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Inequalities for the Gamma and Polygamma Functions 

By H. ALZER 

1 Introduction 

The classical gamma function 

F F(x) = e - t  t x-1 dt, (1) 

(0 < x �9 lI~), is one of the most important functions in Analysis and its applications. 
It was introduced in 1729 by L. EULER in a letter to C. GOLDBACH as an infinite 
product, from which the integral representation (1) can be derived. A detailed de- 
scription of the history and the development of the gamma function is given in [10]. 
An interesting stochastic approach can be found in [15]. 

Another important special function is the logarithmic derivative of F, 

OO ( '  ' )  
O ( x ) = F ' ( x ) / F ( x ) = - C + ~  l + n  x + n  

n = 0  

(0 < x �9 IR; C = Euler's constant), which is known in literature as psi or digamma 
function. ~ and its derivatives are called polygamma functions. In the recent past, 
several authors published remarkable properties of these functions. In particular, 
many interesting inequalities can be found in the literature; see [3] and the references 
therein. 

It is the main purpose of this paper to present new inequalities for the gamma 
and polygamma functions. In Section 2 we prove that the function x ~ log(F(x + 
1))/(x log(x)) is strictly increasing on (0, cx~), which extends a recent result of 
G. D. ANDERSON and S.-L. QIU. In Section 3 we provide sharp upper and lower 
bounds for the difference 7t(n)(x + 1) - l~(n)(x ~-s). And, in Section 4 we use some 
properties of 7t and ~ '  in order to obtain estimates for Euler's constant, which refine 
those given by R. M. YOUNG and others. 
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2 A monotonicity property of the gamma function 

In 1989, G. D. ANDERSON et al. [6] conjectured that the function x ~ l o g ( F ( x / 2 +  
1)) /(x log(x)) is strictly increasing on [2, ~ ) .  This conjecture was recently proved 
by G. D. ANDERSON and S.-L. QIU [5]. Actually, they proved a bit more, namely, 
that even the function 

f ( x )  -- log(F(x § 1)) / (x  log(x)) 

is strictly increasing on (1, cx~). Moreover, they used this result to show that the 

sequence n w-> ~ln/(nl~ (n = 2, 3 . . . .  ) is strictly decreasing. Here, ~ n  = 

7~n /2 /F(n /2  + 1) denotes the n-dimensional volume of the unit ball in R n. 
The monotonicity proof given in [5] is quite long and complicated, so that the 

following short and simple proof of an extension might be of interest. In order to 
show that f is strictly increasing not only on (1, ~ )  but even on (0, ~ ) ,  we make 
use of the following elementary lemma which modifies slightly a result given in [7]. 

Lemma. Let u E C 1(0 ,  or with u(1) = 0 and v E C1(0, ~ )  such that v < 0 

on (0, 1), v > 0 on (1, ~ )  and v' > 0 on (0, cx~). I f  u l / v  t is strictly increasing on 

(0, cx~), then u / v  is also strictly increasing on (0, ~ ) .  

We are now in a position to establish our first result. 

Theorem 1. The funct ion f ( x )  = log(F(x + 1)) /(x log(x)) is strictly increasing 

on (0, oo). 

Proo f  We define for x > O: 

I log(F(x + 1)) and v(x)  -- log(x).  u(x )  = 

Moreover, let 

w ( x )  = x 2("'(x)] '  = x 2 ~ ' ( x  + 1) - x O(x + 1) + log(F(x + 1)) \ v'(x) J 

Using the integral representations 

and 

fo ~ t fo ~ t 2 ~ ' ( z )  = e - z t -  dt, ~ " ( z )  = - e - z t -  dt 
1 - e - t  1 - -  e - t  

lfo  - -- e -z t  dt 
z -- 

(z > 0), (see [1], p. 260), and the convolution theorem for Laplace transforms, we 
obtain for x > 0: 

/o 1 w ' ( x )  1 O ' (x  + 1) + ~U'(x + 1) e -x t  h( t )  dr, 
X 2 X 

where 

' (  s 
h( t )  = 

e s 1 
t ) ds.  

e t - -  1 
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Since x ~ x / ( e  x - 1) is strictly decreasing on (0, oo), we get h(t) > 0 (t > 0), 
and, hence, w1(x) > 0 and w(x)  > w(0) = 0 (x > 0). This implies that u ' / v '  is 
strictly increasing on (0, oo). From the Lemma we conclude that f = u / v  is also 
strictly increasing on (0, oo). [] 

Remarks. 

