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Jacobi Forms of Higher Degree 

By C. ZIEGLER 

In~oducfion 

Let H.+j denote Siegel's upper halfplane of degree n + j  (n, jE  N) and let 
P.+j :=  Sp (n + j ,  Z). We consider a Siegel modular form FE [/'n+#, k] of 
weight k, i.e. a holomorphic function F:  H.+j---~ C satisfying the functional 
equation 

F(M (Z))  = det (CZ + D) k" F(Z) for every M E P.+j 

and having a Fourier expansion of the form 

F(Z) = ~ c(r) .  e ~"'~ 
T~Tt~O 

T half integer 

For all that we use the usual notation M (Z)  := (AZ + B) (CZ + D) -~ for 

M-----(; ; )E_P~+j  with A,B,C,  DCZ(m+~'"+J); o" denotes the tracefunction 
\ - - /  

and T t the transposed matrix to T. Writing 

Z =  Z2 

with Z~ E C ('"), Z2 E C (jJ) and WE C (j") the partial Fourier expansion of Fwith 
respect to the variable Z2 is given by 

r ( z )  = F(Z~, W, Z~) = y~ ~ , ( Z , ,  W).  e ~ ~  
~r 

half integer 
where 

q~(Z, ,  W):---- ~ e . e2~iomzo . e2"i~(RW). 
T~,R 

R t 

The above formula is well known as Fourier-Jacobi expansion of the Siegel modu- 
lar form F. Now the functions q~, inherit certain functional equations from F: 

Let Af = E 0 C F,+j with M = C F~. 
0 D 

0 0 0 
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Then F(~/<Z>) = det (CZ + D) k " F(Z) implies: 

q~(M<ZI>,  W(CZI + D) -1) = det (CZ~ + D) k. e2 ~i'~w(cz' +o)-,cwt~. ~a(Zx,  W) 

(1) 
for every M E F.. The same argument for 

i ~ 0 0 

with 4, ~t C Z (i"), x E Z (j'j) satisfying (x + #2') = (x + #2')' shows: 

qb.e(Z1, W + 2Z1 + tz) e -2~i'~r176 + 2~'wt +(~+~zt))) " ~a(Z1,  W) (2) 

for every such triple [(2, #), ~]. 
The attempt of this paper is to give a starting point for a systematic investiga- 

tion of holomorphic functions �9 : H. X C Ci'"~ ---> (3 satisfying the functional equa- 
tions (1) and (2) as well as a certain condition on their Fourier expansion. EICrILEP. 
and ZAGIER have recently developped a theory of these functions (called Jacobi 
Forms) in the special case n = I, j = 1 (see [2]). As far as I know the only papers 
investigating higher dimensional cases are GRITSENKO [4], MURASE [8], SH1MURA 
[10] and YAMAZAKI [14]. Nevertheless no satisfactory general theory seems to 
exist, so this paper may be viewed as a first serious attempt to build up such a 
theory in the spirit of Eichler and Zagier. 

In I. we give the precise definition of Jacobi Forms and discuss some basic 
concepts of the theory; the main result of this section will be the finite dimensionali- 
ty of the space of Jacobi Forms. In 2. we shall construct Jacobi Forms by means of 
Eisenstein Series. Analogously to the theory of Siegel modular forms we shall first 
consider ordinary Eisenstein Series before we generalize our results to Eisenstein 
Series of Klingen's type. Furthermore we shall develop some technical tools, 
for example the notion of Petersson scalar product. In 3. we investigate various 
topics concerning theta series: First we shall prove a result of Shimura, which 
states an isomorphism between the space of Jacobi Forms and a certain space of 
vector valued Siegel modular forms of half integral weight. Then using even uni- 
modular lattices we shall construct Jacobi Forms on the modular group Fn by 
means of theta series and discuss some of the related problems, especially the theory 
of singular Jacobi Forms. 4. is devoted to applications of our theory: First we shall 
investigate (non) surjectiveness properties of the Fourier Jacobi expansion of 
Siegel modular forms. Then we shall be concerned with Sieget's Hauptsatz for 
Jacobi forms and as a corollary shall obtain a stability theorem for Poincar6. 
Square Series. 

This paper is a short version of the author's 1988 thesis--also some slight 
modifications and corrections have been carried out. 
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1. Jaeobi Forms 

193 

We consider the Heisenberg group 

H~ J) :=  {[(2,/0, x] [ 2,/z E R 0"), ~ E R OJ), (~ +/~2 t) symmetric} 

which is a group with the following composition law: 

[(k, ~), ~1 o [(k', #'), ~'1 :=  [(k + k', ~ + F ) ,  ~ + ~' + k#" - ~tk"]. 

The mapping 
E 0 0 

[(2, ~), ~] -+ E # 

%/ 
0 0 0 

defines an imbedding of I-I(R "J~ into Sp (n + j, R). Now the group Sp (n, R) acts 
on/-/(R ~'j~ by multiplication from the left: 

[(2,/-0, ~1" M :=  [(2, #)" M, z] 

So we can define the Jacobi group G(~ J) :=  Sp (n, R)I~< H(R ~'-~ with the associated 
composition law: 

(M, ~). (M', ~') :=  (MM', r r 

i.e. 

(M, [(2, #), z])" (M', [2', (#'), z']) 

:=  (MM', [(2 + 2', D + #'), x + . '  + ~#,t _ ~2,t]) 

where (2, ~) :=  (2, #) .  M'. 
It is easy to verify that G~ J) acts on H n • C~ ,~) as a group of automorphisms. The 

action is given by: 

( n ,  [(2, #), ~1). (Z, IV) :=  (M <Z>, (W + 2Z + ,u) (CZ + D)-I). 

Our next aim is to define a factor of automorphy. 
Let E be a finite dimensional C-vectorspace. We shall consider holomorphic 

mappings O : H n • C (j'n) ---> E and denote the C-vectorspace of all such mappings 
with d~(H. • C 0'"), E). 

1.1. Definition. Let 0 : GI (n, G)-+ Gl (E) be a rational representation of Gl (n, C) 
on E. For OE 0(Hn •  O'n), E), ME Sp (n,R), ~ = [(2,#),~] C H ("O and ~r 0'~) 
with Jg ~ 0 symmetric and half integer, i.e. 2Jlij, Jgii C Z, we define: 

(0  le,dz M) (Z, W) 

:=  q(CZ + D) -1 �9 e -2~to(de'w(cz+~ " O(M (Z) ,  W(CZ + D) -1) 

(O ]~g r (Z, W) :=  e 2"i'~('g'(azz +2aw'+('+~'~')))" O(Z, W + 2Z + ,u). 
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Of special interest is the case E = 13 and ~(N) : =  (det N) k for NE GI (n, 13) 
and some fixed k E Z. 

1.2. Lemma. For 
relations: 

M, M' E Sp (n, R) and r r E I t~ 'j) we have the following 

]MI M ' =  r ] (MM'), 

I~[ ~' = r 1 7 6  ~'), 

I~] M = r IM] (CM). 

(1) 

(2) 

(3) 

C o r o l l a r y :  G~ 'j) acts on O(H. • C (j'n), E) by 

Proof. Straightforward computation. 

Remark. An element (M, ~) E G~ J) acts trivially von g?(H, x C (j'"), E) if and 
only if M = E and ~ = [(0, 0), u] such that a( ,g  �9 u) E Z. The set ~ g  of all 
such elements is a normal subgroup of G~ 4) and passing to the quotient G(~'J)/.A/'.g 
we obtain a faithful representation of G(ffJ)/Xg on g)(H, • C 0,n), E). 

Let 

H~ n'j~ :=  {[(~, ~), ~1 E H~ n'j~ [~, ~ E Zu,.~, ~ E Z~'~) 

and G(z nJ) :=  Cop (n, Z)I• H(z n'j) C G(ff 'j). Analogously we define H(~ 'j) and G(~ 'j). 
We now give the precise definition of Jacobi Forms: 

1.3. Definition. Let 0 and Jg be like in Definition 1.1. 
A (vector valued) Jacobi Form of index s/{ with respect to 0 on a subgroup 

1" C Sp (n, Z) of finite index is a bolomorphic mapping r E 0(Hn • C 0'n), E) 
satisfying: 

1. @10,~g M =  ~b for every ME 1"; 
2. q}]~ ~ = ~b for every ~ E ~'z~(nJ)', 
3. for each M E Sp (n, Z) the function q~lo,~ M has a Fourierexpansion of the 

following form: 

~ a ( T Z )  , e2nia( R W) (r M) (Z, IV) = ~a • c(T, R) . e ,r 
T = r t ~ o  ReZ(n,J) 

T half integer 

2r - -  R 
with a suitable 2r E Z and c(T, R) =4= 0 only if >-- 0. 

1 t 
-5-R 

We denote the vectorspace of all Jacobi Forms of index sg with respect to 
on P by Jo,~(F). In the special case E=C,  o(N) = (detN) e, kE Z, we write 
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J~,~(P) instead of JQ,~(F) and call k the weight of the corresponding Jacobi Forms. 
Obviously we have: 

1.4. Lemma. Let �9 E JQ,~g(F) be a Jacobi Form on F. Then q~lo,~g M is a 
Jacobi Form on the conjugate group M -~ FM for each ME Sp (n, Z), i.e. 
~[o,.a M E Jo,~(M -x FM). 

The following simple observation is sometimes useful in order to verif~ the con- 
dition on the Fourier expansion of a Jacobi Form: A symmetric matrix S E R ~"'") 
is semipositive if and only if S + eSx >= 0 for every e > 0 and some fixed semi- 

positive symmetric S~ E R (~'"). 

