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A b s t r a c t  

This paper gives two varieties of the public key cryptosystem in [1] which can also be used to 
imp[ement digital signatures. 

1. I n t r o d u c t i o n  

The concept of public key cryptosystems was introduced by Diffie and Hellman in 1976 [2]. 
In a public key cryptosystem, each user has a public encu'ption algorithm E and a secret 
decryption algorithm D. These algorithms satisfy the following conditions. 1) D is an inverse of E .  
2) E and D are easy to calculate. 3) Each easily calculated algorithm equivalent to D is 
computationally infeasible to derive from E. And the public key cryptosystem can be used to 
implement digital signatures if E is an inverse of D . Many concrete schemes of public key 
eryptosystem have been invented I-3-6, 9-15]. Among the others, the RSA cryptosystem is drawn 
from number t h e o ~  which can be use to implement digital signatures, and the trapdoor knapsack 
system from combinatorial mathematics t3.91. All the systems [3-6, 9-15] are block cryptosystems. 
In 1984, we introduced a public key cryptosystem based on invertibility theory of finite 
automata TM of which security rests on the difficulties of finding weak inverses of nonlinear finite 
automata and of factoring matrix polynomials over Galois field. Because this is,  to our knowledge, 
the first sequential (or stream ) public key cryptosystem, its implementation is easy and the size of 
its public key is relatively small. This paper gives two varieties of the public key cryptosystem in 
[1] which can also be used to implement digital signatures and have slight improvement in the size 
of public key. 

2. P r e l i m i n a r i e s  

For any finite automata M = <X, Y, S, 6, )~ > and M' = ( Y, X, S', 6', ),' >, M'  is said to be a 
weak inverse with delay r 'of  M if for any s in S there exists s' in S' such that s' and s is a match pair 
with delay z, i.e. for any Xo, x 1, -." in X, the equation 

x'(s',).(S, xoxl ...))= x_:. x_,xox,... 

holds for some x_ ~, ..- ,x_ 1 in X. And M' is said to be an inverse with delay r of M if for any s in S 
and s' in S', s' and s is a match pair with delay r . 



10 J. of Compt. Sci. & Technol. Vol. I 

P r o p o s i t i o n  1. Let M = < X,  Y, S, 6, 2 > a n d  !W = <  Y. X,  S', r two f in i t e  
automata and X = Y. Then for  any s ta~s  s o f  M and s' o f  M', s' and s is a match pair with delay 
free i f  and only i f  s and s' is a match pair witf, delay free. 

Proof. Suppose that s' and s is a match pair with delay free.  We prove by reduction to 
absurdity that s and s' is a match pair with delay free. Suppose to the contrary that for some 
sequence y (0) y (1)..- over Y, ,~(s):( s', Z(0)y (1)...  )), denoted by y' (0)y'(1).-- ,  is not equal to y(0) 
y(1) . . . .  Then y(0)...y(n)CSy'(O)...y'(n) for some n ~> 0. Since s' a n d s  is a patch pair with delay 
free, we have ) . ' ( s ' , y ' (0 ) - . . y ' (n ) )  = : t ' ( s ' , y ( O ) . . . y ( n ) ) .  From X.-- Y,,~'(s', Y ~ " )  ~- X "+t.  It 
follows that there exists x"(O). . -x"(n) in  X "§ -,~.'(s', y~+t) .  Denote 2(s ,  x " ( O ) . . x " ( n ) )  
= y " ( 0 ) . . - y " ( n ) .  Since s' ands  is a match pair with delay free, we have.~.'(s', y " ( 0 ) ' " y " ( n ) )  
= x" (0 ) . - ,  x"(n).  Thus x" (O) . . ,  x" (n )  is in 2 ' (s ' ,  Y"*' ). This is a contradiction. From 
symmetry, the proposition is proven. 

Let M o = < X, Y', S o, O o, 2o> and M 1 = < Y', Y, $1,01,21> be two finite automata. We uge 
C ( M  o, M r ) t o  denote the finite automaton M =  < X ,  Y, S o x $1, 6, 3.>,. where 

a(<So, S, > , x ) =  <5o(So, X), a~(s , ,~o(So ,X))> ,  

~(<So, S, > , x ) =  ~., (s~,~o(So, X)). 

