a(c) = o; € [0,1], a; is the truth value of
the token o. Token o in p with the truth value of a; represents that the truth value of
the statement corresponding to place p is ;.

(6) Y : T — the set of different kinds of output functions, V¢t € T, t is assigned an output
function f. Fig.4 shows two kinds of output functions f used in NNF, i.e. f;, fI.

K i1,
+1) — +1
Ves 81— 0.5

, P) S wy ez, 6 T wivz;

Fig.4. Two kinds of output functions used in NNF.
We introduce two kinds of f in NNF — f;, f!.

. vexy wika;, 0<(Qwixz; —0)xv, <1
ft'(vt,e,zwi*-‘vi)= 0, Swixz; ~0<0
1, Qwixzi—0)xv > 1

_v,:(Zwa*zi—e) : : —0 > 0
(v, 8, i *Ti) = 1/(1+e) L wika P
f,(vt Zw *2:) {0’ Zwi*zi—0<0

(7) Mo = (o, ...,;...), a; is the truth value of the token in place P;. My initializes the
distribution of tokens with belief strength in NNF.

136 J. of Comput. Sci. & Technol. Vol.11

2.1.2 Transition Rule

In Fig.5 of transition ¢, input places are Py,..., P,—1, the truth values of the
tokens in them are zg,...,Zn_1, the weights of the arcs connecting P, ..., P,-1 to
t are wy,...,wn_1, the threshold of ¢ is 8, and the belief strength of ¢ is v;. The
outplace of ¢t is P; the weight of the arc connecting ¢ to p is w.

If " w; x 2, < 6, then t cannot be fired;

else t is fired;

The truth value of the token in P is ¥’ = max(y,w * f(3_w; *z; — 8)). (y is the
truth value of the token in P before firing t. If there is no token in P before firing
t, then y = 0.) Fig.5 shows the procedure of transition firing.

Po Po R
Zo o -
w AF Wo AL
eV, o Ve
no \ P o \ P
o D —— O 7O
: : Wn-1 : y : : W1 : y
Tp-1 Tn-1
Pn-1 Pn-1
before firing ¢ after firing ¢
Fig.5

2.1.3 Incidence Matrix

In an NNF-net that has n transitions and m places, its incidence matrix is
C = [Cij] (1 <i<n,1<j<m). Every row of C represents a transition; every
column represents a place, C;; = w(ti, pj) — w(p;, ti).

2.2 NNF Model for Proposition Logic

NNF separates facts from rules. The NNF-net structure only represents rules.
In an NNF-net with m places, facts are represented by My = (ag, ..., ., ¥m_1)-

If «; = 0, then there is no token in P;.

If 0 < a; <1, then q; is the true value of the token in P; — the truth value of
the fact which P, is corresponding to.

The rules that can be represented in NNF are weighted production rules. Every
rule has two parts: conditions and conclusions, which are all weighted conjunctive or
disjunctive forms. And we call the two kinds of forms as weighted statement forms.
One character of NNF is that it doesn’t distinguish weighted conjunctive forms from
disjunctive forms, because computations of the truth value of the two kinds of forms
are the same. The following is our explanation.

Definition 1. 1. Every atomic statement P is a weighted statement form, whose
truth value is T(P) — the truth value of P.

2. Let x be a weighted statement form, then ~z is also a weighted statement form,
which is called “the negation of z”, whose truth value is —T(z). So F(z) = —T(z)
s called “the false value of x”.

3. Let xy,...,z, be all weighted statement forms and wy,...,w, be weights,
Sw; =1, and w; > 0, then

No.2 NNF and NNPrF 137

X =wizi A AwnTyp = AL W;iT;
15 a weighted statement form, which is called “a wezghted conjunctive form of x;s”
The truth value of X is T(X) = 3 w; * T(x;).

4. Let x be a weighted statement form, then (x) is also a weighted statement
form, which is equal to x. The truth value of (z) is T((z)) = T'(z).

Definition 2. Let zy,...,z, and wy,...,w, be the same as Definition 1, then

X =wz V- - Vwyy, = Vi wiT;
is “the weighted disjunctive forms of z;s”. The false value of X is
F(X) =3 w; x F(x;)
So, from Definition 1, we can get
F(X) =Y wixF(z:) = Dwi* (-T(2:)) = - L wi * T(z;) = -T(X)
and T(X) =3 w; * T(x;).

From what is discussed above, it can be seen that the computations of the truth
value of the weighted conjunctive and disjunctive forms are the same.

In NNF, the only thing that decides whether a transition can be fired is whether
the truth value of the condition, a weighted statement form, is larger than 8. So we
need only to pay attention to the truth values of conditions and conclusions.