;tr T R > 
1 t eE/ 

-T R ,~' + 

can write: 

l--r 1 ) 
2r T R 

For 'example >= 0 \ l ,  -TR 
if and only if 

0 for every e > O. Now d l +  eE is invertible, so we 

1 T 1 ) 
2r T R 

1 t ~ R  J l + e E  

(1 ) 
T R(JZ + eE) -' 

E 

• 

1 1 
r -  T R(~g 

0 

+ eE) -1 R t o)(: 
.l/l/+eE 

1 ) 
T R(Jg + eE) -1 

E 

Lr 1 ) 
2r T R 

and we obtain the following criterion: ~ 0 if and only if T > 0, 
1 t 

~ - R  d/  

~ '  ~ 0 and 4 T -  2rR(d/l + eE) -1 R t > 0 for every e > 0. 
This criterion is sometimes sufficient for our purposes (for example in order to 

prove 1.5., 1.6.), nevertheless we would like to have a better insight in what (l) 
2r -~- R ~ 0 means for T, R. Therefore we choose /JE GI(j, Z) such 

1 t -TR J# 

that U ' ~ @ = ( 0  ~ 00) with d / [ERU'~  d e t d ~ 0 .  We write 
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= (U, V) with 

(o o) 
T R  ~ '  

UE Z (j'/), VE Z (j'j'l), i.e. ~ = UtJ/IU. Now 

1 

1 UtRt 
T 

1 VtRt 
T 

, 1 i TRU T RV 

o I 

o o]  

(; 11 ~'7 T T R 
1 

So =>0 if and on ly i f  T ~ 0 ,  J / = >  0,-~-RV--= 0 and 

R t J/l 

4 T -  2 r R J ~ - '  ~t ~ 0, 

where /} : =  RU and d / : =  U~J/dU. Using this criterion, the third condition 
1 

in the definition of Jacobi Forms becomes c(T, R) ~ 0 only if -~- R V  = 0 and 

4 T -  2rRtj/r -1 R >= O. I 
I fa  Jacobian Form satisfies the stronger condition c(T, R) 4= 0 only if -~- RV--O 

and 4T -- 2F R J / - t  R t ~ 0 it is called cusp form. We now state: 

H6~J) 1.5. Theorem. Let q~ E J u / ( F )  be a Jacobi Form and let ~ E Q , i.e. ~ = 
[(2, #), n] with 2,/~ E Qo,n) ~ E Q~ Then the function 

f (Z)  :=  e :'~i~(d/'~z~')" ~(Z,  2Z + #) 

is a vector valued Siegel modular form with respect to ~ on some subgroup F' of  
finite index in Sp (n, Z) depending only on F and ~. 

Proof. We have 
f (Z)  = e - 2 : ~ i a ( d l ' ( z + ~ 2 t ) )  " (t~[./g ~) (Z, 0), 

so it suffices to prove that q~c(Z) :=  (q~]~z ~)(Z, O) is a Siegel modular form. 
First we shall show the functional equation. For any M E -P we have 

(Or ~ M) (Z) = ~(CZ + D) -~ . O~(M ( Z ) )  ~- ~(CZ + D) -~ �9 (OI~, ~) (M (Z},  0) 

= ( ~ J . ,  ~1~,.. M) (Z, 0) = (~[~,., MI~,(r  (Z, 0) 

= (~l~,~ (~M)) (Z, 0) = @.~,(Z). 
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Now suppose CM = r  r r with r  ,A/de, i.e. r = [(0, 0), ~"] with 
a ( J g .  ~") E Z and ~' E H(z ''s). Then 

( :le ( z )  = = or = 0 ( z ,  o) 

= r ( z ,  0) =  dz). 

So q~: transforms like a Siegel modular form for each M in 

Ar,r : =  {M E P [ 3 ( "  E JV'~, ( '  E H ~  J), such that ( M  = ("  o ( '  o (} C 1"~. 

(M = ("o ('o ~ means 

[(2, # ) .  M, ~] = [(0, 0), ~"]o [Q.', #'), ~']o [(2, #), x] 

= [(2 + 2', # + #'), ~ + ~' + ~" + 2'#' - #'2'] 

and so M E  At,., if and only if 

(2, # ) .  (M -- E) = (2', #') -~ 0 (mod Z~ (1) 

tr(~//�9 (2'#' --  # '  2 t --  #'2't)) E Z (set ~' = --#'2't). (2) 

Now it is easy to see that At, r contains some congruence subgroup 1"' = 1"[I] C 
Sp (n, z) and fie M = f holds for every M E 1"'. So in order to prove f E  [1"', ~] 
it remains to check tde cusp conditions for f. Since this verification may be done 
exactly like in the one variable case (compare Eichler/Zagier [2], proof of Theorem 
1.3.), we omit further details. The reader who is willing to do the slight modifi- 
cations necessary should recall our preceeding discussion on cusp conditions for 
Jacobi Forms. [] 

For n => 2 the well known K6cher-principle implies that any holomorphic 
mapping f :  H,  ~ E transforming like a Siegel modular form on some subgroup 
1" C Sp (n, z) of finite index, automatically satisfies the cusp conditions. This to- 
gether with Theorem 1.5. implies the following K6cher-principle for Jacobi 
Forms: 

1.6. Lemma (K6cher-principle for Jacobi Forms). Let n >= 2 and 1" C Sp (n, Z) 
be a subgroup of finite index. Then any function ~ E O(Hn• C 0'~), E) satisfying 
q~Ie,~ M =  �9 for every ME 1" and ~]~ ~ = ~ forevery ( E H(z ~'i) isaJacobi 
Form in Je,~(1"), i.e. the third condition in the definition of  Jacobi Forms can be 
omitted. 

Proof. It is easy to see that the condition on the Fourier expansion of  a Jacobi 
Form q~ is equivalent to the condition that the functions 

aS,~(Z) : =  e 2~(~a~z~t)" ~(Z, 2Z +/~) 

satisfy the cusp conditions for Siegel modular forms for every pair 2,/~ E Qo,n). [] 
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1.7. Corollary. Let E = C and ~(N): = (det N) k, k E Z. Then the Jacobi Forms 
form a bigraded ring: 

" r . , . ( /3  : =  �9 Jk,~( /3 .  
k,d/  

Proof. The product of two Jacobi Forms ~1 E Jk,~(l"), ~2 E J~,~(I') obviously 

transforms like a Jacobi Form of weight k -l-/~ and index ~/t § Jr The cusp 
condition is clearly satisfied for ~(Z,  14/) : =  ~ ( Z ,  IV)" 052(T, W) since 

A,.(z)  = (A)~,. (z)  �9 (A)~.. (z).  [] 

Let q~ E Jo,~,(F) be a Jacobi Form. For fixed ZoE H~ we consider the function 
g(W) : =  ~(Zo, W). Now each pair 2 , t tE Z (j'~) occurs in some (----- [(2,it),~] 
E H(z ~'j) and (:r + It2 t) symmetric implies a(J / .  (:r § #4')) E Z, so g satisfies the 
functional equation 

g(W q- 2Zo -~ #) ----- e -2€176176 g(W) 

for every 4, It E Z (j"). Thus g is a (p :=  dime E)-tuple of theta-functions with 
respect to the lattice 

Z (i'~) �9 Zo + Z (~") C C (j"). 

The space of all such theta-functions is finite-dimensional and its dimension D 
is independent of Zo E H~. For dimensionformulae see Lemma 3.1. The main 
result of this section is: 

1.8. Theorem. 
dime Je,~a(/-) < oo. 

Proof. Let 0 z~ . . . .  0 z~ be a basis of  the space of theta-functions considered 
above. We say that a D-tuple (WI . . . . .  WD) of  points ~ E C cj'") is Zo-generic, 
if det (0~Z~ @ 0. This property is independent of  the choice of  the basis 
0 z~ . . . .  ,0  z~ and by induction on D one easily proves that generic D-tuples always 
exist. The set of generic D-tuples is open in C (j'") • ... • C (~") (D-times), therefore 
we may choose D pairs (2 (0, #(i)) E Q(J'"), such that the points IV/:----- 2(i)Zo -~- It(i), 
i = 1 . . . .  , D define a Zo-generic D-tuple. By Theorem 1.5. the functions 

f (Z )  := e 2~i~ . q~(Z, 2(i)Z + tt (i)) 

are (vector valued) Siegel modular forms on subgroups /'i C Sp (n, Z) of  finite 
index. Consequently we obtain a map 

D 

j :  J~,.e(r) ~ �9 [ 5 , e l ,  
1=1 

~--> (fl ,  .--,fD)- 

By choice of  2 (i), #(1) this map is injective, so 
D 

dime Jo,~(F) ~ ~ dime [5 ,  ~] < co.  [] 
i=1 
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Corollary. dimc Jo,m(F) = 0 if  Q is irreducible and not polynomial. Especially 
dimc Jk,~e(F) = 0 for k < O, i.e. there are no nonvanishing Jacobi Forms of nega- 
tive weight. 

1.9. Definition. For J E  JQ..e(/) we define SO(J) E O(Hn_I •  0'~-1), E) by 

= imO((o 
and call SO the Siegel operator. 

We claim that the above limit always exists: Since J is a Jacobi Form it admits 
a Fourier expansion converging uniformly on sets of the form 

{(Z, W) I Im Z >= Iio > 0, W E K C C(J'~) compact}. 