Let .M'.~ = < Y, Y', 5"1, 6'1, ~.'~ > be a t-order input-memory finite automaton, defined by [16,p. 10] 

y ' ( i ) = f ( y ( i - t ) , . . . , y ( i ) ) ,  i = 0 ,1 , - . . .  (1) 

Let M' o = < Y', X,  S o, 6~, 2 o > be a r-order input-memory finite automaton defined by [16; p. 10] 

x ' ( i ) = g ( y ' ( i - r ) , . . . , y ' ( i ) ) ,  i = 0 , l , . - . .  (2) 

We use C' (Nr  1, M'o) to denote the ( t+ r ) -o rde r  input-memor 5" finite automaton with input 
alphabet Y and output alphabet X, defined by 

x ' ( i ) = g ( f ( y ( i - r - t ) , . . - , y ( i - r ) ) , .  . . . . .  f ( y ( i - t ) , . . . o . ( i ) ) ) ,  i = 0 , t , . . - .  (3) 

T h e o r e m  1. Assume that M" l is a weak inverse with delay free o f  M I. Assume that M o is a 
(~, r)-order memory f in i t e  automaton and for  any states s o = < y ' ( - r ) ,  . . . ,  y ' ( - 1 ) ,  x ( - r ) ,  . . - ,  
x ( -  I)> o f  M o and s o = < y ' ( -  r), ..., y ' ( -  1)> o f  M" o, So and s o is a match pair with delay ~. Then 
for  any state s 1 o f  M ,  there exist y ( - t ) ,  ... , y ( - 1 )  in Y .such that for  any y( "-r - t), ..., 
y ( - t - 1 ) in Y and any x( - ~), ..., x( - i) in X the state ( y( - r  - t ) , . . .  , y ( -  1) > o f  C'( ~'vF,, 
/~fo) and the state <.s o , s t > o f  C( Mo, M r )  is a match pair with delay r, where 
.s o = < y ' ( - r ) , . . . , y ' ( - l ) , x ( - z ) , . . . , x ( - l ) }  is a state o f  M o and 

y ' ( i )  = f ( y ( i  - t ) , . . . , y ( i ) ) ,  i = - 1 ,  . . . , - r .  (4) 

Proof. Given anTstate s~ in M I andy( - r  - t) , . . .  , y ( -  t - [)in Y. Since M' 1 is a weak inverse 
with delay free of  M 1, there exists a state s' x = < y ( - t ) ,  ... ,Yt-  1)} of :'v/' l such that s' 1 and s x is a 
match pair with delay free. For any x(0), x(1),.., in X. we denote 

).o{So, x ( O ) x ( 1 ) . . . )  = y ' ( 0 ) y ' ( l ) . - . ,  

: . , ( s , , y ' ( O ) y ' ( 1 ) . . . )  = y ( 0 ) y ( 1 ) . . . .  
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Thus 2'1(s'1, y(0) Y( l ) - - . )=y ' (0)y ' (1) - - .ho lds .  It follows that 

y ' ( i ) = f ( y ( i - - t ) , . . . , y ( i ) ) ,  i = 0 ,1 , - . . .  (5) 

From the hypothesis of the Theorem, s 0 and so is a match pair with delay- ~, where s o = 
< y ' ( - r ) ,  ..-, y ' ( - 1 ) > .  Then 20(s0, y'(0)y'(l)-.-) = x'(0).--x'(T - 1)x(0)x(1)..- holds for some 
x'(O), ..., x'(T- 1) in X.It follows immediately that 

x ( i - - ~ ) = g ( y ' ( i - - r ) , . . . , y ' ( i ) ) ,  i = ~ , ~  + 1 , - - - .  (6) 

From (4), (5) and (6), we have 

x ( i - -  ~) = g ( f ( y ( i  - - r - -  t ) , . . . ,  y ( i  -- r ) ) , .  ..... , f ( y ( i  -- t ) , . . . ,  y ( i ) ) ) ,  

i = ~ , ~  + l , . . . ,  

Thus < y ( - r - - t ) , . . . , y ( - - 1 ) )  and <So, sl > is a match pair with delay z. 
T h e o r e m  2. Assume that M" o is an inverse with delay r o f  34o and M" l is a weak inverse 

with delay r o f  M t  , where 34' o and M' t are defined by (2) and (1) respectively. Then C'( ?W 1, ~.l/fo ) 
is a weak inverse with delay r+ ~ o f  C(Mo, M i ) .  