1) From Theorem 1 we obtain 

( y log (y ) '~  log(F(y + 1)) (2) 

~ J  < log(r(x + 1)) 

(1 < x < y) with ct = 1. If we write inequality (2) as 

log(log(F(y + 1))) - log(log(F(x + 1))) 
< (3) 

log(y log(y)) - l o g ( x  log(x)) ' 

and let y tend to oo, then the ratio on the right-hand side of (3) tends to 1. 
This implies that the best possible constant in (2) is given by t~ = I. 

2) In [5] the authors conjecture that f ( x )  --- l o g ( F ( x +  1)) /(x log(x)) is concave 
on (1, cx~). Computer experiments suggest that f is even concave on (0, ~ ) .  

3) Recently, P. J. GRABNER et al. [16] proved that the related function g(x)  = 
log(r(x + 1))/x is increasing and concave on (0, ~ ) .  Moreover, they pre- 
sented several inequalities for g and used their results to obtain bounds for the 
permanents of 0 - 1 matrices. 

3 Inequalities for the polygamma functions 

Many authors studied inequalities for the difference 

Ds(x)  = log(F(x + 1)) - l og ( r (x  + s)) 

(x > 0; s E (0, 1)); (see [2,8,9, 11, 12, 14, 17-20,23-26,28]). Inequalities for 
Ds(x)  have a remarkable application: in [22] it is shown that they can be used to 
obtain estimates for ultraspherical polynomials. 

The results presented in this section have been inspired by an interesting paper 
of I. B. LAZAREVIC and A. LUPAS [21], who published in 1974 the following 
theorem. 

Proposition. I f  s e (0, 1) is a real number, then we have for  all real numbers 
x > O :  

(1 - s) log(x + s/Z)  < Ds(x)  < (1 - s) log(x + (P ( s ) ) l / ( s - l ) ) ,  (4) 

where the constants s /2  and (F (s)) l/(s- 1) are best possible. 

It is natural to ask whether this result can be extended to the derivatives of x 
Ds (x). This means, we are looking for sharp bounds for the difference ~(n) (x + 1) - 
~(nl(x  + s) (0 <_ n E Z). Our next theorem provides such bounds. The following 
companion of double-inequality (4) holds. 
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Theorem 2. 
have for  all real numbers x > O: 

n!(1 - s) n!(1 - s) 
< ( - 1 ) n [ ~ p ( ' ) ( x  + 1) - ~p( ')(x + s ) ]  < 

[x + c~n(s)] ,+l  

with the best possible constants 

( an(S) = (_l)n[~p(m(1) _ ~p(n)(s)], / and fin(s) = s / 2 .  

Proof  Let s 6 (0, 1) be a (fixed) real number. We denote by fn the function 

[ A~(x) ] - ' / (n+')  
fn(X) = n ~  s) -- x ,  

where 

Let n > 0 be an integer and let s ~ (0, 1) be a real number. Then we 

Ix + & ( s ) ]  n+l ' 
(5) 

(6) 

(l -- ~(n § 1) 1 § O ( X - 2 ) )  - l / ( n + l )  -- 1 

fn(X) (10) 
1/x 

This implies 

An(x)  = ( - -1)n[~(n)(X + l)  -- ~ (n ) (x  + S)] .  

We shall prove that 

lim fn (x)  = s /2  (7) 
X----~ OO 

and that fn is strictly decreasing on [0, ~ ) .  This implies 

s /2  < fn(X) < fn(O) 

(x > 0), which is equivalent to double-inequality (5) with otn (s) and fin (s) given in 
(6). Moreover, we conclude that these constants are best possible. 

From the asymptotic formula 
1 1 7t(x) = log(x) 2x ~ + O(x-4)  

(x --+ ~ )  (see [1], p. 259 or [13], p. 824), we get 

~(x  + 1) - 7t(x + s) -- l-s  s(l-s) x 2(x+s)(x+l) § O(x-3)  " (8) 

This leads to 
fo(x)  = l s x Z ( x  §  § 1)-1 + O(x-1)  

1 + O(x -1) 
which implies (7) for n = 0. Let n > 1 ; from 

~(n)(x) = ( -1 )n - l [ (n  - 1)!x -n + �89 -nM + ~ ( n  + 1)!x -n-2  + O(x -n -3 ) ]  

(x --+ cx~) (see [1], p. 260), we obtain 

xn+l An(x ) __ 1 + �89 - 1)(1 + s) 1 + O(x -z) 

n!(1 - s )  1 + n(1 +s ) �88  + O(x -2) 
(9) 

!(n + 1)�88 + O(x -2) 
+ 2 § O(X-2) .  