So we are allowed to compute the limit termwise and obtain an expression for 
SO in terms of Fourier coefficients. Explicitely the Fourier expansion of SO(J) is 
given by 

2~ri 
SO(J) = ~ ~ 3"(T, R) .  e ~ ( r z ) -  e 2ni~(RW), 

T= Tt~Q(n--l,n--1) REz(n-I,j) 

where the Fourier coefficients ~(T, R) are related to the Fourier coefficients c(T, R) 

of J b y  means of the formula "~(T, R) = c ( (T  00) ' ( R )).  

Forany M = ( ;  BD)ESp(n-- I ,R  ) 

2t~= 1 0 
0 D 

0 0 

with A, B, C, D E R  (n-l'n-l) we set 

~ / 
E Sp (n,R). 

1 

For a subgroup P Q / ' .  of finite index we define 

s~ := {ME r._, I E/3 

which is a subgroup of finite index in -Pn -1. 
Finally if 9 : Gl (n, e) ~ Gl (E) is a rational representation of Gl (n, C) on E, 

we denote by SO(Q) the rational representation of Gl (n -- 1, C) on E defined by 

1.10. Theorem. Let J E Jo,~(F) be a Jacobi Form. Then SO(J) is also a Jacobi 
Form in Jse(o),~(so(/)) , i.e. the Siegel operator defines a linear mapping 

so. 
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Proof. Straightforward computation analogous to the case of Siegel modular 
forms. 

Corollary: The Siegel operator defines a linear mapping 

Proof. ~"(r.) = I'._~ and ~(e) (N) = (det N) ~, /f e(~7) = (det ~)~. [ ]  

0 R 

for every T, R and �9 E 3g,~(/-). But in contrast to the theory of Siegel modular 
forms, we do not have ~.~ ) = kernel (~).  

2. Eisenstein Series 

Our investigations are analogous to the theory of Siegel modular forms, First 
we shall consider ordinary Eisenstein Series, later on we shall generalize our results 
to Eisenstein Series of Klingen's type. We restrict ourselves to the special case 
E = C and ~(N) :---- (det N) k with k C LT even and define the ordinary Eisenstein 
Series by 

E~"~(Z, W) := ~ (ll~.o~, ~) (Z, W), 

where 

Goo :=  (~' E G(zn'J) l l tk,~ ~ = 1} 

= ((M, [(2, #), ~]) C G(~ J) I M E Fn,o, 2 C ker (og/)} 

Fn, 0 :=  { M =  (C B) C Sp (n, Z, JC = 0} and ker (J///):----- {2 E R~ I with 
g $ 

J [ .  2 = 0). Let ~ be a complete system of representatives of the cosets 
/'.,o \ -P. and A be a complete system of representatives of the cosets g 0'~)/(ker (~')  
#x Zo,")), then we obtain a complete system of representatives of the cosets G~ \ G~z "a) 
by 

~:= {(M, ~) C a~ "'j) [ M = ~ ,  r = [(hA, ;t~), 

Therefore we have explicitely: 

E~,!~r(Z, W) = ~] det (CZ + D) -k " e -2~i~(r 
M~Yg 

�9 Z e2ni~ 

~A 

It is clear, that ~"),. formally transforms like a Jacobi Form in Jk.a(F.), so the ~/~,~t' 
problem is to show convergence and to check the cusp condition. 
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2.1. Theorem. For k 3> n + rank (~//) + 1 even the Eisenstein Series E(k~,~e 
converges normally on H~•  (j'~) and defines a nonvanishing Jacobi Form in 
J~,~,(l~,). The convergence is uniform on vertical strips of  the form 

W,(O) : =  {(Z, W)E H. • C(J'") ] Z = X + iY, 

Y >  6E, ,r(x ~) < 6% ~(ww') < ~-~). 

Proof. Let l :-=-- rank (J[). W e  choose a matrix ~] -= (U, V)E GI(L Z) like 

in 1.4., such that ~t///O__ ( 2  o) with o ~ E R  (t'O, det ~7 ~= 0. The 
g ~  

decompo- 
sition 

\ u  u]  

Z(J, ')~ U.  ZcJ,')-- ~ U.  Z (~,') @ V. Z (j-t,') 

shows ker (J//) {5 Z (j,') ----- V .  Z (j-t'n). so we may choose A ------ U" Z (l'"). Analo- 
gously we may split each WE C (j'') into two components according to the decom- 
position 

C(J,.) ~ (! .  C(J,.) ~ U- C (t') @ V.  C (j-t'"). 

That is W may be written in a unique manner as W = UW1 + VW2 with 
W1 E C (l'') and W2 C C (j -t,,). Doing so we obtain the identity 

E (") tZ  W) = L'(n)~(Z, WI).  k,.t[~. , ~ ' k , d r  ~ 

r~(n) ( Z ,  Especially L~.ar, W) does not depend on W2, i.e. is constant along ker (.At). So 
in order to prove convergence, we may assume without loss of generality ~gr 3> 0, 
resp. 1 = j. In this case the series E~")~z(Z, W) may be obtained as a subseries of the 
~r Fourier Jacobi coefficient of the Siegelian Eisenstein Series E~ "+~ of degree 
n + 1 (Compare B6cherer [1], formula 13). Using his kind of argument we may 
conclude that "(")- inherits convergence from E~ "+~), which is well known to con- 
verge for k 3> n + l + 1 even. The argument also yields the statement about the 
uniform convergence in vertical strips. 

Next we have to verify the cusp condition. By the K6cher principle there is 
nothing to prove for n ~ 2. In the remaining case n = 1 we have to show that 
certain Fourier coefficients do vanish. This may be done exactly like in Eichler/ 
Zagier [2], Chapter I, 2. by using the Poisson summation formula and deforming 
the path of integration to infinity. Finally "(')- LI~,~ does not vanish identically, since 

lim E (n)- (itE, O) = 1 [] k , d l  ~, t.+ oo 

Before we shall consider more general types of Eisenstein Series, we shallintroduce 
the notion of Petersson scalar product. Its investigation will be a good preparation 
for our treatment of Eisenstein Series of Klingen's type. 

For ZE  H,, WC C (j'~) let Z = X +  iY  and W = oc+ ifl be the decomposi- 
tions into real and imaginary parts. We define a volume element dV on H, • C(J,") 
by 

dV : =  (det y)-( ,+j+1),  dX A dY  A do~ A dfl, 
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where dX :-- ^ dx, ~ (# <= v), etc. A glance at dV shows its G~'J)-invariance. The 
form (det y)-(,+l) '. dX ^ dY is the usual Sp (n, R)-invariantvolume form on Hn, 
while (det Y)-J. do; A dfl is the translation-invariant volume form on C (j'") nor- 
malized to vol (C(J~')/(Z U'). Z + Z(J"))) = 1. 

Let ~b, g/E Je,m,(/') be Jacobi Forms with respect to some rational representa- 
tion ~ : GI (n, C) -+ Gl (E). Without loss of generality we may assume Q to be 
irreducible and polynomial (compare corollary of 1.8.). Then we choose a her- 
mitean metric on E invariant under the restriction of ~ to the unitary group 
U(n) ( al (n, C), i.e. 

(o(U) �9 v, 0(U)- w) ----- (v, w) for every UE U(n). 

For irreducible ~ such an inner product is unique up to multiplication with a 
scalar factor. For any real symmetric positive definite matrix Y let Y�89 denote some 
positive symmetric squareroot of Y. Then the expression 

e -4na('lf'flY-*flt)" <Q(Y �89 q)(Z, W), e(Y ~) ~(Z, W)> 

is /'I• H~'J)-invariant, which may be checked by straightforward computation. 
Therefore we define the Petersson scalar product of q~ and ~ in the following way: 

2.2. Definition (Petersson scalar product) 

(~), ~-!)i, := f e -4z~a('~'BY-'#t)" (#(Y~) #(Z, W), 9(Y~) W(Z, W)) dV. 
rf • n~ d) ~n n • cCJ,,) 

A Jacobi Form # is called squareintegrable if [[#ff2 :=  (r # ) r  < oo. 
I f / ' o  ( / ' 1  is a subgroup of finite index we have (#, kP)ro ---- [/'1 :/lo]" (#, kv) r,- 

For (M, r E G(~ J) let (Z*, W*) :=  (M~ r (Z, 141). Tllen the U(n)-invariance 
of the inner product on E yields 

e -4zta('#'B*r*-~B*t)" (e(Y *~) #(Z*, W*), e(Y *~) #(Z*, W*)> 

e-4Z~(~g'flY-~at) " (e( Y�89 (~[e,~ M) (Z, = W), e(Y ) (~ble,d e M) (Z, W)). 

So if F ( Sp (n, Z) is a normal subgroup, i.e. 1,~.~'~" nz~' j) ( G~ J) is also normal, 
then G(~ 'J) acts on / ' •  H(z nJ) \ Hn • C tj'n) and we obtain: 

(r #)v ----" (#]e,~'e M, #le,~g M)r for every ME Sp (n, Z). 

In general we can find some normal subgroup 1"o ( 1" ( Sp (n, Z) of finite index, 
which is also a normal subgroup of finite index in M -~ I'M. Then 

1 

- [ / ' : / ' o 1  

1 
= [M,_~ l'M:/'o](q~] M' ~ ] M)ro ---- (O]M,#]M)M_,rM. 