Proof. Given any state <s o, sl } of C ( M  o, M i ). Since M' 1 is a weak inverse with delay T of 
M l, there exists a state s' i = < y ( -  t), .-., y ( -  1)'> of M" 1 such that s~ and s 1 is a match pair with 
delay ~. Let s ' =  < y( - r -  t), ..., y~ - 1 ) >  be a state of C'(M'I, M'o.),where y(  - r -  t), . ' . ,  
y ( - t - 1 ) are arbitrary elements in Y. Below we prove that s' and < s o, s~ > are a match pair with 
delay r + ~. Given any x(0), x(1), ... in X,  denote 

2o(So, x ( O ) x ( 1 ) . . .  ) = y ' ( O ) y ' ( 1 ) . . . ,  

= y (O)y (1  ) . . . .  

Let i'1 (s'l, y(O)y(1).-. ) = y"(O)y"(1)---. Then y " ( i ) =  y '( i  - z), i = z, z + l ,  ---. It follows that 

y ' ( i - - r ) = f ( y ( i - - t ) , . . . , y ( i ) ) ,  i = T,T + 1 , . . - .  (7) 

Let i ' ( s ' ,  y(0)y(1).--)  = x'(0)x'(1).. . ,  2' being the output function of C ( M '  i, 3/o) .  It is evident 
that 

x'(  i) = g ( f ( y (  i -- r - -  t ) , . . . , y (  i - r) ) , .  ..... , f ( y (  i -- t ) , . . . , y (  i )) ) , i  = 0 ,1 , - . . .  

Using (7), we have 

x ' ( i ) = g ( y ' ( i - r - z ) , . . . , y ' ( i - v ) ) ,  i = r + z , r + , + l , . . . ,  (8) 

Since M' o is an inverse with delay r of M o, for any state s~) of M' o, 

2'o(sO,y ' (O)y ' (1) . . . )  = x ( -  r ) . . . x ( -  1 ) x ( 0 ) x ( 1 ) . . .  

holds for some x ( - r ) , - . . ,  x ( - 1 ) i n  X. It follows that 

x ( i - - r ) = g ( y ' ( i - - r ) , . . . , y ' ( i ) ) ,  i = r ,  r +  l , . . . .  (~ 
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From (8) and (9), we have x ' ( i ) = x ( i - r - z ) ,  i = r + z ,  r + z +  1,--- .  

The following Proposition is a special case of the Corollary in [1]. 
P r o p o s i t i o n  2. Let s' = < y( - r  - t ) , . . . ,  y( - 1) > be a ,state o f  C (M'~, M'o), s't = 

( y( - t ), .--, y ( -  1) > and S'o = ( y ' ( -  r) , . . . ,  y'( - 2) >, where y'(i) = f (  y( i - t),.-., y(i)), i = - 1, 
�9 . . , - r .  Then (s'~, s'o > is a state o f  C'(114' 1, M'o) and equivalent to s'. 

Below we give an expression for (3). It is well known that any n-ary function over GF(q) can 
be expressed by a polynomial 

q - 1  

Z bi  t . . . inXil'"X in 
i t .  , . .  , i n=O 

with coefficients bq . .%  s in GF(q), Let X, Y and !/' be column vector spaces over GF(q) with 
dimension l, m and m', respectively. We use n( Uo, "'" ,uj) to denote a column vector of which all 
components are just monomials of some components of Uo, .-., uj containing at least a component 
of u o and of u i. re( Uo, ..., uj) is said to be the monomial vector with span j +  1. Clearly, f can be 
expressed as the following 

f ( Y - , , " ' , Y o )  = F + ~ ~ F ~ : c ( y _ h , . " , y _ k ) ,  (10) 
k = O h = k  

where F is a m'-dimensional column vector over GF(q) and/ 'h i  is a m '  x n matrix over GF(q) for 
s o m e  n .  