1 + (n + 1)(1 + s) �88 + O(x -2) 
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From (10) we conclude lim fn(x)  = s/2,  which proves (7) for n > 1. It remains 
x --9- o o  

to establish that 

(An(X))l+l/(n+l) ftn(X) = ~+1 [n!(1 - -s ) ] l / (n+l)An+l(X)  -- (An(x)) l+l/(n+l) 

< 0 .  
(11) 

We set 
e-tS _ e- t  

u( t )  - 
1 - -  e - t  

(t > 0) and make use of the integral representation 

fo ~a e - t  _ e-tZ 
~ ( z )  = - c  + -j - UT_~ dt  

(z > 0; C = Euler's constant) (see [1], p. 259). Then we get 

( An+ l (X ) )2 = ( fo~176 e-tX tn+l u(t) dt) 2 

= fo ~ e-tX((tn+lu(t)) * (t n+l u(t))) dt ,  

where �9 denotes Laplace convolution. Moreover, we obtain 

f0 f0 An+2(x) An(x) = e -tx t n+2 u(t) dt e -tx tnu(t) dt 

f? = e -tx ((tn+2u(t)) * (t n u (t))) d t .  

Thus, to prove (13) it suffices to show that the following inequality holds for t > 0: 

(n § 2)((tn+lu(t)) * (tn+lu(t))) - (n + 1)((tn+2u(t)) * (tnu(t))) 

fo 
t (14) 

= u ( t - x )  u ( x ) ( t - x ) n x n + l [ t ( n + 2 ) - ( 2 n §  

To prove (11) for x > 0 it suffices to show that the function 

gn(X) = - l o g ( n ! ( 1  - s)) + (n § 1)log(n + 1) - (n § 1)log(An+l(X))  

§ (n + 2) log(An(x) )  

is positive on (0, oe). From (8) and (9) we get for n > 0: 

lim xn+lAn(x)  = n!(1 -- s ) ,  (12) 
x ---> o ~  

which implies lira gn (x) = 0. Therefore, it is enough to establish that gn is strictly 
x - - +  Oo  

decreasing on (0, oe). The inequality gr n (x) < 0 is equivalent to 

(n § 2)(An+l(X)) 2 > (n § 1)An+2(x) An(x) .  (13) 
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We denote the integral in (14) by l ( t )  and we set P~(y) = u(a(1 - y))  u(a(1  + y)).  

Next, we change the variable, x = I (1  + y),  and take into account that y w-~ 

Pt/2(y)(1 - ye)ny is an odd function. Then we get 

f' I( t )  = (t/2) 2n+3 Pt/2(Y) (1 - y2)n[l  - 2(n + 1)y - (2n + 3)y 2] dy 
1 

f0' = 2 (t/2) 2n+3 Pt/z(Y) (1 - yZ)n[1 - (2n + 3)y 2] d y .  

We shall prove that y ~ Pa(Y) (a > 0) is strictly decreasing on (0, 1). We set 
c = (2n + 3)-1/2;  then we obtain 

I ( t )  4 n+l t -(2n+3) = Pt/2(Y) (1 - y2)n[1 - (y/c)2l dy 

+ Pt/Z(Y) (1 - y2)n[1 - (y/c)  2] dy 

> Pt/2(c) (1 - y2)n[1 - (y/c)2l dy 

+ f l ( 1 -  y 2 ) n [ 1 - ( y / c ) 2 ] d y ]  

fo' = Pt/2(c) (1 - y2)n[1 -- (2n + 3)y 2] dy 

It remains to prove that 

(y 6 (0, 1)). We set 

Pt/2(c)[y(1 .2~n+lq 1 = - - y  ~ Jo = 0 -  

P~a(Y) < 0 (15) 

Qa(x) = log(u(ax)) ; 

then we have 
P~(y) -- pa(y)[-Qla(1 - y) + Qta(1 + y) ] .  

Hence, to establish (15) it suffices to show that x w-~ Qa (x) is strictly concave on 
(0, ~ ) .  Elementary calculations reveal that the inequality 

O:(x) = (a/u(ax))2[u(ax).1'(ax)- (u'(ax)) 2] 0 
is equivalent to 

0 < b2z 2 - z l+b - 2(b 2 - 1)z - z 1-b + b 2 = Rb(z), (16) 

say, where z > 1 and b 6 (0, 1). From 

Rb(1) = R~(1) = R~'(1) = 0 

and 
R~"(z) = b(1 - bZ)z-b-2(z 2b - -  1) > 0 

we conclude the validity of  inequality (16). This completes the proof  of  Theorem 2. 
R 
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Remark. Let n >_ 0 be an integer and let 

An(X, s) = 7t(n)(x + 1) -- o(n)(x + s ) .  