NNF only represents the rules that have the form of:

wo* BgA---Aw,_1 % B, 1—>w*A (1)

The belief strength of the rule is v;, the threshold of the rule is 8, and the truth
values of conditions By,...,B,_) are rg,...,Zn—1. Only if 3. w; * z; > 6, then we
can get conclusion A and the truth value of A = w * f(v:,8,Y w; * z;). (We can
select f, or f! as function f. Fig.4 shows f; and f!.)

However, we may change any kinds of rules into form (1). For example:
If a rule has the form of: A

wo* By A--- Awp_1 * By Lw'l *AI/\---/\w:l*An,-

then we can change it into:

ve,8
wo * By A+ Awn_q % Bpoy =5 wh * Ay,

wo* By A - Awp_1 * Br Mw;*An.
So it can be represented in NNF.
If a rule has the form of:

wo*x BgA--- Awp_1 * By v'—'0>w’1*A1V~~Vw;*An,
then we can also change it into:

wo * By A -- /\wnl*Bn_l—g>w1*A1,

ve,8

wo* Bg A+ - Awp_{ * Bp_1 — w], * An.
So it can be represented in NNF.

After that, we don’t distinguish the representations of conjunctive forms from
those of disjunctive forms in NNF. We use “A” to represent conjunction and dis-
junction.

Fig.6 shows how a rule and the propagation of tokens are represented when the
rule is used.

138 J. of Comput. Sci. & Technol. Vol.11

Bo SR Bo
Zo L Zo
wo ML Wo
Vi) 8V;
B wy 3 y A B, wy ‘ CA
:.:l @ w w 2.:1 G Wa-1 w :
: : n-l t y : : tmax(y-W:f(V.,ﬁ,Zw.- tz,)
Tn-1 Tn-1
B,_; Bn_y
By SR
Zo wo \ ’
v,
B i A
n O- O
. N W -1 y
: : :
Zn-1
Bn-1 Fig.6

In NNF, we introduce a transition as shown in Fig.7. The transition ¢ represents
goal: wg* By A -+ Awp_y * B,_1. The truth values of the tokens in By,...,B,_1
are Zo,...,Tn-1. If > w; * x; > 0, then goal transition ¢ can be fired.

Bo Ba-1
Wo Wn-1
t V= 1,9
Fig.7

incidence matrix
A B C D E belief strengths thresholds
0 ,

tl | -0.6 -0.4 0 1 0.8 0.5
t2 0 -0.7 -0.3 0 1 0.9 0.5
t3 0 0 0 -0.7 -0.8 1 0.5
initial state Mo= | (0.6, 0.8 0 0 0.1)
Fig.9

Ezample 1. We have a set of weighted production rules:

1) 0.6A, 0.4B *~*25°%%p

2) 0.7B, 0.3C *=°25¢,

The facts are: 0.6A, 0.8B, 0.1E.

The goal is to prove: —0.7D, 0.8E. Let the belief strength of the goal be 1 and
the- threshold of the goal be 0.5.

The NNF representation of the rules in the example is shown in Fig.8.

The incidence matrix, initial state Mp, belief strengths and thresholds of transi-

tions of the NNF model of the example are shown in Fig.9.

No.2 NNF and NNPrF 139

2.3 Reasoning in NNF

The difference between the reasoning used in NNF and that used in the former
fuzzy production system is as follows. According to the reasoning of the former
fuzzy production system, it is only when all of the conditions of a rule are true that
the conclusion of the rule can be true. But according to the reasoning used in NNF,
we are not to give up a rule even if one of its conditions is false. We shall, in that
case, proceed to process the next condition of the rule. After all the conditions of
the rule have been processed, we say: if 3 w; *z; > 0 (6 is the threshold of the rule)
then the rule is usable; else it is not. So in NNF we can carry on reasoning even
when only partial information is available.

2.3.1 Forward Reasoning

NNF is used to represent fuzzy production rules. Facts are separated from rules.
They are stored in My. When a fm;ward reasoning begins, we put the tokens with
truth values stored in My to their corresponding places, then search for transitions
that can be fired, and fire them one by one. At the same time, tokens are propagated.
The transition firing procedure will not stop, either until the goal transition can be
fired (in that case, we say the goal is true), or until the state of NNF cannot be
changed with further reasoning, while the goal transition remains unfired (in that

case, we say the goal is false).

Algorithm 1. C,,, is the incidence matrix, the goal transition is corresponding to
the n-th row of C,x.; My is the initial state that contains tokens representing facts with
truth values, My is an m-dimension vector; Threshold=[6;,...,0,] is the threshold vector
of transitions, and V = [vy, ..., v,] is the belief strength vector of transitions.