Let M'  o be linear, that is, 

g(Y ' - , , " "  ,Y ' - l ,Y 'o)= ~ Bjy'_j (21) 
j = O  

for some l x m' matrices B o, .-., B, over GF(q).  Then (3) can be expressed by 

x'(i)= ~1 8,IF+ ~ ~ F~:(y(~- j -  h), . . . ,y(~-j-  ~))], 
j = O  k=Oh=k  

i = 0,1, -.. ,  

that is, 

r + t  r + t  

x ' ( i ) =  c +  Y Z c : ( y ( i -  k),.-.,y(i-j)), 
j = O k = j  

i = 0,2, . - . ,  (12) 

where 

C = ( ~ B~)F, 
j = O  

ch(-~) = 8 ( ~ ) r h ( : ) ,  h = 0,2, ,t, 

8(.-) = ~: Bi~, 
j = O  
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(13) 
t - h  

Fh(z )= Z FLJ+hzJ, h = 0 , 1 , . - . , r ,  
j = O  

r + t  ~ h  

2 
) = 0  

3. S e v e r a l  P u b l i c  K e y  C r y p t o s y s t e m s  a n d  D i g i t a l  S i g n a t u r e s  

Throughout this section, X and Y are taken as the column vector spaces over GF(q) with 
dimension l and m, respectively. 

To construct a public key cryptosystem based on the invertibility theory of finite automata, 
people can choose a common q and l, and take m = l for the sake of digital signatures. In other 
words, the cleantext alphabet and ciphertext alphabet are all the same to every users, that is, I- 
dimensional column vector space over GF(q).Wc first restate the public key eryptosystem based 
on the invertibility theory of finite automata introduced by the authors in [1], then introduce two 
varieties. 

3.1. The system in [l-1 

An user, say A, can choose his (her) own encryption key and decryption key according to the 
following procedure. 1) Choose a T-order input-memory linear finite automaton M' l = ( Y, X, S'I, 
6'1, /-'1 >, M'l being an inverse with delay z, defined by 

x"(i)= ~ Ajy(i--j), i=O,1,--. (14) 
j = O  

(for detail see [16-1 ~2.6). 2) From 34' 1 make a (z,r)-order memory linear finite automaton M~ 
= ( X , Y ,  S1,61,,~ 1 >,M' 1 being an inverse with delay T of A4 l, defined by 

#. #. 
j = l  j = O  

i = 0,1, .-- 

(for detail see [16-1 w 3) Choose a ( r+  1)-dry nonlinear function f (  Vo,...,v ~) over X such that 
for any vl , . . . ,v  , in X , f (  vo,...,v r) as an unary function of argument v 0 is invertible. 4) From M t 
and f make a ( r + r ,  r )  -order memory finite automaton M defined by 

j = l  j = O  
i = o , 1 , - . - .  05 )  

5) Choose arbitrary x ( - 1 ) ,  .- . ,  x ( - r )  in X. Then (3,[, s)is the public eneryption key of user A, 
where s = < x ( - r ) ,  ..., x ( - 1 ) > .  6) From f make a ( r+ l ) -a ry  function f '  such that 
f ' ( f ( v  o, ... ,vr),vl,... ,v,) = v o holds for any Vo,...,v, in X. Then ( M ' l , f ' )  is the secret decryption 
key of user A. 

When another  user B wishes to send a message x(0) ..- x(n) to user _d in secrecy, B first extends 
arbitrary ~ digits .~ n + 1 ), .-., x( n + r ) in X, then chooses arbitrary y( - 1), .-., y( - r) in Y and 
x ( - r -  1), ..-, x ( - r -  r )  in X and calculates, using A's public key, the eiphertext y(0) ..- 
y (n  + r )  according to (15) which is sent to user A thereafter. On receipt, user A first calculates 
values x"(T), . . . ,  x"(n + r) according to (14), then calculates values x(O),... ,x(n), u s i n g f '  in A's 
secret key and s in A's public key, by 
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x ( i ) = f ' ( x " ( i +  z ) , x ( i - -  1 ) , . . . , x ( i - -  r)), i = O , 1 , . . . , n .  

This public key cryptosystem can be slightly modified to implement digital signatures. That 
is, A's public key is extended to (M, s, So), where So = ( y ( - r ) , . . . ,  y ( - 1 ) ,  x ( - z  - r ) ,  ..., 
x( - 1 ) ) satisfying 

r - i  t - i  

E A , + j y ( - j ) +  E B , + . i f ( x ( - J ) , ' " , x ( - j - r ) ) = O ,  
j=t  /=i 

i = 0, . . . ,~ - -  1. 