So # is squareintegrable if and only if ~[q,.g M is squareintegrable for every ME 
Sp (n, Z). Obviously the Petersson scalar product is positive definite on the space 
of squareintegrable Jacobi Forms. Furthermore we have the following lemma: 
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2.3. Lemma. The Peterson scalar product (~, W)r is well defined and finite for 
~, ~ E Jo,,a(P) and at least one of  ~ and ~ a cusp form. 

Corollary. Cusp forms are squareintegrable. 

Proof. The condition cusp form for ~l,o,,g M (ME Pn) enables us to estimate the 
integral over suitable open neighbourhoods of the corresponding rational boundary 
components. 

In the proof of 2.1. we made use of the decomposition 

C(J'n)= ~_ U. C q'n) O V. C (j-t'n). 

Writing W = UW~ + VW2 had the effect that we could replace vg by ~ :=  
UtvgU which is invertible. Before proceeding further we formalize this kind of 
argument, so that in future we may assume without loss of generality ~ > O. 

Let ~b E J~,~,(F) be a Jacobi Form and let 

~(Z, W) ---- ~.~ c(T, R) " e 2nio(Tz+RW) 
T,R 

be the Fourierexpansion of eb. We know: c(T, R) ~ 0 only if RV = 0, so 

a(TZ + RW) = a(TZ + RW~) holds whenever c(T, R) =4= O. This shows that 
q~(Z, UW~ + VW2) does not depend on WE, i.e. ~ may be considered as a func- 
tion of Z and W~ only. We define q3 E r • C q"), E) by 

~(z, w0  := ~(z, uvr 

One easily checks the formulae 

(q~]o,~ M) (Z, W~) = (~/i]o,~ M) (Z, UW~) for every M E Sp (n, R), 

(q'~[d7 r (Z, W~) = (q~]~ Ur (Z, UWO for every r E H~ ~'') 

with U~ :=  [(U2, U#), UnU t] for r = [(2,/z), n]E H~ '0. Especially we observe. 

E Jo,~7(I r for q~ E Je,~,~(/'). In fact we have the following theorem: 

2.4. Theorem. The mapping 

~ u  : J j W ) - +  j j ( r ) ,  

defines an isomorphism JQ,~(F) ~ ~,~g(F) mapping cusp forms one to one onto 
cusp forms. ~ v  is compatible with Siegel operator and Petersson scalar product, 

i.e. Y ( ~ ) =  ~ ( ~ )  and (~, kg)r (~, ~)r .  Furthermore r-in) = E(n)- = a t ~ k , , g  k , d [  �9 

The proof of Theorem 2.4. is straightforward. 
We shall now define Eisenstein Series of Klingen's type. Again we restrict our- 

selves to the special ease E = C and o(N) := (det N) k with k E 1~ even. Let 
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det J / ~  0 and ~b E J~,~(I',,) be a cusp form. For n > m we define a function 
FE d~(H. • C (i')) by 

Our idea is to consider the series 

with 

and 

E (nL (Z, k,dt. W, ~)  :=  ~] (r/k,~ ?) (Z, W) 

G"~ :----- {(M, [(2,/~), u]) E G(z "'j) l M E In,m, )- : (2t, 0): 21 E Z (i'm)} 

l',,m : :  I M  E Sp (n, Z) l M = I1 
1 0 BI 

A3 A4 B3 

0 Dx 
0 0 L B4 , A~, Ba, C1, D1 E z ( m ' m )  �9 

D2 

D4 

We observe that FIk,.~ # • does not depend on the choice of  the representative, so 
Ek(;)te (-)r ~ ,  ~b) is formally well defined. If dr is not invertible we define: 

: =  

It is clear that Ek(;~(-X -, ~ ,  ~b) formally transforms like a Jacobi Form in Jk,ja(l~,,). 
For m ---- 0, ~5 - -  1 we have E(;)a(-x-, -x-, l) = Ek(,"~, i.e. the ordinary Eisenstein 
Series occur as special cases of  Eisenstein Series of Klingen's type. Again the main 
problem is to show convergence. The condition on the Fourier expansion of 
E~(;~(-)e, -x-, ~b) is automatically satisfied for n => 2 by the K6cher-principle and 
for n = l, i.e. m = 0 we can apply the results of 2.1. We shall prove: 

2.5. Theorem. Let ~ E rcusp[/-T ~ be a cusp form and let k E ~, even. For k > a k,,AcK't m ]  

n -}- m + rank (dl)  -~ 1 the Eisensteinseries E~",~(~, ~ ,  q)) converges normally 
on H. • C 0"), consequently E~"~(-~, er ~) E Jk,~tt(l".). 

In order to prove Theorem 2.5. we need some preparations: 

2.6. Lemma. Let q~ E Jk,~(l"m) be a cusp form. Then there exists some constant 
C > 0 such that 

k 

W) l c-(det 

for every Z : X q- lYE Hm and W = or -+- ifl E C (i'm). 

Proof of 2.6. Without loss of generality we may assume det .~# :~ 0. Defining 

k 

h(Z, W) :--= (det Y)-Z- e -2n~('lt'#Y-~#t). I~(Z, W)[ 
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we have to show that h(Z, W) is bounded on Hm • C(J'm). Since h(Z, W) is 
G~zm'J)-invariant (compare 2.2.), it suffices to show that h(Z, W) is bounded on some 
suitable fundamental domain D of G~ "J) \ Hm • 13 u'''). We choose 

D :=  {(Z, 2Z -}- #) ] Z E ~,,,, 2,/z E g u'"~ 0 ~ 12,.j 1, !/z~j 1 ~ 1}, 

where ~-,, denotes Siegel's fundamental domain for Hm/F m. 
Now D f~ {(Z, W) E Hm • C (j'') ] det Y ~ K, K > 0} is compact. Therefore 

our conclusion follows from 

lim h(Z, W) = 0 (Z, W)E D 
det y-~ oo 

which is valid since gi is assumed to be a cusp form. [ ]  

2.7. Corollary. For Z = ( Z1 : ) E  H.,Z1E Hm, W = (WI, O~)E CU'"), W1E 
C u'm) let 

k 

Hm(Z, W) :=  (det Yj)-2-" e 2"~ 

Then IF(Z, W)t <= C. iHm(Z, W)I holds with C like in 2.6. We also observe: 

l(FIk..r y)(Z, W)I ~ C" l(H, nIk..et 7)(Z, W)I for every y E G(~ J). 

For 7 E G~ and k E N even we easily check the formula ](Hr. ]k,oez 7) (Z, IV) ] = 
tHIn(Z, W) I" Therefore the series 

E I(H.,L# v) (z, w) I 

is well defined and majorizes the Eisenstein Series E ~") tZ k,.ll~ , W, ~). 

Proof of Theorem 2.5. Obviously it suffices to show that each point (Zo, Wo) E 
H, • C u,n) admits an open neighbourhood U = U(Zo, l~o) such that the series 

Z , f [(Flk,~,, ~') (Z, W) l dX MY d~ dfl 

converges for k > n q- m + j + 1. (Note ~ '  > 0). We shall actually show more 
Let T denote a complete system of representatives of the cosets G m \ G~ d), then 
the series 

R := • f l(Hmlk,~r r) (Z, W)]dXdYdo~ dfl 
~,~Y U 

converges for k and U = U(Zo, Wo) like above. 

For U C H. • C (j'') let 

stab (U) : = f f  E Gz ~J) 17" (Z, W) = (Z, W) for every (Z, W) E U}. 
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It is easy to see that each point (Zo, Wo) E H. x C (j'') admits an open neighbourhood 
U = U(Zo, Wo) Q H, x C u'') such that 

a) U Q  H, x C u'") is compact, 
b) y E G~ J), y(U) A U 4:0  ~ y E stab ((Zo, Wo)), 
c) 7 C stab ((Zo, Wo)) ~ U = y(U). 

By c) the finite group S : =  stab ((Zo, Wo))/stab (H, • C u,"') acts on U. So we 
have a decomposition 

U =  U~ U . . .  KJ ~ ,  v - - @ S ,  

such that each Uj ( j  = 1 , . . . ,  ~) is a fundamental domain for UtS, i.e. each Uj 
is a fundamental set and 7(Uj)/5 Uj is a set of measure zero unless 7 E stab (// ,  • 
Cu,")). We shall show the convergence of R for any U = U(Zo, Wo) satisfying 
the conditions a)--c) above. Instead of  R we consider the series 

:= Z f I (n,. !~,.~ 7) (z, w~l �9 IH.(z, w)l- '  dv  
7a)" U 

where dV :=: (det y)-(.+J+ 1) . dX A dY  A da A d~ denotes the G~d)-invariant vo- 

lume form on H,, • C (j"). Since U is compact in H . •  C u") there exist constants 
C~, C2, Ca, C.  C ]g, such that 

and 

0 <  c,  < tH.(Z, w)l-1 < G < ~  

i 
0 < C3 < (det Y)-("+J+') < C4 < 

for every (Z, W) E U. So 1~ is convergent if and only if R is convergent. Now the 
substitution (Z, W)-~  ) ,-1 �9 (Z, W) yields 

= E f I(H,.I~,~, Y~ (z, w) l. trio(z, v~ I-' dV 
y~Y U 

= E f [n,,(z, w)l .  In,,(z, w)1-1 dr.  