A = Crxm; Mnew = Mp; (see whether goal transition can be fired)
X = 0; conclusion=0; success=false;
call procedurel(success, n, X, conclusion)
if success then goto stop;
MAXStep=MAXNUM; (define the maximum loop number toc be MAXStep)
REPEAT
M = Mnew; (search for transitions that can be fired, and fire them one by one)
FOR i =1 to n — 1 DO (see whether transition i can be fired)
X = 0; success=false; conclusion=0
call procedurel (success, i, X, conclusion)
if success then
Mpew(conclusion|=MAX(Mnew|conclusion}, Alt, conclusion]* f(V[i], threshold{s], X)
endif (see whether goal transition can be fired)
X = 0; success=false; conclusion=0
call procedurel(success, n, X, conclusion)
if success then goto stop;
ENDFOR
MAXStep=MAXStep—1;
UNTIL Mpew=M or Step=0
stop: if success then goal=true
else goal=false
ENDalgorithm1

procedurel (success, ¢, X, conclusion) (see whether transition t can be fired)

140 J. of Comput. Sci. & Technol. Vol.11

FOR j =1 to m DO
if Alt,j] <0 and Mpewl[j] > 0 then X = Mnew[j] * A[t,j] + X
if Aft,7] > O then conclusion=j
ENDFOR
if X >Threshold[t] then success=true;
endprocedurel

For example, in applying Algorithm 1 to Example 1, the reasoning can be shown
as follows (here we select f] as the output function f):

A B C D E belief strengths thresholds
tl] -06 -04 0 1 0 0.8 0.5
t2 0 -0.7 -03 0 1 0.9 0.5
t3 0 0 0 -0.7 -08 1 0.5
Mo= (0.6 0.8 0 0 0.1)
lil
M= (06 0.8 0 0.544 0.1)
lt2

M= (06 0.8 0 0.544 0.504)

Given 0.7 % 0.544 + 0.8 ¥ 0.504 > 0.5, goal transition t3 can be fired, and thus we say
goal: —0.7D, 0.8E is true.

The proof of the correctness of Algorithm 1:

Algorithm 1 uses forward propagations of tokens to fire the goal transition. There
are 3 cases in Algorithm 1:

(1) If the goal is true and can be attained in the defined maximum number of
inference steps — MAXStep, then the goal transition can certainly be fired by using
Algorithm 1 in NNF. But what is to be noted is that MAXStep should be large
enough so that the goal transition can be fired by forward reasoning in MAXStep.

(2) If tokens cannot be propagated further in MAXStep, and the goal transition
hasn’t been fired, then Algorithm 1 considers that the goal is false. This considera-
tion is right for the goal is actually false.

(3) If the goal transition hasn’t been fired after MAXStep forward reasoning,
then Algorithm 1 considers that the goal is false.

The definition of MAXStep excludes the endless looping propagation of tokens
in the NNF systems as shown in Fig.10.

Fig.10

Note: a, b, ¢ are the truth values of tokens in places 4, B, C. And before firing t1 and
2, a9 = 0.5,bg = 0,co = 1. We select f; as the output function. For the first time, t1 is fired,
b1 = ag*0.5 = 0.25, then t2 is fired, a; = b;¥0.14+0.9 = 0.925; for the second time, t1 is fired,
by = a;%0.5 = 0.4625, then t; is fired, a; = b2%0.14-0.9 = 0.94625; .. . ; for the i-th time, £1 is
fired, b; = a;_;%0.5, then ¢; is fired, a; = b;*0.14-0.9. So, a; = 0.5*0.05"1+0.9*Z:;:=20 0.05*.

From what is discussed above, we can see that t1 and t2 will be fired in endless
cycles. Only by defining maximum inference step number, the endless cycles can be
cut.

No.2 NNF and NNPrF 141

2.3.2 Backward Reasoning

Forward reasoning starts from facts. Backward reasoning starts from the goal.
In backward reasoning we divide a goal into some subgoals, then for every subgoal
we search for a proving path that can give the subgoal a maximum truth value.
Algorithm 2 is a backward reasoning algorithm in NNF. It can get the rules proving

the goal and the sequence of the rules used for proving the goal.

Algorithm 2. C, ., is the incidence matrix, the goal transition is corresponding to
the n-th row of Cpym, Mg is the initial state that contains tokens representing facts with
truth values, My is an m-dimension vector, Threshold=(f,,...,8,] is the threshold vector
of transitions, and V' = [vy,...,v,] is the belief strength vector of transitions.

