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Abs t r ac t  The performance of the Mel-Frequency Cepstrum Coefficients (MFCC) may 
be affected by (1) the number of filters, (2) the shape of filters, (3) the way in which filters are 
spaced, and (4) the way in which the power spectrum is warped. In this paper, several compar- 
ison experiments are done to find a best implementation. The traditional MFCC calculation 
excludes the Oth coefficient for the reason that it is regarded as somewhat unreliable. According 
to the analysis and experiments, the authors find that it can be regarded as the generalized 
frequency band energy (FBE) and is hence useful, which results in the FBE-MFCC. The au- 
thors also propose a better analysis, namely the auto-regressive analysis, on the frame energy, 
which outperforms its 1st and/or 2nd order differential derivatives. Experiments with the "863" 
Speech Database show that, compared with the traditional MFCC with its corresponding auto- 
regressive analysis coefficients, the FBE-MFCC and the frame energy with their corresponding 
auto-regressive analysis coefficients form the best combination, reducing the Chinese syllable er- 
ror rate (CSER) by about 10%, while the FBE-MFCC with the corresponding auto-regressive 
analysis coefl=idents reduces CSER by 2.5%. Comparison experiments are also done with a 
quite casual Chinese speech database, named Chinese Annotated Spontaneous Speech (CASS) 
corpus. The FBE-MFCC can reduce the error rate by about 2.9% on an average. 

Keywords  MFCC, frequency band energy, auto-regressive analysis, generalized ini- 
tial/final 

1 I n t r o d u c t i o n  

The extraction and selection of the best parametric  representation of acoustic signals are impor- 
tant tasks in the design of any speech recognition system. It  significantly affects the recognition 
performance. A compact  representation would be provided by a set of reel-frequency cepstrum coef- 
ficients (MFCC), which are the results of a cosine transform of the real logarithm of the short- term 
energy spectrum expressed on a mel-frequency scale [1]. The MFCCs are proved more efficient [2]. The 
calculation of the MFCC includes the following steps. 

(1) The discrete Fourier transform (DFT) turns the windowed speech segment into the frequency 
domain and the short- term power spectrum P(f )  is obtained. 

(2) The spectrum P( f )  is warped along its frequency axis f (in hertz) into the mel-frequency 
axis as P ( M ) ,  where M is the mel-frequency, using Eq.(1) [3'4]. This is to approximately  reflect the 
human's  ear perception. 

M(f )  = 2595 logl0(1 + f/700) (1) 

(3) The resulted warped power spectrum is then convolved with the tr iangular band-pass filter 
P(M) into 0(M). The  convolution with the relatively broad critical-band masking curves r  
significantly reduces the spectral resolution of 0(M) in comparison with the original P(f ) ,  which 
allows for the down sampling of ~(M). The discrete convolution of r with t~(M) yields samples 
of the critical-band power spectrum as O(A/Ik) (k = 1 , . . . , / ( )  in (2), where ~k ' s  are linearly spaced in 
the reel-scale. Then / (  outputs  X(k) --- ln(~(i~lk)) (k -- 1 , . . . ,  K)  are obtained. The I f  filters in the 
implementation of discrete convolution are simulated as shown in Fig.l(a).  In the implementation, 
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O(M~) is the average rather than the sum. 

0(Mk) = - k = 1 , . . . ,  (2) 
M 

(4) The MFCC is computed using (3) and often D << K because of the compression ability of 
MFCC. 

K 

M CC(d)= X cos d = l , . . . , D  (3) 
k = l  

Accordingly, more detailed and deeper research could be done to tune the implementation of the 
MFCC. 

On the other hand, in many ASR systems, the 0th coefficient of the MFCC cepstrum is ignored due 
to its unreliability[a]. As a mat ter  of fact, the 0th coefficient can be regarded as a collection of average 
energies of all frequency bands in the signal that is being analyzed. We will prove by experiments in 
this paper that this analysis is reasonable. 

The energy information is another very important feature in ASR. Basically, the commonly used 
energy-related features include the frame energy and the first order and/or  second order time deriva- 
tives. Many experiments have shown that the system performance can be improved when the energy 
information is added as another model feature in addition to the cepstrum [5]. Our previous experi- 
ments on the performance of the combination of the cepstrum and its time derivatives show that  the 
auto-regressive anMysis [61 outperforms the l s t /2nd  order differential analysis[ 7]. This suggests the use 
of the auto-regressive analysis on the energy. In this paper, we will come to the conclusion that the 
auto-regressive analysis of the energy is better  than the first/second order differential analysis. 