Using U =  Ux LJ ... V U,, f = @S with b } ( j =  1, . . . ,~) likeabove, weobtain:  

Z E f tI-Zm(z, w)l fH~ -1dr 
j = i  ) '~r y(Uj) 

= 2 f iHm( Z' W) I ']H,(Z'  W) 1-1 dV 
J=l Oj 

where /~] : =  kJ 7(UJ) �9 The second identity makes use of the following obser- 
7c~" 

vation: If  vol (71(Ui)/5 72(~))) @ 0 with 71, 72 E T ,  then also vol (7~ -I 71(Uj) 
4: 0, which implies y~ -1 71 E stab (H. • CU'")). Since stab (Hn • C ~ (G~o we 

obtain y~ = 72. A similar argument shows vol (7(Uj) F~ ~ )  ---- 0 for 7 CG~, 
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7 ~ stab (H, • C(J'")). So ~ is contained in some fundamental domain of G~. 
Furthermore there exists some constant C E R such that det (Im Z ) <  C for 

every (Z, IV)E ~ ,  j----- 1 . . . . .  v. Observing that the expression I Hm(Z, 1401" 
]Hn(Z, W) 1-1 dV is Gm-invariant for even k, we obtain 

k <= (#s). f IOta(Z, W) [. IOn(Z, W)1-1 dV 
V 

detY<C 

k k 
= (@S)" f (det I"1) - ~ .  (det Y)2-. e-Z"~Cee'(av-lat-alVi-la~)) dV 

V 
detY<C 

for every fundamental set V of G~o \ H, • (3 q'n). We choose 

v := ((z, w)l z ~  ~.,m[u], w1 = ~lz~ + ~1, 0 __< IzY[, I~Vl, [~1--< l) 

where ~,,m[U] denotes the fundamental set for H,/F,,m described in FREITAG 
[3], I, 5., (Anhang). Then the above integral becomes 

k k ~.ft.],, (det Y0 z . (det y)z .--j--I 

detY<C 

"{ "n f "n d~ f e-2ncr(J"'(fly-13t-BIYl-13i)) dfll d~2} dX dY. 
R(J, )/Z( J, ) ~,(J,m)/z(J,m)'Yt • (-/,n-m) 

We compute the integral within the brackets: Let 

(: Then the substitution (ill, f12) :=  (/~, fiE)" = ( ~ ,  --fllB + ~2) yields 

1~(i, )/z(J, ) . Y ~ •  ) 

- -  f e-2~ttr(J/ 'fl2Y2-1/~' d i l l  aft2 

-~(J'm)/z(Lm)" Yt • R ( j ' n -  m) 

J J.L Y 
= const.  (det Y1) j .  (det Y2) ~- = const.  (det Y1) 2 �9 (det Y)T. 

So 

�9 ~ ~ /~ =< const ~.nfl, I (det Y1) (k2j) (det Y ) ~  [(det y)-(n+l), dXdY] 

detY<C 

and the latter integral is convergent for k -- j > n -}- m + 1 (compare FREITAG 
[3], Chapter I, 5.10), i.e. k >  n + m + j +  1. [ ]  
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2.8. Theorem. For k > n + m + rank (dr') + 1 even we have 
jcusp[/~ k,J[I. ~t rn.I < "~f(n-m) ( Jk,~(('~.)) , 

where 5" ('-m) : 4..~tt(F,) --> Jk.~Z(Fm) denotes the (n -- m)-times iterated Siegel 
operator. 

Proof. In the following we shall show 

which obviously implies Theorem 2.8. Since the Siegel operator commutes with 
the mapping J ' v  (compare 2.4.) we may ~ssume without loss of generality 
det ~ '  @ 0. 

Now 

where 

,.~f(n- m) ( E(kn,) (-')~ , -~ve , ~)) ) = ,.~f(n - m) ( ~,~ FIk,jl ~) ) 

= 5r + 5P(n--")(/2) 

/2(Z, 141):= ~ (Flk,~tt r ) ( Z ,  W). 
y~r 

Since 5p(n-m) (F) = ~b by definition of F, it remains to show 5 ~('-m) (/2) ~ O. 
Let 

/2(Z,  W)  ---- Z e•(T, R)  . e 2ni•(Tz+RW) 
T,R 

be the Fourierexpansion of/2. We shall show 

e•((O ~ ) , R ) = 0 f o r e v e r y  T E R  ( . . . .  ) half integer, 

which implies 5e('-m) (/2) (Z, W) ~ O, since the Siegel operator of a absolutely 
convergent Fourier series may be computed termwise. Now 

c~(T, R) = f /2(Z, W) " e -2~i~ R W) dZ dW 
P 

Im(Z,W)~(Yo,flo) 

where P denotes some fundamental parallelotope of the lattice t(Fn) • Z j'n with 

(7 ~ :) t(I',) :=  {S 6 Z ("'") IS = St}. Especially if T---- and Z = 

with Z~ E Hm we obtain: 

 o((o f ff2(Z, W ) "  e -2:ua(TzO �9 e -2nia(RW) d Z  d W  
P 

Im(Z, W) = (Yo,flo) 

Z f (FIk,~t, ~1 (Z, W)" e -2~i~ e -2~i~ d Z d W  
~ Y  P 

r~Gmco Im(Z,W) = (Yo.flo) 
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since ~ = ~] Fi~,~ y converges uniformly on the area of integration. The 

~G m 

above integrals are independent of (Yo,/3o), so we may deform the area of integra- 
tion to infinity. Now our assertion follows from the formula 

(Hm Ik, z r)(X + i(Eo 0 for ~ G~. 

The latter may be shown by an argument analogous to the Siegelian case (compare 
FREITAG [3], page 72). We leave the details to the reader. Hint: The matrix norm 
of (CZ + D) -1 (and consequently any exponential factor occuring) remains 
bounded as t -+ co. [ ]  

3. Theta Series 

Let S E Z ~j'j) be symmetric, positive definite and let a, b E Q(J"). We consider 
the theta series 

Os,a,b(Z , W )  1= Z e~ia(S'((2+a)Z(2+a)t+2(Z+a)(W+b)t)) 
~.~zU,n) 

with characteristic (a, b) converging normally on H, • C <j'"). 
For Zo 6 H, and v/g E R <j'j) symmetric, positive definite and half integer let 

T~(Zo) denote the vectorspace of all holomorphic functions g : C ~j") -+ C satis- 
fying 

g(W + ,:tZo -}- #) : e -2~i~(~'Oz~ + 2awt)) " g ( W )  

for every 2,/z E Z ~j"). Writing this functional equation in terms of Fourier coeffi- 
cients yields: 

3.1. Lemma. Let JV" be a complete system of  representatives of  the cosets 
(2,//) -~ Z~J'")/Z U'~). Then the functions 

o,o(Zo, I a x )  

form a basis of T~a(Zo). Especiolly D :=  dimc TwfiZo) ----- (det (2all)}". 

As an easy application of the poisson summation formula we obtain: 

3.2. Lemma. For a E A/" we have 

02~,~,o(--Z -~, WZ -1) = {det (2.//)} -~- �9 det �9 e 2'~i~('~'Wz'~w'~ 

W); 
bEcr ~ 
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furthermore 02.g,,,,o(Z + S, W) : e 2nia(Jlt'aSat) " 02d/,a,o(Z , W )  ho lds  for every 
S E Z (n'n) symmetric. 

Using 3.1. and 3.2. we obtain a result of Shimura establishing an isomorphism 
between Jo,.~(P,) and a certain space of vector valued Siegel modular forms of half 
integral weight. By Theorem 2.4. we have JQ,~(/',) ~ JQjt(I",), so we may assume 
without loss of generality det ~ =4= 0. 

Forfixed ZoE H~ and ~OE J~,zt(I'~) each component of the mapping g(W):---- 
qS(Zo, W) is contained in T~(Zo). So we may write 

r w) = E w) (*) 
a~Jff 

with uniquely determined holomorphic mappings fa : H~ --> E. The holomorphi- 
city of the f~'s is an immediate consequence of the linear independence of the 
02.,e,~,0(Z, *)'s (aEJV). Now ~EJe,~(/ 'n) is a Jacobi Form, so r 
holds for every M E/~,. This together with Lemma 3.2. implies 

f a ( - - Z - 1 ) = { d e t ( Z ) }  - j - ' (~(-Z)} ' (det(2d/ / )}  ~" be~ ~ e2~i~(2~e'abt) " fb(Z)' 

f a ( Z - ~  S ) =  e -2:~ia(d['aSat) " f a ( Z )  for every SE Z ("'') symmetric. 

Furthermore the Fourier coefficients c(T, R) of 02d[,a,o(Z , W) are given by 

c(T, R) 

/l, 
= [0, 

(1) 

(2) 

if 3 2 E Z (j'") such that R t ----- 2,,//(2 q- a) and T = (2 q- a) t .//1(2 q- a) 

otherwise. 

c(T, R) ~= 0 only if 4 T -  R~1-1 R t = 0. Now the cusp condition Especially 
for the Jacobi Form q~ implies that the functions (f~ I a E W} necessarily must have 
Fourier expansions of the form 

f a ( Z )  : ~ c ( Z )  . e 2ni~(Tz) . 

T= Tt ~O 
hallinteger 

Conversely suppose given a family {fa]a E Jff } of holomorphic mappings 
fa : H, -+ E satisfying the functional equations (I), (2) and the cusp condition (3). 
Then we obtain a Jacobi Form in J0,~,(_P~) by defining q~(Z, W) via equation (*). 
We have shown: 

3.3. Theorem (Shimura). Equation (*) gives an isomorphism between J0,~tz(/',) 
and the space of  vector valued Siegel modular forms of  half integral weight satis- 
fying the transformation laws (1), (2) and the cusp condition (3). 