A = Caxm; M = My; List=®; success=false; v = 0;

MAXStep=MAXNUM; (define the maximum inference step number to be MAXStep)

call procedure2(n, v, success, List, M, Step)

if success then “the goal is true”

else “the goal is false”

ENDalgorithm2

Procedure2(goal, v, success, list, current_M, Current_step)
If current _step>0 then
X =0
FOR j =1 to m DO
IF Algoal, 7]>0 then conclusion=j
IF Algoal, j]<0 then
(search for a rule that can let M[j] get maximum truth value)
BIG=M[j]; MAXLIST=9;
FORi=1ton-1DO
if A[#,7] > 0 then
success=false; sublist=®; v = 0;
sub_M =current_M; substep=current_step-1;
call procedure2(i, v, success, sublist, sub_M, substep)
if success and v >BIG then
BIG=v; MAXLIST=sublist; select_M =sub_M;
endif
endif
ENDFOR
if MAXLIST+# & then
current.M [7]=BIG; List=[List|MAXLIST)
endif
X = X + BIG % (—A[goal, j]);
ENDFOR
IF X >Threshold(goal] then
success=true;
v = Algoal, conclusion]*f(V[goal], Threshold[goal], X); List=[List|goal};
ENDIF
ENDIF
Endprocedure2

For example, we apply Algorithm 2 to Example 1. The reasoning is shown as
follows (here we select f; as the output function f):

142 J. of Comput. Sci. & Technol. Vol.11

A B C D E belief strengths thresholds
¢l -0.6 ~0.4 0 1 0 0.8 0.5
€2 o ~0.7 -0.3 0 1 0.9 0.5
t3 0 0 0 -0.7 -0.8 1 0.5

My =(0.6, 0.8 0 0 0.1)goal=t3=(00 0 ~0.7 —0.8) — & — List=[t1, t1, ¢3]

0] ® ®

goal=t1=(-0.6 — 0.4 01 0)— M=(0.6, 0.8, 0, 0.544, 0.1) List=[¢1]

goal=t2=(0 ~0.7 —0.3 0 1)~ M=(0.6, 0.8, 0, 0.544, 0.504) List=[t1, ¢2]

Because 0.7%0.544+0.8%0.504 > 0.5, so goal transition ¢t3 can be fired, then we say goal:
—0.7D, 0.8F is true, and the sequence of transitions firing for proving the goal is List={t1,
t2, t3).

The proof of the correctness of Algorithm 2:

Since we have defined the maximum inference step number, Algorithm 2 always
can finish. ¢

{ " tgoal

2

Fig.11 Fig.12

Note: In the case of Fig.12, endless looping will happen in t1. When the loop number has
reached MAXStep, Algorithm 2 will give up t1, and try to get solution by t2.

In the cases as shown in Fig.11, it is only when MAXStep is large enough that
Algorithm 2 can certainly finish. successfully. That is to say, if the goal is actually
true, then Algorithm 2 can fire the goal transition and find the best solution. But
if the goal is actually false, then the goal transition cannot be fired and Algorithm
2 will report “the goal is false”.

In the cases as shown in Fig.12, if MAXStep isn’t defined, then backward rea-
soning will proceed endlessly. In Algorithm 2, the definition of MAXStep prevents
proceeding with the endless looping road, and Algorithm 2 will try other solution
roads.

2.3.3 Learning in NNF

Since NNF has some characters of neural network, NNF can make use of the
ways of weights training common to neural networks and acquire knowledge by
modifying the weights of the arcs from places to transitions.

In neural networks, a three-layer perceptron net can be used to realize an m-class

No.2 NNF and NNPrF 143

classifier as Fig.13 shows.

w=f(Epo wyroy—6), 0<SI<m—1, o = f(X7i5 wh + o —6;), 0<

k < n2 -1

= f(EC5 0 wij *x; — 0;), 0 < j <ny —1, f, is selected as output function f.
Tg,...,Tn—1 are n elements of input sample X, while yg,...,ym—1 represent m
classes.

In neural networks, the famous Back-Propagation algorithm is used in three-
layer perceptron net to acquire knowledge by weights training. In BP algorithm,
the difference between desired output and actual output is used to adjust, in the
first place, the connection weights between the output layer and the hidden layer
right below it, then is propagated backward in the network to layers below the top
hidden layer, and is ultimately used to adjust connection weights between the input
units and units above them.

In NNF, a transition acts something like a processing unit in neural network.
We create an NNF model of perceptron to realize classifier as Fig.14 shows.

Yo cen) S

"
tm 1

wy 0<k<n,-1,0<i<m—1
Pl -1

Yoo output layer

!
wl 0Sk<n,~1,0<I<m—1 ‘,n::)1<‘
wy 0<S7<n -1,0<k<n, -
ZTaz— 1 second hidden layer ! Sksne-l

P, P
Wy 0<iSm-1,0SkSm—1 ° O
zn;— 1 first hidden layer ty tar — 1
wj 0€i<n~1,0<j<m—1 w; 0Si<n-1,0<j<n -1
Tn-1 input Po P,y
Fig.13 Fig.14
Note: Py, ..., Pa_y are input places that represent the characters of input sample. The weight
of the arc from a transition to a place is 1. f, is selected as the output function. Yo,...,Ym-1

are output places that represent classes. The desired output is that there is only one token in
Ys,...,Ym_1. If the token is in Y;, then the input sample belongs to class :.