In this paper, several experiments are designed and done step by step to compare the effects of 
several different implementations and those of the ways how the energy information is integrated. 

2 E x p e r i m e n t  C o n d i t i o n  

The standard Mandarin database used here is the '863' Database. Digitized speech at 16kHz is 
pre-emphasized using a simple first-order digital filter H(z) = 1 - 0.95z -1, and then blocked into 
frames of 32ms (512 sampling points) in length spaced every 16ms (256 sampling points). The D- 
order (where D = 16) cepstrM analysis is performed to every Hamming-windowed frames and the 
auto-regression analysis (ARA) is performed to every 5 adjacent frames[ 61. The cepstral coefficients 
and their auto-regression coefficients form the basic features for the automatic speech recognition 
systems. It is divided into training and testing parts. The training set covers 180,063 Chinese syllable 
samples of 30 men's utterances while the testing set covers 70,462 Chinese syllable samples of 8 men's 
utterances. 

A kind of Segmental Probability Model has been proposed based on the desertion of the HMM 
probability transition matrix named mixed Gaussian continuous probability model (MGCPM) in our 
previous paper is] . 

In this experiment, the 6-state 8-mixture based MGCPMs are adopted to model the 397 toneless 
Chinese syllables as the speech recognition units (SRUs). 

3 S t e p - b y - S t e p  E x p e r i m e n t s  

In this section, we will give the designs and the results of the step-by-step experiments on Mel- 
frequency cepstrum analysis. To be brief, we define F a~a~ as Feature F and its auto-regressive 
analysis coefficients, and DIF/D2F as its Ist/2nd order time differential derivative. We denote the 
traditional MFCC defined in Section 3 by MFCC0. 
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Our previous comparison of  the combinat ion  of the M F C C  and the  derivatives shows tha t  M F C C  
plus its auto-regressive coefficients performs be t te r  than  M F C C  plus its 1st or 2rid order differential 
MFCC.  Therefore, the M F C C 0  ~a~a is adopted  as the baseline in this paper .  

3.1 C o m p a r i s o n s  o f  M F C C  I m p l e m e n t a t i o n  

According to the M F C C  calculation, the performance of M F C C  may be affected by: (1) the number  
of the filters, (2) the shape of  the filters, (3) the way in which the filters are spaced, overlapped or 
not,  or (4) the way in which the power spec t rum is warped. In order to find which factors are more 
important ,  we design several comparison experiments.  

Table 1 gives the results of different numbers  of filters. The  recognizer reaches the maximal  
performance at the filter number  K = 35. Too few or too many  filters do not  result in bet ter  
accuracy. In this case, each filter covers about  158 Mels. Hereafter,  if not  specifically stated,  the 
number  of filters is chosen to be K = 35. 

Table 1. Different Numbers of Overlapped Triangular Filters 
No. of filters (MFCC0 ~a~a) Top 1 Top 5 

25 67.39 91.56 
30 67.73 91.72 
35  6 8 . 0 1  9 1 . 7 9  
40 67.84 91.92 
45 67.86 91.81 

Top 10 
95.57 
95.66 
9 5 . 7 7  
95.82 
95.74 

Traditionally, the filters are tr iangular.  As a ma t t e r  of fact, rectangular  filters can be alternatives. 
And  in P L P  analysis[9], Hermansky  adopts  a par t icular  shape of the cri t ical-band curve given by (4), 
as illustrated in Fig. l (c) .  

0, for B < - 1 . 3  

1025(B+~ for - 1.3 < B < - 0 . 5  

~ ( B )  = t, for - 0.5 < / 3  < +0.5  

10 - 1 ~ 1 7 6  for + 0.5 < B < +2.5 

0, for + 2.5 < 13 

(4) 

where B is the warped frequency in Bark. This  piece-wise shape for the s imulated cri t ical-band- 
masking curve is an approximat ion  to the asymmetr ic  masking curve of Schroeder [4]. It is a ra ther  
crude approximat ion of what  is known about  the shape of  audi tory  filters. It exploits Zwicker's [t~ 
proposal  that  the shape of audi tory  filters is approximately  constant  on the Bark  scale. The  filter 
skirts are t runca ted  at - 4 0 d B .  From this point  forward in this paper,  this curve is referred to as the 
Schroeder curve. 