Notice that, in case o f f ( O , . . - , 0 )  = O, we may take s o = < O,---,0 >. When user A needs to sign a 
message y(O)- . . y (n) ,  i first extends arbitrary ~ digits y (n  + 1 ) ,  . . - ,y(n  + "c) in It, then 
calculates x ( 0 ) . . . x ( n  + z) by 

x ( i )  = f ' ( x ' ( i ) , x ( i -  1),  . . - , x ( i -  r ) ) ,  i = 0,1,-. .  ,n  + ~, 

using A's secret key and s in A's public key, where x ' (0) - . -x ' (  n + z) = 2 ' l (0,y(0 ) ---y( n + v)). 
Every one, say B, validates A's signature x( 0) . - -  x( n + "c ) on message y( 0)- . .  y( n ) by calculating 
,~( ~ ( s o, x( 0 ).- .  x( ~ -- 1 )),x( r )--- x( n + r )) using d's public key, which is equal to y( 0 ) . . .  3,( n ). 

3.2. The f irst  variety 

Symmetrically, using Theory 1, we can construct a public key cryptosystem which can also be 
used to implement digital signatures. 

A user, say A, can design his (her) own secret key and public key as follows. 1) Choose a r- 
order input-memory linear finite automaton -~fo = ( Y, X, S o, b~, 2.~ ) ,  M' o being a weak inverse 
with delay ~,  defined by (2)(for detail see 1-163 w 2) From M o, make a (*, r)-order memory 
linear finite automaton M o = ( X, Y, S o, 6o, 2o > such that M' o is a weak inverse with delay T of 
M o and for any states of the form s o = < y ' ( -  r ) , - . - , y ' ( -  1),x( - r ) , . . - , x ( -  1 ) ) o f  M o and s0 
= <y'( - - r ) , . - -  ,y'( -- 1 ) ) of ~F o, s0 and So is a match pair with delay r (for detailsee [163 p. 141 
Theorem 8). 3) Choose a t-order input-memory nonlinear finite automaton M' 1 = < Y, Y, S' x, 6], 
)"l ) defined by (1) and a finite automaton M I = ( Y, Y, S1, 61, i I ) such that M' i is a weak inverse 
with delay free of M 1 . 4) From 114e o and zl,f 1, make the finite automaton C'( M'i, M' o ) expressed in 
the form of (12). 5) Choose a state st of M, and a state s'L = ( Y( - t ),--. ,y( - 1 ) ) of M'l such that 
s'~ and s 1 is a match pair with delay free. Choose y( - - ' r : -  t ) , - - - ,y (  - t  - 1) in  Y. Let s 0 = 
< y ' ( - - r ) , . . . , Z '  ( - - 1 ) ) ,  where y ' ( i ) = j ~ y ( i -  t ), ... ;~i -;1) ), i =  - 1 ,  . . . , - r .  Then (C'(M', ,  
M' o ), ( y( _ r  - t), ..-,y( i - 1 ) ),z ) and ( M o, M'o, M~, s 0, s, ) are the public key and the secret 
key of user A, respectiveD. 

When another user/:t w, shes to send a message y(0)-.,  y(n) to user A in secrecy, B first extends 
arbitrary, r digits ~ n + 1 ), .-. ,  y( n + z) in Y, then calculates x'(0) --. x'( n + ~) according to (12) 
using A's public key .  The ciphertext x ' (0)- .-  x ' (n + z) is sent to A. On receipt, user A first 
calculates ~-o(0, x ' ( 0 ) . . . x ' ( n  + ~) - 20(sO, 0"+~+i))  denoted by y " ( 0 ) . . . y " ( n  + z) using "rio, 
M'o and s 0 in A's secret key, then calculates).t (s 1, y"(r) ... y"( n + r )) using "v[~ and s i in A's secret 
key which is equal to y(0) ' . .y(n).  

To prove ) . l ( s l ,y"(v) . . .y"(n+ r ) )=y (O) . . . y (n  ), denote 2'l(s' l ,y(O)..-y(n+ v ) ) =  
y'(O) ... y'( n + r ). From Proposition 2, we have 2'o( sO, y'(O) ... y'( n + r ) ) = x'(O) ... x'( n + r ). 
Since M' o is linear, we have x'(O).., x'( n + ~ ) -- 20( so, O" ~+ 1) = ;t, ~ (0, y'(O).., y'( n + ~ )). Since 
M' o is a weak inverse with delay v of-%[o and they are linear, we have y ' (0 ) . - .y" (n  + z ) =  20(0, 
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2{)( O, y'(O).., y'( n + v)) = 0 ~ y'(O)-., y'(n). It follows immediately that y" (r) .-- y" (n + z) = y'  (0) 
�9 .. y'(n). Since s' 1 and s, is a match pair with delay free, from Proposition 1, st and s't is a match 
pair with delay free also. Therefore, 

(sl,  ... y"(n + O) = i t ( s t ,  ;.'t ( s i , y ( O ) . . . y @ ) )  = y(O): . .y(n) .  