First, we put the tokens with truth values that represent the characters of input
sample into corresponding places: Fp, ..., Pp—1. Then the truth values of tokens in
Py,...,Py_yare zg,...,Tn_1. After that, we apply the forward reasoning algorithm
of NNF to the perceptron shown in Fig.14. Then we can get the following.

The truth value of the token in P; is

=i = fi(v;,60;, Y0 wu*z,) (0<i<n-1,0<j5<n—1)

w;; is the weight of the arc from P; to t;. 8; is the threshold of transition ¢;. v; is
the belief strength of t;.

The truth value of the token in P} is

zy = fo(v}, 0} :'_la'lwk*a:')(0<]<n1—-1 0<k<ny—1)
w, is the weight of the arc from Pj to tj. 6} is the threshold of transition tj. v is

the belief strength of t.

The truth value of the token in Y] is

144 J. of Comput. Sci. & Technol. Vol.11

w=fiv],0] i wpxay) (0<k<np—1,0<I<m—1)
w}, is the weight of the arc from P} to t].) is the threshold of transition t]. v}’ is
the belief strength of ¢]'.
We can change BP-algorithm of neural network, and apply it to NNF to acquire
knowledge by weights training. Algorithm 3 is the BP-algorithm of NNF.
Algorithm 3.
Step 1: Set the thresholds of transitions to small random values in [0, 0.5]; set the weights
of arcs from places to transitions to random small values in [0, 1].

Step 2: Input the tokens with truth valyes that represent the characters of input sample

into corresponding places: F,...,P,_;, and we have already known the desired output:
dg,...,dym_1 — the truth values of tokens in Yy,...,Ym—1.

Step 3: Forward reasoning, thus we can get the actual output: yo,...,¥m—1 — the truth
values of tokens in Yy, ..., Y:;n_1 propagated by forward reasoning.

Step 4: Adjust weights of the arcs from places to transitions. Adjusting weights starts from
Ys,.-.,Ym_1, propagates backward to Py, ..., P,—1. That is, from top layer to bottem layer,
adjust weights of the arcs from places to transitions.

The weight w;; (the weight of the arc from place 7 to transition j) at the next time point
is wij(t+1) = w;;(t) + n*6; .. j is the sequence-number of the transition j; z; is the truth
value of the token in place i, z! can be the initial input or the result of forward reasoning;
7 is the gain item, 7 € [0, 1]; §; is the error item.

@ If j is one of the sequence-numbers of transitions tj,...,tn_,, then &; = y; * (1 —
y;) * (dj — ;)
@ 1If j is one of the sequence-numbers of transitions tj,...,t, —1orty,...,tn, — 1,

then 6; =zl * (1 — 2%) * (30, Ok * wjk)-

Note: z7; is the truth value of the token in the output place of transition j. k ranges

over all of the transitions above transition 7 which the output place of transition j connects
to; w;x is the weight of the arc from the output place of transition j to transition k.
Moreover, if we introduce momentum item to BP-algorithm, then the speed of weights
training will be accelerated.
So, wi;(t + 1) = wi;(t) + n* 65 * z!t + o * (w(t) —wij(t - 1)) (0 < a< 1)
Step 5: If the algorithm has reached the desired error precision or has cycled for limited
times, then exit; else goto Step 2.

The proof of correctness:

Algorithm 3 is obtained by revising the famous BP-algorithm in neural network
to make it runable in the NNF model. So if BP-algorithm can succeed, then Algo-
rithm 3 can succeed too. And we all know that BP-algorithm is successful.

After training weights by using Algorithm 3, we can delete the arcs whose weights
are very small from NNF model. Then the places will not connect to all the tran-
sitions above them, and the places will connect only to certain transitions above
them where the places, a transition above them, and the output place of the tran-
sition can form a rule, the transition represents a rule, and the input places of the
transition represent conditions of the rule, and the outplace of the transition repre--
sents the conclusion of the rule. So, by weights training, NNF can learn the rules of
classification.

No.2 NNF and NNPrF 145
3 NNPrF

3.1 Concepts
3.1.1 The Formal Definition of NNPrF

Y =(P,T,F,W,D,V,n, Ap, A1, Ar, BS,0,a,Y, My) is an NNPrF, iff

(1) P is a finite set of places, T is a finite set of transitions. A transition in NNF is
something like a neuron in a neural network, F' is a finite set of arcs connecting between
places and transitions. They have characters of:

PNT=¢; FC(PxTYu(T x P)

PUT # ¢; dom(F)YUcod(F)=PUT,Vt €T, t has only one output place.