0 255 0 255 0 255 
(a) (b) (c) 

Fig.1. The band-pass filters used in MFCC calculation (horizontal axis: DFT frequency sampling point). 

This experiment  compares  the effects of the above 3 different shapes of  the cr i t ical-band filters, 
tr iangular,  rec tangular  and Schroeder curve. The  results are given in Table 2. We do not  see too  much 
difference. 
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Table 2. Different Filter Shapes and Frequency 
Features (~a~)  

~Varpin 9 Filter Shape Top i Top 5 

W a r p i n g  

SCHROEDER 

Top I0 

MEL XTRI 68.01 91.79 95.77 

MEL TRI 66.35 91.21 95.42 

MEL XRECT 68.38 92.14 95.91 

MEL R E C T  66.36 91.18 95.37 
B A R K  X T R I  67.61 91.56 95.57 
B A R K  T R I  66.99 91.38 95.43 
BARK XRECT 67.59 91.53 95.57 

BARK RECT 67.00 91.35 95.53 

B A R K  67.25 91.53 95.51 
Note: In thi  table,  X T R I  s t ands  for c rossed /over l apped  t r i angu la r  
filters while T R I  for non-over lapped,  and  X R E C T  for over lapped 
rec tangula r  filters while R E C T  for non-over lapped.  

In the traditional MFCC calculation, the mel-scale is used to warp the power spectrum, as approx- 
imately described in Eq.(1). In the PLP technique, the spectrum P(f) is warped along its frequency 
axis f into the Bark frequency B according to Eq.(5)[ 9'ill. This particular Bark-hertz transforma- 
tion is due to [4]. This gives us an alternative for the shape of critical-band filters, resulting in the 
Bark-frequency Cepstral Coefficient (BFCC). From the comparison results listed in Table 2, MFCC 
is bet ter  than BFCC. 

In our experiments, filters can be either overlapped (see Fig.l(a) as an example) or side by side 
(see Fig. l (b)  as an example), except for the Schroeder filters that  are always overlapped due to their 
design purpose. Each of them has the equal width in the warped frequency axis. In the overlapped 
scheme, any two adjacent filters will overlap half the width with each other. The experimental results 
are also listed in Table 2. 

The experimental results given in this section lead to the conclusion that  the differences between 
these scales (Bark or Mel), filter shapes (triangular, rectangular or Schroeder) are not very significant. 
But whether the filters are overlapped or not makes a big difference. Overlapped filters always achieve 
higher hit rate. To ctarify, we refer to the traditional mel-frequency cepstrum with 35 overlapped 
triangular filters as MFCC0 as stated in Section 4. 

3.2 I n t e g r a t i n g  E n e r g y  I n f o r m a t i o n  

Researches have proved that  the energy information, as well as the differential derivatives, is useful. 
In this section, we compare two different kinds of energy information, the frame energy (FE) and the 
frequency band energy (FBE). Because the log energy is bet ter  than the energy itself [5] , we give mainly 
the results for the log energy related experiments. 

Given a frame of speech s(n), 1 < n < N,  the frame energy (FE) can be defined and calculated as 

FE = ~ Is(n)[, or FE = s2(n) (6) 
~=I n-=l 

In the traditional MFCC calculation using Eq.(3), the first dimension is eliminated [3]. Taking d -- 0, 
w e  h a v e  

K K K 

MFCC(O) = = In rI o(M) 21n H E ?  ), (7) 
k=l k=l k=l 

where E(~ 9) = ~i~Ik), and O(111k) is the output of the k-th filter. If the critical-band filter has the 
rectangular shape, O(1~Ik) is the average power energy in the k-th frequency band, So for any kind of 
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critical band filter, E (~) can be regarded as the generalized frequency band energy (FBE).  Compared 
with the frame energy, FBE contains more information. I t  contains energy information of several 
different sub-bands of the whole frequency band. Based on the analysis, we have reasons to think that  
FBE should be included. 

Because the logarithm has the compression function, MFCC(0) is more sensitive to E~ ~) in low- 
valued region and less sensitive in high-valued region than the original product  of energies. This is 
similar to ear 's hearing characteristics. Based on this analysis, we change (3) into (3'). 

K 

k=l  

The resulted MFCC calculated by (3') is referred to as the FBE-MFCC,  denoted by MFCC1 hereafter. 
According to the calculation of the DFT of the given speech frame s(n), i < n < N,  we have 

DFT(O) = 

which is the direct current component of the signal. 
the purpose of comparison with the energy. 