This pubhc key system can be used to implement digital signatures. User A can sign a 
message x(0)-- ,  x(n)by  the following steps. 1)User A first chooses arbitrary 2r digits x ( - z ) ,  ..., 
x ( -  1), x (n + 1), .-., x (n + z) in X. 2) Then A calculates y (0) --. y (n + r) = 2, (st, 2o (So, x (0) --- 
x (n + z)) using Mo, MD s{) and st in A's secret key, s o being ( y ' ( - r ) , . . . ,  y ' ( - 1 ) ,  x ( -T) ,  ..., 
x ( - 1 ) ) .  Every one, say B, can validate A's signature y(0) ... y(n + ~) on x(0) ..- x(n) by 
calculating 2'( ( y ( - r  - t ) , . . .  , y ( -  1) >, y(0) .-- y (n  + r ) )  using A's public key, where 2' is the 
output function of C'(M' 1, Mo). From Theorem l, it is easy t o  see that 2 ' ( ( y ( - r -  t ) , - . . ,  
y ( -  1) ) ,y(0). . .  y( n + ~)) is equal to x'(0)..,  x'( ~ - 1) x(0)..,  x(n) for some x'(0), .-. ,x'(~ - 1 ) in 
X. 

3.3. The second variety 

Another public key cryptosystem which can also be used to implement digital signatures is 
based on Theorem 2. A user, say A, can design his (her) own secret key and public key as follows. 1) 
Choose a r-order input-memory linear finite automaton M' o = < Y, X, S o, ~{), 2{) >, M' o being an 
inverse with delay r, defined by (2) (for detail see [16] w 2) From M o, make a (r, r)-order 
memory linear finite automaton M o = < X, Y, So, r 20 ) such that M" o is an inverse with delay r 
of M o (for detail see [-16] p.169 Theorem 3). 3) Choose a t-order input-memory nonlinear finite 
automaton M' l = < Y, Y, S'l, 6'1, 2' 1 ) defined by (1), a finite automaton M 1 = ( Y, Y, St,  fit, 21 ) 
and a finite automaton M'~ = ( Y, Y, S'~, ~ ,  ).~ ) such that M' 1 is a weak inverse with delay .r of M 1 
and M' t is a weak inverse with delay z' of M' 1. (Such M1, M'  1 and M'~ are existent, for example, see 
[16] pp. 182--183.) 4) From M' 0 and M'l, make the finite automaton C'( M' l, M' o ) expressed in the 
form of (12). 5) Choose a state s I of M, ,  a state s' i = ( y ( - t ) ,  ... , y ( - 1 )  ) o f M '  1 and a state s'~ of 
M'~ such that s' a and s 1 is a match pair with delay r and s~ and s' 1 is a match pair with delay r'. 
Choose y( - r  -- t ) , - - - , y ( -  t - 1) in Y, and let s{) = (y ' ( - - r ) ,  ... ,y'(-- i) ) ,where y'(i) = 

. / ( y ( i -  t), ... ,y(i) ), i =  - -1 , . . . , - - r .  Then ( C(M'I,  M o ) , ( y ( - r - t ) , - - . , y ( - 1 )  ) , r  + v, r +  v') 
and ( Mo, M'o, MI,  1~ ,  S'o, si, s~ ) are the public key and the secret key of user A, respectively. 

When another user B wishes to send a message y(0) -.. y(n) to user A in secrecy, B first extends 
arbitrary r + v' digits y( n + 1 ), - . . ,  y(n  + r  + ~') in Y, then calculates the ciphertext x'(0) ... x'( n 
+ r + T') according to (12) using A's public key, which is sent to user A. On receipt, user A first 
calculates )to(0, x'(0) ... x'( n + r  + r ' )  - 2{)(s{), 0"+r+~' + t  )) denoted by y"(O).., y"(n + r  + ~') 
using Mo, M" o and s{) in A's secret key, then calculates 2;( s'~, y"(r)--, y"( n + r + r' )) using M';and 
s~ in A's secret key which is equal to 40) . - -  y( v' - t )y(0) -.. y(n) for some f(0), ... ,~(~' - 1 ) in Y. 