(2) W: F —[0,1] is an association weight function.

Vf eF, W(f)=w;, w;is the weight of arc f. w; € [0,1].

(3) D: the individual set of NNPrF. Q is the given set of operators on D.

(4) V: the set of variables of D.

(5) m: the set of dynamic predicates on D.

(6) Ap: P — =. Vp € P, if Ap(p) is an n-ary predicate, then p is called an n-ary
predicate.

(7Y At : T — fp, fp is the formula set on D.

VYt € T, Ar(t) can only be a static predicate or an operator in 2.

(8) Ap: F— S,, S, is the symbolic sum on D.

Vp € P, if (t,p) € F or (p,t) € F, then Ap(t,p) or Ap(p,t) is an n-ary symbolic;
otherwise Ap(t,p) or Ap(p,t) equals zero.

(9) BS: T — [0,1] is an association function.

VYt € T, BS(t) = v, v; is the belief strength of the production rule corresponding to
transition ¢.

(10) 6 : T — [0,1] is an association function.

Vvt € T, 6(t) = 0;, 6; is the threshold of transition ¢.

(11) a: Vp € P, if there is a token ¢ in p, then a(0) = a; € [0,1], ¢ is the truth value

of o. If token ¢ has the structure of (u1,...,un) and the truth value of o;, then token o
in place p represents that the truth value of Ap(p), the n-ary predicate corresponding to p
with the parameter vector of (u,,...,un), Is a;.

(12) Y : T — the set of different kinds of output functions, ¥t € T, t is assigned an
output function f. The kinds of output functions used in NNF can be used in NNP1F too.
They are shown in Fig.4.

(13) My = (. cey {ozjg(ajﬂ, . ,ajinj)l(aju, ceey aj,-nj) is a token in .P;} .. .), 0<aji; <
1, aj; is the true value of A,(P;)(ajiy, ..., afin;)- ‘

Mj initializes the distribution of tokens with belief strength in NNF.

Note: A nonempty and finite set D, a nonempty and finite set V' have the following
relations.

® If symbols in V denote members in D, then we call V the variable set on D, and call
the symbols in V the variables on D.

® The variables on D or members in D are called terms on D. If g(*) is an n-ary
operator on D, v;,vq,...,Un are terms on D, then ¢{™ (vy,vq,...,v,) is a term on D.
There is no other term on D.

® An n-ary vector (vy, .. .,v,) (n > 1) is called an n-tuple on D if each of its components
is a term on D.

@ The formal sum which is formed by the connection of finite number of n-tuples on
D with “+” is called the n-ary symbolic sum on D.

146 J. of Comput. Sci. & Technol. Vol.11

® The formulas on D include: v; = vo, where v; and v, are terms on D; ~p, where p
is a formula on D; pV ¢, where p and g are formulas on D; (3z)p, where z is a variable on
D, and p is a formula on D. There is no other formula on D.

® p(D) ={(dy,...,dn)|p(d1,--.,dn)}. If p(D) is static, then we call p an n-ary static
predicate on D; otherwise, we call p an n-ary dynamic predicate on D.

3.1.2 Transition Rule

In Fig.15, transition is ¢, input places are P, ..., P,, and the truth values of the
tokens in them are zi,...,z,, the weights and the symbolic sums of the arcs con-
necting Py, ..., P, totare wy,...,w, and (zly,z1s,...,Z1m1),..., (N1, ..., T0mn),
the threshold of ¢ is 8, the belief strength of ¢ is v¢. The outplace of t is P, the weight
and the symbolic sum of the arc connecting t to P is w and (y1,--.,%)-

If > wi*z; >0 and (zli,zls,...,zlm1),. .., (@01, ., T0mn), (¥1,- - -, %) is unifiable

then t is fired. Apply the unification to the variables, and get the token (u1,...,w) which
should be put into the output place P; the truth value of the token (u1,...,w) in P is y' =
max(y, w * f(ve,0,3 wi * x;)). (y is the truth value of token (u1,...,w) in P before firing ¢t. If
there is no token (u1,...,w) in P before firing ¢, then y = 0.)

else t cannot be fired.

Fig.15 shows the procedure of transition firing.

123

(z1,,.. o zl;m z wl(l’l],...,zlml)
HV, """" 8V,
qun(le oz P2_wiz2,.. 5
" P w

z2 2 = O
yl,..., .) J1y~~,yl) v
Cpn t
Zn Wa(ZRy,...,T0ma)
ann

wn(zny,. .

b

Q

before firing ¢ after firing t
Fig.15

3.1.3 Incidence Matrix

In an NNPrF-net that has n transitions and m places, its incidence matrix is
C =[Ci] (1 £i<n,1 <j<m). Every row of C represents a transition, every
column represents a place, Cy; = w(t;, p;) * Ap(ti, p;) — w(pj, t:) * Ar(pj, t:).