Remark. Of course Theorem 3.3. may also be formulated for Jacobi Forms on 
subgroups /" ( / ~  of finite index. If rank (J/)  is even, then Theorem 3.3. gives 
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an isomorphism of JQ,~(F) onto a certain space of vector valued Siegel modular 
forms of integral weight. For more details we refer to SrIIMtJRA [8]--he especially 
gives a precise definition of vector valued Siegel modular forms of half integral 
weight. 

1 
Corollary 1. For k < -~-rank (J/g) we have dimc Jk .a(F)  = O. 

Corollary 2. For (Z//) unimodular and k " n even we have 

We now show that the isomorphism described in Theorem 3.3. is in some sense com- 
patible with the Petersson scalar product defined in 2.2. More precisely: 

3.4. Lemma. Let ~ ,  ~ E Jo,~r be two Jacobi Forms such that 

q~(Z, W) = ~ f~(Z)'O2.~/,,,,o(Z, W) and 7J(Z, W) ~-- ~ gb(Z) " 0 2 , ~ , b , o ( Z  , W). 
a~,A ~ bE,W" 

Then 
n 1 1 j 

(qi, ~ ) r .  ---- {det (4all)} -~-- f Z (o(Y~-)fa(Z)' o(Y-f)g~(Z)) " (det Y)-Tdco ,  

where do :=  [(det y)-(n+l) dXdY].  

Remark. The right hand side is just the expression for the Petersson scalar pro- 
duct (f, g)G of the vector valued Siegel modular forms of half integral weight 

f : =  (f~ ] a E vf'} and g :=  {gb I b E d} .  

Proof o f  3.4. Our assertion follows immediately from the formula 

f e -4~r~ 02,Al,a,o(Z , W ) "  02~g,b,o(Z , W )  do~ dfl 
R(J,n)lg(J, n) • l~(J,n)lg(J,n) �9 y 

n j 
= Oa,b" (det (4~')} -T"  {det Y}Z- 

where 6a,b denotes the Kronecker delta of a and b. [ ]  

Our next aim is to construct Jacobi Forms in Jk, lfl(F.) by means oftheta series. 
We have already seen the example 02~,0,0(Z, W), which is a Jacobi Form in J_,. (/'.) 
for 2./g unimodular. For our purpose the following lemma is useful: 2 

3.5. Lemma. Let q5 E Jo,~//l( F) (2Jk' I E Z ~ be a Jacobi Form and let c E g (jl'j:). 
Then the mapping 

qic: H. • C0~,n) _+ E, 

(z, w)~ ~(z, ew) 

defines a Jacobi Form in ~,~t~(/~) with ~#2 :=  etd{lC. 
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The proof  of Lemma 3.5. is straightforward. 

Corollary. For U E GI(j, Z) we have Jo,.e(1-)~--- Jo, utd[u(l~. 

3.6. Definition. Let SE Z (2k'2k) be symmetric, positive definite, unimodular, even 
and let c E Z (2gd) We define the theta series ~a(n) by �9 uS, r 

z~(n)t'Zs,c~. , 14") :-~- Z e~i(a(s;~z~t)+E~(cts'~'wt)} for ZE  Hn and WE C (j'") . 
,!~z(2k,n) 

1 t 
We observe -s,r E Jk,dZ(F,) with J/~ : = ~ - c  Sc since ~!~(Z, W) = Os, o,o(Z, cW). 

The Fourier coefficients c(T, R) of z?!~)~ are given by 

c(T, R) : =  :#:{,~. E Z (2k'") [ 2tS2 = 2T, 2'Sc = R} 

T ~ R  
= z~  2 E  z(2k '")  (4, C) t 8(4 ,  C) ~- 

1 t 
T R 

Especially we have 6 e("-m~ (0~)~) = oa(,,) which may also be checked directly. US,c 

3.7. Definition. A Jacobi Form q~E Je .a(F)  is called singular, if it admits a Fou- 
rier expansion such that the Fourier coefficients c(T, R) are zero, unless det (4T -- 

R - ~  -1 k ' )  = 0. 

We say �9 is singular of degree d, if 

max {rank (4T --/~j/~_l/~,) I c(T, R) @- 0} ---- n -- d (0 < d ~ n). 

Examples of singular Jacobi Forms are given by theta series: Let 2k < n + rank (J / ) ,  
then ~(~)~ E Jk,dl(-Pn] is singular, since suppose given T, R with c(T, R) ~ O, there 
exists some 2 E Z (2k'") with 1) 

1 T T R  
T (2, c)' s (L c) = 

R t j / /  

So rank 
r - - R  r T R  

= rank 
1 ~t -~- R Rt d[ 

2k < n + rank (~ ' )  = 

n + rank (JtT), which implies det (4T -- RJ/1-1 Rt) = O. 
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f 
In the case 2Jg unimodular and kn even we have d/ , ,xl(F,)_~//~,  k -- 2 1  

i .  . l  

(Corollary 2 of Theorem 3.3). Using this isomorphism we obtain the following two 
lemmata, which carry over in a more or less trivial manner from the theory of 
Siegel modular forms: Lemma 3.8. is a first hint to our result 3.12., while Lemma 3.9. 
gives us an idea about generalisations of Siegel's Hauptsatz. 

3.8. Lemma. Let OE Jk,~,t(F,) be a non-vanishing singular Jacobi Form and sup- 
pose 2~[ unimodular, kn even. Then: 

1. 2k < n + rank (Jg), k ~ 0 (mod 4), 
2. �9 may be written as linear combination of theta series ~(~. 

Proof. Lemma 3.8. is essentially a restatement of the well known result concerning 
I- - - - I  

singular Siegel modular forms in /Fn, k - J / .  [ ]  
L z /  

3.9. Lemma. Let (2~') be unimodular and let k ~ 0 (mod 4). Then the ordinary 
Jacobi Eisenstein series E(k",~ may be written as linear combination of theta series 

Proof. ~<~ " -  e~<n~ + (z ) .  ~,~tz,  w ) =  +~3+,:(z, w ) .  _ _  [ ]  
2 

Now the question arises whether we have general theorems like 3.8. and 3.9. 
valid for arbitrary index ~/.  The answer seems to be affirmative in both cases: 
Singular Jacobi Forms shall be investigated in the remainder of this chapter, while 
a more general result of type 3.9. is presented in Chapter 4. 

First we note that using the standard argument 2.4. we may restrict our investiga- 
tion of singular Jacobi forms without loss of generality to the case of an invertible 
index J / >  0. The main problem is to handle the complicated linear relations 
between the v ~(n)'s which seems to be rather difficult in general. The result we shall S , c  , 

prove is valid for a more special type of singular Jacobi Forms: 

3.10. Definition. A Jacobi Form �9 E Jk,.a(Fn) is called strongly singular, if: 

1. det ,,g =# 0, 
2. 2k < n, 
3. 0 is singular of degree n, i.e. 

c(T, R) ~ 0 only if 4 T -  R J//-1 R t -= 0. 

Examples are given by means of theta series vq(~ c with non singular C E Z (2k'2k), 
1 

(2k < n). We have J / / =  -~- CtSC, so rank (~g) = 2k and 

c(T, R) = #{Z ~ Z ~2k,"~ I Z'S~ = 2T, ~'SC = R} 

_ J 1, if R C Z("'zk~ " C and 4T -- Rg/-1 R t ----- 0, 

-- [0  otherwise. 
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1 
Observe that the matrix ~ RJg -x R t is symmetric, positive and even for R E o)(o)) 
Z ~"'2k) �9 C. Of particular interest are the Fourier coefficients c ' Rs 

with R s ~ AR : A~(S, J[)  :=  (R s ~ Z ~2~'2k) ] Rs~/[ -~ Rts : 2S). 
Note that A~ @ 0 since SC ~ A~. We have 

( ~ . ( 0  0 0 S ) ( 0 ) ) = 1 1 0  i f ~ U ~ A u t ( S ) w i t h U S C : R s  
e ' Rs otherwise, 

where Aut (S) :=  {U6 Gl(2k, Z) ] USUt= S} denotes the group of automor- 
phisms of S. It is clear that Aut (S) acts on AR by multiplication from the left. The 
set 

is precisely the coset Aut (S). SC C Aut (S) \ A R. 
This important observation gives us complete information about linear relations 

between the o~(") 's in the strongly singular case: We set v S ,  C 

Ac = Ac(S, ~ )  : = CE Z (2~'2k) y U S C  = d l  

and consider the mapping k~: Ac-->" Aut (S) \  AR defined by W(C) :=  Aut (S) 
�9 SC. It is easy to verify that kV(C~) = k~(C2) holds if and only if C~ = U - t  C2 

for some UCAut(S) .  In other words ~ induces an injective mapping k~: 
Aut (S -~) \ A c ~ Aut (S) \ A R. So given some complete system of representatives 
(C~)i: 1,...,? of the cosets Aut (S-1)\Ac, the corresponding theta series 0~)c~,..., Oc~)c~ 
are linearly independent. On the other side the substitution 2--~ U~2 for U E 
GI (2k, Z) yields 

w) = Ovsutu-tc(Z,  W) for every UC Gl(2k, Z). 