To proye )(~(s~,y'f(r)... y"(n + r +  z ' ) ) = ~ ( 0 ) . . . f ( z '  - i )y(0) - . .y (n)  for some f'(0), "", 
f ( z '  - 1) in L we denote )-'i(s'l, y (0 ) . . . y (n  + r  + z ' ))  = y ' (0) . . .y ' (n  + r  + z'). From Propo- 
sition 2, we .have ,Uo(S'o; y'(O)...y'(n + r + z') = x'(O).., x'(n + r +  ~'). Since 34'o is linear, we 
have x'(0) --. x'( n + r  + z ' )  - ),~(s{), 0n+~+ ~' +l ) = 2{)(0,y'(0)-.. y'( n + r + z ')) .Since M' o is an 
ihversey i th  delay r of Mo and they are linear, we have y"(O).., y"( n + r  + r ' )  = 2o(0, 2{)(0, y'(0) 
�9 .. y ' (n  + r §  = ff'y'(0).., y ' (n  + r ') .  It follows immediately that y"(r) .:. y '(  n + r  + ~') 
=y ' (O) . . .y ' (n  + ~')~. Since s; and s'l is a match pair with delay r', we have X~(s~,y"(r) .." 

y"(n 4-r-4- " r ' ) )=  2~(s'~, .2'i(s' 1, y(~-- .) ,~n 4 - z ' ) ) ) =  ~0)...37(v' - 1)y(O)-.-y(n) for some 
fi(O),..., f(~:' - 1) in I1. 
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This public key cry-ptosystem can be used to implement digital signatures. User A signs a 
message x(0)-. .x(n) as follows. 1) User A first extends arbitrary r + r digits x(n + l ) , - - - ,  
x(n + r  + z) in X. 2) Then A chooses any state s o of M o and calculates M0).--y(  n + r  + z) = 
),i(st, ),o(So, x(O),...,x(n +r + z))) using/~[0, Mt and s~ in A's secret key. Every one, say B," 
validate; A's signature y (0 ) . . . y (n  + r  + r )  on x(0)..- x(n) as follows, l) User B first chooses 
arbitrary ~ - r - t ) , - . - , ) 7 ( - t - 1 )  in Y. 2) Then B calculates x ' ( 0 ) . . . x ' ( n + r + r ) =  
2 ' ( < . ~ - r -  t), ---, 37( - t  - 1 ) , y ( -  t), ... ,y{-1)), y(O)...y(n +r + z)) using A's public key, 
where 2' is the output function of C'( M'~, M' o ). From Theorem 2 and its proof, it is easy to see that 

+ r ) . . .  x'(r + + = 4 0 ) -  

4. Security 

For the varieties of finite automaton public key cryptosystem stated in previous section, their 
secur i ty 'may be analogously discuss as in [1-1. As pointed out there, the security of these 
cryptosystems is determined by the complexity of finding weak inverse finite automaton of C'( Mo, 
M i ) or of C'( M'I, IVF o) (of finding weakly invertible finite automaton with weak inverse C'( iV/0, 
Mt ) or C'(M'I,M~) for digital signatures)�9 But the mathematics does not vet provide a systematic 
method to estimate the precise lower bounds of computing time and storage amount  for finding 
weak inverses of nonlinear finite automata (for finding weakly invertible finite automata of which a 
given nonlinear finite automaton is a weak inverse)�9 So the only way available is to design a good 
algorithm and to estimate the precise upper bound of computing time and storage amount  which is 
regarde d as a loose approximation of the lower bound�9 