N 

(8) 
n = l  

The experiment on the DC component is just for 

The experiment is designed to compare and find out which kind of information is better: (1) FE 
- -  the frame energy, (2) LnFE - -  the logarithm of frame energy, (3) LnDFT0 - -  the logarithm of 
DFT(0),  or (4) FBE - -  the frequency band energy. The experimental  results are listed in Table 3. 

T a b l e  3. The  Ene rgy /DC Component  Informat ion 
Features ( & { ~ )  Top 1 Top 5 Top 10 

MFCC0 68.01 9 t .  79 95.77 
MFCC0 + LnDFT0 68.14 I 92.07 95.88 

MFCC0 + FE  69.52 [ 92.50 96.11 
/vIFCC0 4- LnPE 70.46 92.99 96.35 

M F C C O  -}- F B E  ( i .e . ,  M F C C 1 )  70.51 92 .96  96 .39  

From Table 3, she integration with any of the four items is bet ter  than the original MFCC (i.e., 
MFCC0), but the FBE is the most useful one. The reason why the FBE is bet ter  is that  FBE includes 
energy information of several frequency sub-bands while (log) frame energy or log DFT(0)  includes 
only part  of them. 

What  should be mentioned is that  in Table 3 all features are used together with their auto- 
regressive analysis coefficients. There is no exception to the frame energy. In the previous research, 
the most frequently used frame energy information includes the frame energy itself, the logarithm of 
frame energy, and/or  the l s t / 2nd  differential (log) frame energy. 

Our comparison of the combinations of the MFCC and the time derivatives shows that  MFCC 
plus its auto-regressive coefficients performs bet ter  than MFCC plus its 1st or 2nd order differential 
MFCC (refer to Section 4). This suggests the definition of the auto-regressive frame energy as 

ARE(t)  = a .  E nE( t ) ,  (9) 
n ~  --7% o 

where G is a gain constant that  is the same as that  in the auto-regressive analysis for MFCC. The 
result listed in Table 4 is the best evidence for the use of the auto-regressive analysis of the frame 
energy. 

T a b I e  4. Effects of the DifferentiM Derivatives of  Frame Energy 
Features (besides MFCC0 &atta) Top 1 Top 5 Top 10 

LnFE + D I L n F E  68.87 92.35 96.00 
LnFE + D~LnFE 69.23 92.53 96.05 

LnFE + D I L n F E  4- D2LnF E  69.43 92.55 96.12 
LnFE s~am~ 70.46 92,99 96.35 
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3.3 C o m b i n i n g  F r a m e  E n e r g y  a n d  F B E - M F C C  

Now that the FBE-MFCC is the best among all kinds of combinations of the traditional M F C C  
(MFCC0) and the frame energy as well as the frame energy's derivatives, there arises a question: what 
about combining the frame energy and its derivatives into the FBE-MFCC? The results are given in 
Table 5. The conclusion is as expected. The log frame energy and its ARA coefficients are the best 
to be integrated into the FBE-MFCC and the corresponding ARA coefficients. As a supplement of 
Table 2 where the XRECT is better than the XTRI, an additional comparison is done between the 
two kinds of filter shapes, and the results are given in Table 6. We c~n see again that the differences 
between the filter shapes are not so significant. 

Table 5. Combining the Frame Energy Information into FBE-MFCC (i.e., MFCCl) 
Features (besides MFCC1 ~1r Top 1 

LnFE + D1LnFE 
LnFE + D~LnFE 

LnFE + D1LnFE + D~LnFE 
LnDFTO ~R~ 

FE~aRa 
L n F E ~  ~t~ 

Top 5 Top 10 
None 70.51 92.96 96.39 

70.41 92.65 96.28 
70.79 92.84 

92.85 70.97 
96.29 
96.40 

68.92 92.06 95.94 
70.27 92.68 96.28 
71 .19  9 2 . 9 8  9 6 . 4 1  

Table 6. Additional Comparison on the Filter Shape 
Features (~aRa) Top i Top 5 Top i0 

MFCCt + LnFE [35 XTIR.I ] 71.19 92.98 96.41 
MFCC1 + LnFE [35 XRECT] 71.17 92 .99  96.47 

3.4 A U n i f o r m  C a l c u l a t i o n  o f  t he  F B E - M F C C  

According to the above discussion, the proposed FBE-MFCC calculation has a uniform program- 
ming form. Firstly, the FBE item is inserted by modifying the index range of the DCT outputs. 
Secondly, the calculation of the frame energy is performed during the windowing and pre-emphasizing 
of the speech segment (i.e., frame). All these coefficients form the set of FBE-MFCC coefficients. 
Because the calculation of the frame energy is integrated into the calculation of the FBE-MFCC, the 
frame energy seems to be hidden in the application of the programming. 