Furthermore tde theta series 

$ 1  ~, 1 ,  �9 � 9  

are linearly independent for 2k ~ n, if only S~, . . . ,  St are pairwise inequivalent. 
Combining these results we obtain: 

3.11. Lemma. For 2k < n and k :--- 0 (mod 4) let $1, . . . ,  Sh be a complete 
system of  representatives of  the unimodular classes of  symmetric, positive definite, 
unimodular, even matrices S C Z~2k'2k); furthermore let r~)  r~)  (o~ = 1, . . . ,  h) 

be a complete system of representatives of  the cosets Aut (S~ -I) \ Ac(S~, ~gr Then 
the theta series 
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_o(~) 
a r e  linearly independent. Furthermore each strongly singular theta series v'~,r E 
Jk,,a(Fn) coincides with precisely one of  the above listed ones. 

Remark. The above description of the linear relations between the O~)c'S depends 
essentially on the strongly singular case--in general there exist much more linear 
relations. 

Lemma 3.11. provides a good deal of information necessary to prove: 

3.12. Theorem. Let �9 E Jk,.g(F,) be a non-vanishung strongly singular Jacobi 
Form. Then: 

1. 2k = rank (~r k :-- 0 (mod 4), 
2. q) may be written as linear combination o f  theta series zg~)c. 

Before proving Theorem 3.12. we state two easy auxiliary lemmata without proof: 

3.13. Lemma. Let 
Fourier coefficients. Then 

c(UTU t, UR) = c(T, R) , for  every UE GI (n, g), 

( 1  1 , ,  ) 
c T + -~- R2 -k -~- 2 R + 2trig2, R + 2~.tJ$ ' = c(T, R) for every 2 E g (j'") . 

E J~,~(Pn) be a Jacobi Form and let c(T, R) denote its 

(1) 

(2) 

3.14. Lemma. (Fourier Jacobi expansion of Jacobi Forms). Let qiE J~,~a(Fn) 

be a Jacob i Form and let o <  n. We suppose Z = ,.TIL_ l O "~ with Z2E H o and ~o Z2 l 
W = (W1, I412) with Wz E C (j''~ The coefficients Tr,,R ~ of  the partial Fourier 
expansion 

/ / ~  \ \ / / ~ ' J "  0 / , (W1,  W2)/ = Z ~-tT~R2(ZI, W1) "e2niG(T2Z2)'e2~ia(R2W2) 
q~ \ \ u / / Z 2  T,,R2 ' 

define Jacobi Forms in Jk,~( Fn_Q) for  every 7"2, Ra. 

Proof o f  3.12. Let c(T, R) be a non-vanishing Fourier coefficient of 4.  Then 
4T  -- Rdg -1 R t = 0 implies rank (T) < n since rank (Jg) ~ 2k < n by Corol- 
lary 1 of 3.3. Let 

: =  max {rank (T) I 3 R such that c(T, R) =4= 0}. 

By Lemma 3.13. we have c(UTU t, UR) = c(T, R) for every UE Gl(n, Z), so 
there exists some S E Z (~176 with det S =V 0 and some R s E Z (~ such that 

~ 
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The formula 2S -- R s J t  -1 R~ = 0 implies q ~ j = rank (Jg). We now choose 
and fix some pair S, Rs  like above with det S minimal. Analogously to the theory 
of singular Siegel modular forms our main idea is to consider the Fourier Jacobi 
expansion of q5 (compare 3.14.) for Z2 E He, W2 C C ~ with 0 like above: 

22 T2,R2 
Especially we shall compute the coefficient ~F�89 s E Jk.jz(I ' ,_o).  We have 

c(( T1,T12,Rt T12 
Like in the Siegelian case we obtain 

Tf2~.~.S],(~- SRI)) �9 e2.~ia(T~Z~), e 2 n / ~ ( g ~  w ~ )  . 

(~s) ) " T~,T~2,Rt~ e2ni'~(T*ZO" e2~i'r(R~wO' 

where the summation is taken over all T~, T~2, Rt for which there exists some 
U E Gl (n. Z) such that 

and 

~ 

Rs Rs  " 

The set of all such T~, T~2, R~ can be described explicitely: We necessarily must 
have 

T~ T s \ Rs ] 

for some 2 E Z~e.~-o) Therefore 

~ S ,  Rs(ZI,  W1) = c �9 1 ' R " ~-~ "~" ~eZ(o,n-o) 
Now W�89 RsEJu,~(Fn_ o) implies T~S,Rs(Z~,O)E[Fn_o,k] ,  so d e t S = l ,  
rank (S) ----- 2k and k -~ 0 (rood 4) follow immediately. Furthermore defining 
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C :=  S -~ �9 R s 6 Z(0J) we observe 

7Z~S,Rs(Z,, W1) = const. ~("-~ W1) S,C k I, 

1 
Consequently T CtSC = ~ '  and ~ = rank (S) = rank (~') = j. This proves 

the first part of our theorem. 
For the second part let S~, Sh, C~ ~, c(~) (~ = 1, . . . .h) be like in 

Lemma 3.11. Furthermore let ch(T , R) denote the Fouriercoefficients of s~,d~ . 
We consider the function 

with 

h ~h 

 o(Z, w) := w) - E E w) 
,x=l f l= l  ' P 

which is also strongly singular. By definition each Fourier coefficient co(T, R) 

1(0  0S) ' z(2k ,2k)  ' ( (S) of ~0 vanishes for T =  -~- 0 S 6 det S = 1 and R = R with 2S = 

RsM1-1 Rts. So recalling the beginning of our proof q~o~0 follows. [ ]  

4. Appfications 

1. A non-surjectiveness theorem 

Let FE [F,+I, k] be a Siegel modular form of degree n + 1 and weight k. 
We consider the mapping 

defined by sending F to its first Fourier Jacobi coefficient ~ obtained from the 
expansion 

F ---~ ~ m ( Z l ,  | ~ ) "  e 2nimz" . 
22 m =0  

If n = 1, there exists a certain subspace [F:, k]* ~ IF2, k], namely the MaaB 
Spezialschar, which maps isomorphically onto Jk, l(Fx) (compare Eichler/Zagier 
[2], 6). In the following we shall show that in general the mapping 0c : [F,+I, k] -+ 
Jk, l(F~) is not surjective, so there exists no generalisation of the MaaB Spezialschar 
to arbitrary degrees in the above sense. 

We start with the investigation of the Fourier Jacobi expansion of theta series 
defining Siegel modular forms. For S C Zt2k,Zk) symmetric, positive definite, uni- 
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modular, even and Z E/-/.+j the theta series 

~ez( 2k,n + J) 

defines a Siegel modular form in [/ ' ,+j, k]. It is easy to verify that the partial Fou- 
rier expansion with respect to the variable Z2 E ~ obtained from the decompo- 

sition Z =  -~_(~V z2W')-_ is of  the form O~s~+"(Z) = ~_0  ~' ~dc(Z, W ) ' e  2~'~z~) with 

J//-th Fourier Jacobi coefficient 

r . ( z ,  w) = Z S, ck ~ W ) .  
{c~Z(2k,J) 1�89 =..tl} 

Next we shall show that for fixed S there may exist cl, c2 E Z {2~'~), such that 
O~)~,, zg~)c 2 E Jka(/'n) are linearly independent. In order to verify that two such 
theta series are linearly independent, it suffices to show that one Fourier coeffi- 
cient e(T, R) takes different values for zg~)~, and z9~.)~2, since c(0, 0) = 1 for each 
zg{~). We recall that 

e(T, R) = @{2 E g(Zk,,) I 2tS2 = 2T, 2tSci = R} for i = 1, 2. 

We shall construct an example for ( 00) 
0 0 0 then 
: ~ ' .  : 

0 0.. 0 

k =  16. Let R = 0  and T . ~ -  T o : ~  

c(To, 0) = @{2 E Z O2'') 12tS2 = 2, 2tSc~ = 0} for i = 1, 2. 

So in order to construct our desired example, we have to find a suitable SE Z (32'32) 
and two vectors cl, c2 E Z (32a~ with e~Scl = ct2Sc2 = 2, such that e(To, 0) takes 
different values for i = 1, 2. For S E Z (a2'32) we choose the matrix obtained from 
the even unimodular lattice E : =  Es @ E24, where 

{2 ,m } Esm := ( x l ,  . . . ,  XSm) E R(Sm) ] X i E Z ,  x j  - -  x k ~ 0 ( m o d  2), ~ xi = 0  (mod 4) 
i=1 

for m E N (compare SERRE [9]). For L E {E, Es, E24}, t E N and y E L we de- 
fine: 

N(L, 20  : =  # { x  E L ] xtx = 2t}, 

N(L, 2t, y) := @{x E L ] xtx = 2t, xty = 0). 

Our problem is then equivalent to finding two vectors y~, Y2E E with Y~Yi = 
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yt~y 2 = 2, such that N(E, 2, y~) ~ N(E, 2, Y2). We claim that the vectors 

1 
: = - ~ - ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0  . . . . .  0 , 0 , 0 ) E E  

E8 ~4  

yl 1 
:=-~-(0 ,  0, 0, 0, 0, 0, 0, 0, 0, 0, . . . ,  0, 2, 2) E E 

E8 E24 

have the desired properties. Using the notation ~t (resp. Y2) for the canonical pro- 
jections o f y t  onto E8 and Yz onto Ez4 some easy combinatorial calculations yield: 

N(E, 2, y~) = N(E8, 2, .~1) + N(E24, 2) = 126 + 1104 = 1230,  

N(E, 2, Y2) = N(Es, 2) + N(Ez4, 2, .~z) = 240 + 926 = 1 166. 