For the sake of avoiding repetition, we only discuss the problem for the case in w the case 
in w ca,, be analogously discussed. For finding a weak inverse with delay" z of C'(M'I, M~), the 
first method is a general one which is fit to any weakly invertible finite automata with delay r. 
Denote the output function of C'(M'~, M~) by 2'. Suppose that C'(M'I: M'o) is weakly invertible 
with delay r '  and r '  ~< r. Since C'(M'~, M~) is an input-memory finite automaton, it is  strongly 
connected. For finding a weak inverse with delav r '  of C'(M'I, M~), according to this method, we 
need for each state s' = <y(-r -t) , . . . ,  y ( -  1)) ofC ' (M' l ,  M~)to calculate all x (0)-. .  x (z') = ),'Is', 
y (0)- . .  y (z')) for y (0),-. . ,  y ( r ' ) in  Y. from which a function f can be deduced with f(s', x (0)... 
x (z')) = y(0). Since the state number  of C'(M'I, Yf~)is q'~,+o and there are qZ(,' + l)sequences over Y 
~ith length r '  + 1, we need to calculate ql(r+t+*'q-i)values of function 2'. In case of q = 2, l = 8, 
r =  t = 10 and z' = 0, we have qll,,,+,'+l~ " 2168 > 105o! Hence, this method is impractical for 
moderate r + t + z'. 

For finding an automaton of which C'(M'~, M~) is a weak inverse, a general method is given in 
[22]. This method spends more computing time and storage amount than the general method 
above. 

The second method is a special one for C'(M'~; M'o). The centre of this method is to 
decompose C'(M'~, M~). M o and M~ can be easily found out as soon as M~ and M'~ are obtained 
from decomposing C'(M' t, M'o). Since C'(M' l, M'o)is given by (12) and the coefficients in (12) 
satisfy" (13), decomposition of C'(M' t, M~)is equivalent to factorization of matrix polynomials over 
GF(q). Since the matrix ring over GF(q) is noncommutative and contains divisors of zero, 
establishing divisibility theory for matrix polynomials over GF(q) with singular leading coefficient 
seems rather difficult [23]. Although polynomial time algorithms for factorization of polynomials 
over GF(q) are existent, for example, see [24, 25], yet no feasible algorithm exists for factoring 
matrix polynomials over GF(q). A possible straight way is to reduce (13) to aMmul taneous  
quadratic equation over GF(q) and solve it. But it is well known that solving nonlinear equations 
over GF(q) is very difficult if its argument number  is great, 
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From above discussion,  security is relative to the size of parameters  q, i, r, t and z'. Usually, q 

= 2. We recommend  i >~ 8, r /> I0 and t ~> 10. And nonl inear  f u n c t i o n f m a y  be chosen such that 

its polynomial  expression (10) contains a few monomia ls  with span ~> 2. For  example,  t a k e f a s  the 

following form: 

f ( y _ , ,  . . .  ,yo ) = Fo + 
t - 1  

FjJy-i + Z Fj , j+:Y- jY-J - t ,  (t6) 
i=o  /=o  

where F o, Fjj and F j j + I  are l x l ,  I x l and l x l matrices o v e r  GF(q), and y _ j  Y - ] - I  = lath:, 
�9 , atb~ ] r for any y__j = [a  1, " -  a~] r and y 2 j _ t = [b l, " ,  b~] 7. In this instance,  (12) is simplified 

as the fidlowing: 

r + r  r + l -  1 

x ' ( i ) =  Co+ ~- C j j ) ( i - j ) +  • C).j, t y ( i - j ) y ( i - j - 1  ), 
/=o j=o  

i = 0 ,1 ,  -, (17) 

where 

Co = ~ BjFo, 
j=O 

C ( z ) = B ( z ) F ( z ) ,  
C'(z) = B(z )F ' {z ) ,  

B(4= Bj, 
j=O 

F(z)= ~ Fjjz j, 
j=O 

(18) 

t - :  
F ' ( z ) =  2 C , j + l z  J, 

j=O 

r + t  

j =O 

r + t - - 1  

c ' ( ; )  = 2 
j=O 

C j , j +  1 ~ J. 

Since C'(M't, M~) in the publ ic  key is g iven by coefficients Co, Ci,, i = O, ..., r + t, and  C~,i+ ~, i 

= 0, ..-, r + t - l ,  both  the lengths of the publ ic  keys in two varieties are about  

[ l (1  + t(2r + 2t + 1)) + l(r + t)] logzq bits.  Let t ing q = 2 and l = 8, the length  of publ ic  key is 

about  349 x 8 = 2792 bits in case of r = t = 10, 519 x 8 = 4152 bits in case of r = t = 15, and 

689 x 8 = 5512 bits in case of r = t = 20. 
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