The auto-regressive anMysis can then be performed on the FBE-MFCC. 

4 Appl icat ion  to CASS Corpus 

Experiments are also done on a spontaneous Chinese speech database, named Chinese Annotated 
Spontaneous Speech (CASS) corpus. It is created to collect samples of most phonetic variations in 
Mandarin spontaneous speech due to pronunciation effects, including Mlophonic changes, phoneme 
reduction, phoneme deletion and insertion, as well as duration changes [151. The CASS corpus was 
transcribed into a five-level annotation. 

�9 Character Level. Canonical sentences (known as word/character sequences) are transcribed. 

�9 Toned P i n y i n  (or  Syllable) Level. The canonical toned pinyin transcription is generated. 
�9 In i t i a l /F ina l  Level. This semi-syllable level's transcription only includes the time boundaries f o r  

each (observed) surface form initial/final. 
�9 S A M P A - C  Level. This level contains the observed pronunciation in SAMPA-C [12'13], a label- 

ing set of machine-readable IPA symbols adapted for Chinese from the Speech Assessment Methods 
Phonetic Alphabet (SAMPA). 

�9 Miscel laneous Level. Several labels related to spontaneous phenomenon are used to indepen- 
dently annotate the spoken discourse phenomena, including modai/exclamation, noise, silence, mur- 
mur/unclear, lengthening, breathing, disfluency, coughing, laughing, lip smack, crying, non-Chinese, 
and uncertain segments. 
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4.1 G e n e r a l i z e d  I n i t i a l s / F i n a l s  ( G I F s )  

In spontaneous  speech, there  are two kinds  of differences be tween  the  canonical  in i t i a l s / f ina l s  ( IFs)  
and  their  surface forms if the  dele t ion and inser t ion are not  considered.  One is the  sound  change f rom 
one IF  to a S A M P A - C  sequence close to i ts canonical  IF ,  such as nasa l iza t ion ,  cen t ra l i za t ion ,  voiceless, 
voiced, rounding,  syl labic,  pharyngeMiza t ion ,  and  asp i ra t ion .  We refer to the  surface fo rm of an I F  as 
i ts g e n e r a l i z e d  I F  (GIF) .  Obviously,  the  IFs  are special  GIFs .  The  o the r  is the  phone  change  d i rec t ly  
from one I F  to ano ther  qui te  different I F  or GIF ,  for example ,  in i t ia l  ' z h '  may  be changed  into ' z '  or 
voiced ' z ' .  

To model  the  sound var iab i l i ty  when the  semi-syl lab le  level uni ts  are  SRUs, the  first  t h ing  to do is 
to choose and define the  G I F  set. The  canonica l  I F  set consists  of 21 ini t ia ls  and  38 finals,  t o t a l l y  59 
IFs.  By searching in the  CASS corpus,  we in i t ia l ly  o b t a i n  a G I F  set of over 140 poss ib le  S A M P A - C  
sequences (pronuncia t ions)  of IFs.  Two examples  are given in Table 7. However,  some of  t hem occur  
for only a couple of t imes  which can be rega rded  as least  f requent ly  observed sound  va r i ab i l i t y  forms, 
therefore  they  are merged  into the  most  s imi lar  canonica l  IFs.  F ina l ly  we have 86 G I F s .  

Table 7. Examples for IFs and Their Possible Pronunciations in SAMPA-C Format 

Pinyin 
1F 

S A M P A - C  Comment s  

z / t s /  Canonical 
z /ts_v/ Voiced 
z /ts"/ Changed to 'zh' 
z /ts '_v/ Changed to voiced 'zh' 
e /7/  Canonical 
e /7" / Retroflexed, or changed to 'er' 
e /@/ Changed t o / @ /  (a GIF) 

These  welI-chosen G I F s  are  t aken  as SRUs. In order  to b e t t e r  mode l  the  spon taneous  speech, addi -  
t ional  garbage  models  are  also bui l t  for b rea th ing ,  coughing,  crying,  disfiuency, laughing ,  lengthening,  
modal ,  murmur ,  non-Chinese ,  smacking,  noise, and  silence. 