3.2 NNPrF Model for Predicate Logic

NNPrF separates facts from rules. The NNPrF-net structure represents rules
only. In an NNPrF-net that has m places, facts are represented by Mp = ({al;(ali1,
cey alinl)l(algl, ceey al,',,l) is a token in Pl}, cees {aj,'(ajﬂ, e ,ajinj)|(aj,~1, ceey ajinj)
is a token in P;} ..., {am;(ami,...,aminm)|(amiy, . . . ,@Minm) is a token in Pnp}),
0 < a £ 1. a is the truth value of its corresponding token — the truth value of a
fact.
As in NNF, the rules that can be represented in NNPrF have the form of:

8
wy * Pi(zly,...,21lmi) A ... Awn x Po(zng, ..., 20ma) Lw*P(yl,...,yl)

No.2 NNF and NNPrF 147

(v¢ and 6 are the belief strength and threshold of the rule). The NNPrF model of a
rule is shown in Fig.16.

111 wy (zly,..., zlm)
oV; P n Pn
P2wAz2i,...,2220)
: lml)

~—O

3.2 . (¥10-- 1) 3 wy(zly,...

I Pt t W/Zn1, . znm,)

T Wa(TR1y .oty TRmn) v=1280
Fig.16 Fig.17

As in NNF, a transition is introduced in Fig.17 to represent goal: w;*P;(zly,...,
lmi1) A--- Awy *x Py(zny, ..., Zhms). The truth values of the tokens in Pi,..., P,
are Ti,...,ZTn. If Y, w; xx; > 6, then goal transition ¢ can be fired.

Ezample 2. We have a set of weighted production rules:
v=0.9,0=0.5

1) 0.3« DOG(z), 0.4« BARK(z), 0.3x JUMP(z) —> Terrible(z);
2) 1.0 x At(P,w) v=05,8=0.8 At(F,w);

3) 0.4 * At(z, A), 0.4Man(z) *="2%5"%° Friendly(z).

The facts are: 1.0xDOG(F’), 0.8«BARK(F'), 0.8«xJUMP(F), 0.9%At(P, A), 1.0%
Man(A). The goal is to ask: —0.45Terrible(y), 0.45At(y, A). Let the belief strength
of the goal be 1 and the threshold of the goal be 0.5.

The NNPrF representation of the rules of the example is shown in Fig.18.

ve=1 . v2 =09
6,=10.5 4 6, = 0.5 Friendly
0.45(y)

—t3

V3 = 0.8
v G, :05
6,

0.4(z, A)
0.3(z) 0.4(z)
MAN é
DOG BARK JUMP
Fig.18

The incidence matrix, initial state My, belief strengths and thresholds of transi-
tions of the NNF model of the example are shown in Fig.19.

Dog Bark Jump Terrible At Man Friendly Belief Thresholds
streagths
3 -0.3(z) —0.4(x) -0.3(z) (=) 0 0 1} 0.9 0.5
t2 0 0 o 0 (F, w0} ~ 1.0{P, w) 0 0 0.9 0.5
3 0 0 0 i} ~0.4(z, A) ~0.4(1) () 0.8 0.3
t4 0 0 [} ~0.45(y) —~0.45(y, A) 0 o 1.0 0.5
My ({1.0(F)} (o.8(F)} ({0.3(F)} 2 {0.9(P, A}} {1.0(4)} %)
Fig.19

3.3 Forward Reasoning in NNPrF

It differs from NNF in that, in NNPrF, every place probably contains several
different tokens, and when firing transitions, we must consider the unification of

148 J. of Comput. Sci. & Technol. Vol.11

variables.

When forward reasoning begins, we put the tokens with truth values stored in
Mjy to their corresponding places, then search for transitions that can be fired, and
fire them one by one. At the same time tokens are propagated. The transition firing
procedure will be stopped, either when the goal transition can be fired in that case,
we say the goal is true, or when the state of NNPrF cannot be changed with further
reasoning, while the goal transition still cannot be fired, in that case, we say the

goal is false. ‘

Algorithm 1. C,hym is the incidence matrix, C = [C;;] (1 £ 21 < n, 1 <j <
m), Cij = w(t;,p;) * Ap(ti,pj) — wipj, t:) * Ar(pj, ti), the goal transition is corresponding
to the n-th row of Cpxm. Mp is the initial state that contains tokens representing facts with
truth values. Mg is an m-dimension vector. Threshold=[f,...,8,] is the threshold vector
of transitions. V' = [vy,...,v,] is the belief strength vector of transitions.