We have shown: 

4.1. Lemma. There exists some S E Z(32'32) symmetric, positive definite, unimodu- 
lar, even and cx, c2 E Z 02'1) with c~Scl = c~Sc2 = 2, such that the theta series 
~(~)~, and ~sa(")c~ define linearly independent Jacobi Forms in J16,1(F,,). 

Combining Lemma 4.1. with the description of  the Fourier Jacobi expansion 

of the theta series O(s"+J)(f~) E [F,+j, k] for k = 16,j  = 1 we obtain: 

4.2. Theorem. For n >~ 32 the mapping o~ : [F,+I,  16] -+  J16,1(/nn) defined by 
Fourier Jacobi expansion is not surjective. 

Proof. We have n + 1 > 2k, so each FE [Pn+l, 16] is singular (compare 
FREITAG [3], III, 5. and Anhang IV). Therefore the theta series 

o t  . ~ : ~  �9 " " ,  t ' S h ( 3 2 ) t L ' l  

form a basis of [Fn+~, 16], whenever N : =  {$1 . . . . .  Sh(32)} is a complete system of 
representatives of the unimodular classes of symmetric, positive definite, uni- 
modular, even matrices SE Z (32'32). Especially dime[Fn+l, 16] = h(32) for 
n =~ 32. Furthermore 

dime oc([F,,+l, 16]) = :#:{SEN [ 3 cE Z (32'1) such that ctSe = 2}. 

On the other side Lemma 4.1. implies 

dime J16,1(Fn) ~ @{SEN 13 cE Z (32'1) such that etSc = 2} + 1, 

since ~!c(Z,  0) = v~s")(Z) and n ~ 2k. Comparison of  the dimension estimates 
shows that ~ is not surjective. 
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2. Siegel's Hauptsatz for Jacobi Forms of index m E Z. 

The result we shall proof is the following: 

4.3. Theorem. Let k =-- 0 (mod 4), k > n + 2. Then the Eisenstein series 
Ektn) [ 7  ,m~, IV) may be written as linear combination of  theta series 0 ~") IZ S, ck ~ W ) .  

The proof of 4.3. will contain explicite description of the above linear combina- 
tions and furthermore yields a stability theorem for Poincar6 Square Series, which 
we shall state now: Let k, m, n E lg \ ~0} and Z E Hn, then the Poincar6 Square 
Series Pff,~(Z) is defined as 

Pff,~m(Z) :=  Y, det (CZ + 1)) -k Z e2~imaM<z>~t" 
M~rn,O ~rn ~Z(l,n) 

For k > n + 2 tbis series is well known to converge normally on Hn and to 
define a non vanishing Siegel modular form of weight k. Our result may be for- 
mulated as follows: 

4.4. Theorem. Let k ~ 0 (mod 4), k > n + 2 and let S~, .. . ,  Sh denote a 
complete system of representatives of  the unimodular classes of  symmetric, positive 
definite, unimodular, even matrices S E Z(2k'2k) Then o(n) may be written as linear �9 at k,m 
combination of  the corresponding theta series ~9 (n) i.e. S v 

h 

k,mkX.,l = 
v=l 

The coefficients N, are given by 

A(S. S3 
m" : :  O(m)-I "A(Sx, St) -1 + . . .  + A(Sh, Sh) -~ 

where 

and 

( 2m) 
t i f t ) 'A  S ~ , 7  ' 

t21m 
t>0 

A(S (2k'2k), T (q)) := 44:(G E z(2k'q) ] GtSG = T) 

6(m) := ~a #(d)ak (-~-i). 
d2]m 
d>0 

Here tz(d) denotes the M6bius function and ak(n) denotes the n-th Fouriercoefficient 
of  the Eisenstein series E~ 1) E [1"1, k]. 

Proof of  4.3. and 4.4. We consider the Fourier Jacobi expansion of the ordinary 
Siegelian Eisenstein series of degree n + 1 and weight k: 

Ek(n+l)(Z) ~--- Z e(n)k,m[~,r'" W ) "  e 2~imz2 

m~O 
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where Z E  H.+I is written as Z = with ZE H. and 2 2 E H1. A 
Z2 

result of  BScherer (compare [1 ], Satz 7) states: 

Z ,~(n) [ 7  e2"~inmz2 
~k,ml,~..~ W )  " 

m>O 

= ~-~ Z ~ ~ ak(t ) ' d e t ( C Z +  D) -k 
t~N c*~N 2EZ(1,n) A4~Fn,O\l" n 
n > 0  c~>0 (aft.) primitive 

�9 e2nitc~2 W ( C Z  + D)-  ~ C W t . e2:rit{).M < Z > 2 t -]- 2~2(CZ + D) - t W t} . e2nitc,2z: 

= ~ ~-u ~ #(d)ak(t)" ~'(') ,7  o~W)" e 2:'itd~~ ~-'k,td21/--,~ 
t~I~l o~EF, dEN 
n>O o~>O d>O 

where ,~t,) denotes the Jacobi Eisenstein series of  weight k and index t d 2 (compare 
2.1 .). Us ing B6cherer's result we immediately obtain: 

e~)m(Z, W) ~ 6 ( m ) = �9 E(")m (Z, sW) (1) 
' s2Im - ' ~  k,"~ 

s>O 

where we have introduced d(v) : =  ~ ~(d)  a~ ~5  in order to simplify our nota-  
d21v 
d>O 

tion. Since ak(n) = const. �9 ~ d k-  1 for some positive constant,  it is easy to verify 
dFn 

d>O 
that 0(~) > 0 for every v > O. Therefore we may invert the system of  equations 
(1) and obtain: 

,ml,~, W ) =  6 ( m )  - 1 ]  k , m ,  , W )  - -  Z (~ " 

K 

/ / s2 ] ~'~ sis 2 
s1>1 s1>1 s2>1 

= 6(m) -1" ~a p(t)" e (") tZ tW) 
t2lm k,~ \ 
t > O  

with p(t) :----- ~ ]  ( - l f  4/= {(So, sx . . . . .  sT) E Z 7+1 [ So = 1, sl > 1 . . . . .  s 7 > I, 
r ~ 0  

f i  si = t } .  We observe that p(t)is nothing but the M6bius  funct ion/ f i t ) ,  since 
i = 0  

p(t) 
Z t~ - -  Z ( - - l f . ( ~ ( s ) - -  1) 7 = E (1 --  ~(s)) v 

t_~l 7_~0 7 ~ 0  

_ 1 _ 1 x-,  #( t )  

1 - -  (1 - -  ~(s)) r t>~_ t ~ ' 



222 C. ZIEGLER 

where r denotes the Riemann zeta function. Therefore we obtain: 

E(") r Z �9 , k,,~, , IV)=  6(m) -I E #(t)" e(")m (Z, tW) 
t2im k,~-~- 
t > O  

(2) 

By Siegel's Hauptsatz we have 

h 

Eft+')(~) = E m," 0~+')(2)  
v = l  

(3) 

with 

A(S. S3-' 
m~ :=  X(Sx, S~) -~ + ... q- A(Sh, Sh) -~" 

Fourier Jacobi expansion of both sides of (3) yields 

h 

e~".)m(Z, W) = Z m, Z 
= 1 c~Z(2k,1) 

ct Svc = 2m 

(4)  

Inserting (4) into (2) we obtain 

h 

Ekt,) t'r W)=6(m)  - x ' ~ # ( t ) ~  mr ~ 0 (') rZ tW) 
t21rn I,= 1 c~g(2k,1) 

t >  0 t s  c 2m 
c v - ~ -  

(5) 

and Theorem 4.4. follows immediately from the formula 

= 0)  , J-'k,ra~l-'~ 

and 

O~)(Z) = O c'~ (Z,  0) for every c E Z (2k'l) Sp,C~. 

Actually we have shown more: The formula O~c(Z, tW) = O~,c(Z, W) implies 

h 

Eff),,(Z, W ) =  O(m) -1 .  ~a Z Z m,,. tz(t) �9 O t") ' Z  S~.,c~, ~ W )  
v=  1 t2[m cEtZ(2k,1) 

t > 0 ctSv c = 2 m  

which also proves 4.3. [ ]  

Remark. Theorem 4.4. may also be obtained directly without using Jacobi 
forms but deeper results of B6cherer and Klingen--the above indicated proof has 
the advantage of being more elementary. 
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Appendix. An open problem 

In order to obtain Jacobi Forms on the modular group F n we made use of  several 
construction principles: 

1. Fourier Jacobi expansion of Siegel modular forms (Introduction). 
2. Eisenstein Series. 

a) ordinary (2.1.). 

b) of  Klingen's type (2.5.). 

3. Theta Series (3.6.). 
4. Linear combinations and linear transformations of the torus variable (3.5.). 

As we have seen principle 1. is not enough in order to obtain all Jacobi Forms. 
For example there are theta series ~9~)~ which are no Fourier Jacobi coefficients of 
Siegel modular forms. Nevertheless each theta series may be obtained by combining 
principles 1. and 4., since ~9~)~(Z, W) = v ~ ( Z ,  cW)(E = E (2k)) and {4#Aut (S)} .~9~)z 
occurs as Fourier-Jacobi coefficient of  ~9(s n+2k). Furthermore we have seen that the 
ordinary Eisenstein Series E~,)m(Z, IV) may be obtained by combining 1. and 4. too. 
So it seems that we do not know any examples of  Jacobi Forms, which may not 
be obtained in this way. Therefore we formulate the following 

Problem. Can one construct all Jacobi Forms by combining principles 1. and 4. ? 

Of  course our theory is far away from giving an answer to that question. 
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