4 .2  E x p e r i m e n t  o n  C A S S  

The  CASS corpus  is d iv ided  into two par t s .  The  first pa r t  is the  t ra in ing  set w i th  a b o u t  3.0 
hours '  spon taneous  speech d a t a  and  the  second is the  tes t ing  set wi th  a b o u t  15 minu te s '  spon taneous  
speech da ta .  T h e  H T K  is used for b o t h  the  t r a in ing  and  test ing.  A 3-s ta te  16-gaussian H M M  is used 
to model  each GIF .  The  fea ture  ex t r ac t i on  f rame size is 32ms wi th  16ms over lap be tween  any two 
ad jacen t  frames.  

E x p e r i m e n t a l  resul ts  in Table  8 include (1) GIF -X:  IF  compar i son  wi thou t  the  sy l lab le  lexicon 
const ra in t ;  (2) OIF-S :  I F  compar i son  wi th  the syl lable  lexicon const ra in t ;  and  (3) SYL-S:  syl lable  
compar i son  wi th  the  syl lable  lexicon cons t ra in t .  The  l is ted figures are error  ra te  r educ t ion  based  on 
the percent  correct  % C o t  = % H i t  = H i t / N u m  �9 100% = ( N u m  - D e l  - S u b ) / N u m  * 100% and the 
percen t  accuracy  % A c c  = ( H i t  - I n s  ) / N u m  �9 100% = ( N u m  - D e l  - S u b  - f n s  ) / N u m  * 100% [14] wi th  
M F C C 0  (~Ra) as the  basel ine,  where N u m  is the  to ta l  n u m b e r  of GIFs  in reference t r ansc r ip t ions ,  and  
H i t ,  De l ,  S u b  and  I n s  ind ica te  numbers  of hits ,  de le t ion errors,  subs t i t u t i on  errors  and  inser t ion  errors  
respect ively.  

Table 8. Comparison on Features 
Fea tures  ( ~ n a )  GIF-X GIF-S  SYL-S 

EC$ EA$ EC$ EA$ EC$ EA$ 
MFCC0+FEB=MFCC1 3.1 2.4 4.0 2.8 2.7 2.3 
MFCC0+LnFE 3.7 3.0 4.9 3.0 3.1 2.3 
MFCC0q-FBE+LnFE=MFCCI+LnFE 2.3 1.9 2.9 1.6 -0.8 - l . 1  
Note: EC.~ means the error rate reduction based on ~ C o r ,  while EA$ based on %Acc. 

From this  table ,  we can see t ha t  for a casual  speech d a t a b a s e  wi th  qui te  different  channels ,  the  
F B E - M F C C  ou tpe r fo rms  the t r ad i t i ona l  M F C C ;  it can reduce the error  ra te  by a b o u t  2.9% on an 
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average. But for a situation under the adverse environment, the performance of the method integrat- 
ing the FBE and the frame energy is different from that  for the 863 Database.  For 863 Database,  
M F C C 0 + F B E + L n F E  is bet ter  than both M F C C 0 + F B E  and MFCC0+LnFE,  and any of the above 
combinations is bet ter  than MFCC0. On the contrary, the integration of frame energy information 
may reduce the performance. Nevertheless, the fact remains that  FBE-MFCC is always bet ter  than 
traditional MFCC. 

5 S u m m a r y  

From the step-by-step design and implementat ion of the experiments, we come to the following 
conclusions: 

(1) The MFCC(0), i.e., the frequency band energy (FBE) information, is useful to be included in 
the MFCC, referred to as FBE-MFCC in this paper  to be distinguished from the traditional MFCC, 
no mat ter  the speech environment is of high-quMity or is adverse. 

(2) For high-quality environments (for example similar to that  for the 863 Database),  the combi- 
nation of the FBE-MFCC and the frame energy (FE) with their auto-regressive analysis coefficients 
is the best one; while for adverse environments (for instance similar to that  for CASS corpus), the 
combination of the MFCC and the frame energy with their auto-regressive analysis coefficients is the 
best one. 

(3) The integration of both  the frame energy and the FBE into the MFCC should be treated 
differently for different applications. In some cases, the integration of the FE information and the 
FBE information achieves the best performance, while not in other cases. 

(4) The uniform calculation makes the programming and application of the feature extraction 
simpler and more straightforward and it can provide an option for different applications. 
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