A = Crnxm; Mnew = Mo; (see whether goal transition can be fired)
X .= 0; conclusion=0; success=false; U = ¥,
call procedurel’(success, n, X, conclusion, U)
if success then goto stop;
MAXStep=MAXNUM; (define the maximum loop number to be MAXStep)
REPEAT
M = Mnew; (search for transitions that can be fired, and fire them one by one)
FOR.i =1 to n — 1 DO (see whether transition ¢ can be fired)
X = 0; success=false; conclusion=0; U = &;
call procedurel’(success, i, X, conclusion, U)
if success then token &oytput = Ar(ti, Peonclusion) * Ui
the belief strength of §oytput is BS = W (ti, Pconclusion) * f (Vi], threshold(z], X);
if Mnew/[conclusion] has already contained §oygpyt then
the belief strength of oy¢tpyt in Mpnew [conclusion]
=MAX(the old belief strength- of §output, BS);
else
put BS + 6,ytput into Mnew[conclusion]
endif
endif (see whether goal transition can be fired)
X = 0; success=false; U = &®;
call procedurel’(success, n, X, conclusion, U)
if success then goto stop;
ENDFOR
MAXStep=MAXStep—1
UNTIL Mnew =M or MAXStep—:O
stop: if success then goal=true
else goal=false
ENDalgorithm1’

procedurel’ (success, g, X, conclusion, U) (see whether transition g can be fired)
FOR j=1tom DO
if Ap(pj,tg) in Alg, j] is unifiable with a token & in Mnew|j] then
the given belief strength of é is x;;
X = z; * W(p;, tg) + X; U = UUthe unifier of Ar(pj,ty) and §;
if W(tg,pj) in Alg, j] # 0 then conclusion=j
ENDFOR
if X >Threshold[g] then success=true;
endprocedurel’

No.2 NNF and NNPrF 149

For example, we apply Algorithm 1’ to Example 2, the reasoning is shown as
follows (here we select f] as the output function f):

Dog Bark Jump Terrible At Man Friendly Belief Thresholds
. strengths
t1 -0.3(z) —0.4{z) —0.3(z) (=) 0 0 [‘ ' 0.9 ' 0.5 ’
t2 0 1} 0 0 (F,w) - 1.0{P,w) 0 0 0.9 0.5
t3 0 1} 0 0 —0.4(1, A) —0.4{s) {s) 0.8 as
t4 | 0 0 0 —-0.45(y) —0.45(y, A} 0 0 1.0 0.5
My ({LO(F)) (0.8(F)} {0.8(F)} * {0.9(P, A}} (10{4)} #)
]
= ({1.0(F)} (0.8(F)} ({0.8(F)} ({0.774(F)) {0.9(P, A)} {1.0{A}} 2)
162 .
M= ({10(F)} ({0&(F)} (o8F}} {0.774(F}} { {0-9(P A}} {1.0{a}} *)
{0.81{F, A}}

Given 0.774 * 0.45 4 0.81 * 0.45 > 0.5 and U = {F/y}, goal transition ¢4 can be
fired, and y = F. Then we can get the result: —0.45Terrible(F'), 0.45At(F, A).

The proof of correctness:

Algorithm 1’ in NNPrF is extended from Algorithm 1 in NNF. We have proved
the correctness of Algorithm 1. So here Algorithm 1’ is correct too.

Like the forward reasoning in NNPrF, the backward reasoning. and learning in
NNPrF can easily be extended from NNF. But it is beyond the scope of this paper
to discuss them.

References

(1] Looney C. Fuzzy Petri nets for rule-based decision making. JEEE Trans. on Syst., Man., 1988,
(Jan.): 178-183.

(2] Peterka G, Murata T. Proof procedure and answer extraction in Petri net model of logic
programs. IEEE Trans. on Software Engineering, 1989, 15(2): 209-217.

[3] Lin Chuang. Application of Petri nets to logical inference of HORN clauses. Journal of Software,
1993, 4(4): 33-37.

{4] Zhou Yi, Wu Shilin. The new ways of logic inference of Petri net based on resolution refutation.
(accepted by Chinese Journal of Computers)

(5] Shen Qing, Tang Lin. The Introduction of Pattern Recognition. Press of the University of
National Defense Science and Technology, May 1995.

[6] He Xingui. Knowledge Processing and Expert System. Press of National Defense Industry, Sep.
1990.

Zhou Yi received her B.S. degree from Computer Science Department of Fudan Uni-
versity in 1993. She is currently pursuing her M.S. degree in computer science from Fudan
University. Her main research interests include knowledge representation and reasoning,
machine learning, computer network, theory of Petri nets and its applications.

Wu Shilin graduated from Mathematical Department, Fudan University in 1957. He
is now a Professor of Department of Computer Science, Fudan University. At present, he
is the Vice President of Petri Net Community, Chinese Computer Federation. The areas of
his research cover computer communication, computer network, theory of Petri net and its
applications.