Inequality (13) implies that the following converse of the Cauchy-Schwarz inequal- 
ity holds for all real numbers x > 0 and s 6 (0, 1): 

n+l A n ( X ,  s )  An+2(X, S) < (An+l(X,  S)) 2. (17) n+2 

From ~p(n)(x+ 1 ) - ~ ( n ) ( x )  = ( -  1)nn !x - n - I  (see [1], p. 260) and (12) we conclude 

that the ratio (An+l (x, s))Z/[A~ (x, s) An+2(x, s)] tends to (n-t-1)/(n + 2 )  if s ~ 0 
or i f x  -+ e~. Hence, the constant factor (n + 1)/(n + 2) in (17) cannot be replaced 
by a larger number. 

4 Inequa l i t i e s  for E u l e r ' s  c o n s t a n t  

Euler's constant C = 0.57721 . . .  - "the third mysterious number of real analysis" 
[29], p. 187 - is defined by the well-known limit relation 

C : lim dn, 
n---+ o o  

where 
n 

dn = Z 1 _ log(n) 
k=l 

(n = 1,2 . . . .  ). There is a close connection between the difference dn - C and the 
1 (X > 0) psi function. Indeed, using the recurrence formula 7z(x + 1) = 7t(x) + x 

and ~(1 )  = - C  (see [1], p. 258), we get dn - C = 7t(n + 1) - log(n). 
Several bounds for d n -  C are given in the literature. In 1971, S. R. TIMS and 

J. A. TYRRELL [27] used analytical methods to establish 

1 l (18) 2(n+l) < d n  - C < 2(n-l)  

l In 1991, (n = 2, 3 . . . .  ), which leads to the asymptotic formula d n -  C ~ 2n" 
R. M. YOUNG [29] presented an elegant geometrical proof for the double-inequality 

1 l (19) 2(n+l) < d n  - C < 

(n = 1, 2 . . . .  ), which provides a slight improvement of the right-hand side of (18). 
Recently, G. D. ANDERSON et al. [4] proved that the function h(x)  = x( log(x)  - 

lp(x)) is strictly decreasing on (0, oo) with lim h(x)  = �89 This leads to 
x ---> o o  

1 ( 2 0 )  1 - C  < dn  - C < ~-fi 
n - -  

(n = 1, 2 . . . .  ), which sharpens the lower bound given in (19) i f n  _< 5. 
In view of these inequalities it is natural to ask: what is the smallest number a 

and what is the largest number b such that the inequalities 

1 1 
2(~+a) -< dn - C <_ 2(n+b) 

are valid for all integers n > 1 ? The answer to this question provides refinements 
of the bounds given in (18), (19) and (20). 
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T h e o r e m  3. For all integers n >_ 1, we have 

1 1 ( 2 1 )  
2(n+a) -< dn - C < 2(n+b)' 

with the best possible constants 

1 1 
a - -  2(1-c) 1 = 0 . 1 8 2 6 . . .  and b =  ~ .  

Proof Since 

dn - C = O(n + 1) - l o g ( n ) ,  

double- inequal i ty  (21) can be writ ten as 

1 1 
b < 2 O(n+l)-log(n) n < a .  (22) 

In order  to prove (22) we define for posi t ive real x:  

1 1 
f ( x ) -  2 ~ p ( x + l ) - l o g ( x )  X .  

Different ia t ion yields 

f l (x)[~p(x + 1) - log(x)]  2 = l ( ~  _ ~ ' ( x  + 1)) - (O(x  + 1) - log(x) )  2 

1 1 I _ log(x) )  2 = + - - + 

Using the inequal i t ies  
l I < ~ p ( x )  

log(x)  2x 12x 2 

and 
1 1 1 1 < ~ p ' ( x )  
X- -~- 2 7  -~- 6x 3 30x 5 

(x > 0) (see [15]), we obtain f o r x  > 2.4: 

1 f1(x)[gt(x  + 1) - log(x)]  2 < ~ (2.4 - x)  _< 0 .  (23) 

F rom (23) and f ( 1 )  = 0.182 . . . .  f ( 2 )  = 0.177 . . . .  f ( 3 )  = 0.174 . . . .  we con- 

c lude that the sequence f ( n )  -- 2(a,-c)1 n (n = 1, 2, . .  ) is strictly decreasing.  

This  leads to 
1 1 l im f ( k )  < f ( n )  < f ( 1 )  - 2 0 - c )  

k---~ oo 

(n = 1, 2 . . . .  ). It remains  to prove that 

l im f ( k ) =  ~.  (24) 
k - - + ~  

From the representat ion 

1 1 _t_ O ( X - 4 )  ~ ( x )  = log(x)  2x 12x 2 

(x --+ oc) ,  we get 

f ( x )  = (1 + O(x-2) ) / (1  + O ( x - 1 ) ) ,  

which impl ies  (24). This comple tes  the p roof  of  Theorem 3. [ ]  
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