On the Stability of the Quadratic Mapping in Normed Spaces

By ST. CZERWIK

Abstract. The problem of the stability of the quadratic functional equation (including ULAM-HYERS and RASSIAS types of stability) in normed spaces is investigated.

1. The problem of the stability of functional equations has been posed by S.M. ULAM in [7]. D.H. HYERS in [3] has given a positive answer for the stability of the linear functional equation

(1)
$$
f(x + y) = f(x) + f(y).
$$

From that time many other related questions have been studied (see e.g. [2], [4], [6]).

For the quadratic functional equation some results are contained in [1]. In this paper we prove theorems concerning some other types of stability of the quadratic functional equation in normed spaces.

Let us note that $f: X \to Y$, where X and Y are groups is called a quadratic function iff f satisfies the following functional equation

(2)
$$
f(x + y) + f(x - y) = 2f(x) + 2f(y) \text{ for all } x, y \in X.
$$

2. Let $(E_1, \|\cdot\|)$ and $(E_2, \|\cdot\|)$ be two normed spaces and let **R** stand for the set of all real numbers.

We shall prove the following

Lemma. Assume that there exist $\xi \geq 0$, $\eta \geq 0$ and $v \in \mathbb{R}$ such that a function $f: E_1 \rightarrow E_2$ satisfies the inequality

(3)
$$
|| f(x + y) + f(x - y) - 2f(x) - 2f(y)|| \le \xi + \eta (||x||^{\nu} + ||y||^{\nu})
$$

for all $x, y \in E_1 \setminus \{0\}$. *Then for* $x \in E_1 \setminus \{0\}$ *and* $n \in \mathbb{N}$ *(the set of all natural numbers)*

(4)
$$
||f(2^{n}x) - 4^{n}f(x)||
$$

\n
$$
\leq 3^{-1}(4^{n} - 1)(\xi + c) + 2 \cdot 4^{n-1}\eta ||x||^{v} (1 + a + \dots + a^{n-1}),
$$

\n(5)
$$
||f(x) - 4^{n}f(2^{-n}x)||
$$

$$
\leq 3^{-1}(4^n-1)(\xi+c)+2^{1-v}\eta\|x\|^v(1+b+\cdots+b^{n-1}),
$$

where $a = 2^{v-2}$, $b = 2^{2-v}$, $c = ||f(0)||$.

AMS (1980) subject classification: Primary 39C05. Key words and phrases: the stability of functional equations.

Proof. Put $x = y \neq 0$ in (3). We get

$$
||f(2x) - 4f(x)|| \le ||f(0)|| + \xi + 2\eta ||x||^{\nu}
$$

which proves (4) for $n = 1$. Now, let us assume that (4) is true for $k \leq n$ and $x \in E_1 \setminus \{0\}$. Then for $n + 1$ we have

$$
\begin{aligned}\n\|f(2^{n+1}x) - 4^{n+1}f(x)\| &\leq \|f(2 \cdot 2^n x) - 4f(2^n x)\| + 4\|f(2^n x) - 4^n f(x)\| \\
&\leq (\xi + c) + 2\eta \|2^n x\|^p + \frac{4}{3}(\xi + c)(4^n - 1) + 2 \cdot 4^n \eta \|x\|^p (1 + a + \dots + a^{n-1}) \\
&= 3^{-1}(4^{n+1} - 1)(\xi + c) + 2 \cdot 4^n \eta \|x\|^p (1 + a + \dots + a^n),\n\end{aligned}
$$

which proves the inequality (4) for all natural *n*.

Analogously, taking $x = y = \frac{t}{2}$, we can verify the inequality (5) for $n = 1$. Applying the induction principle we get the result for all $n \in \mathbb{N}$, which completes the proof. \Box

Having done this, we are able to prove the following

Theorem 1. Let E_1 be a normed space and E_2 a Banach space and let $f: E_1 \rightarrow$ *E₂ be a function satisfying the inequality (3) for all* $x, y \in E_1 \setminus \{0\}$ *and let* $v < 2$ *. Then there exists exactly one quadratic mapping* $g: E_1 \rightarrow E_2$ *such that*

(6)
$$
\|g(x)-f(x)\| \leq 3^{-1}(\xi+c)+2(4-2^v)^{-1}\eta \|x\|^v, \quad x\in E_1\setminus\{0\}.
$$

If, moreover, f is measurable (i.e. $f^{-1}(G)$ *is a Borel set in E₁ for every open set G* in E_2 *)* or $\mathbb{R} \ni t \to f(tx)$ is continuous for each fixed $x \in E_1$, then g satisfies *the condition*

(7)
$$
g(tx) = t^2 g(x) \text{ for all } x \in E_1 \text{ and } t \in \mathbb{R}.
$$

Proof. Define the sequence of functions ${g_n}$ by the formula

(8)
$$
g_n(x) = 4^{-n} f(2^n x), \quad x \in E_1, n \in \mathbb{N}.
$$

Then $\{g_n\}$ is a Cauchy sequence for every $x \in E_1$. Really, for $x = 0$ it is trivial. Let $0 \neq x \in E_1$. We have for $n > m$,

$$
||g_n(x) - g_m(x)||
$$

= $4^{-n}||f(2^{n-m} \cdot 2^m x) - 4^{n-m}f(2^m x)||$
 $\leq 4^{-n} \cdot 3^{-1}(4^{n-m} - 1)(\xi + c) + 2 \cdot 4^{-m-1}\eta ||2^m x||^v (1 + a + \dots + a^{n-m-1})$
 $\leq 3^{-1} \cdot 4^{-m} (\xi + c) + 2^{m(v-2)-1} (1 - a)^{-1} \eta ||x||^v.$

Since $v < 2$, we guess that $\{g_n(x)\}\$ is a Cauchy sequence. Define

$$
g(x) := \lim_{n \to \infty} g_n(x) \quad x \in E_1.
$$

We shall check that g is a quadratic function. If $x = y = 0$, since $g(0) = 0$, it is clear. For $y = 0$, $x \neq 0$ we have

$$
g(x+0) + g(x-0) - 2g(x) - 2g(0) = 0.
$$

Let us now consider the case $x, y \in E_1 \setminus \{0\}$. We get the following estimations

$$
||g_n(x + y) + g_n(x - y) - 2g_n(x) - 2g_n(y)||
$$

= $4^{-n}||f(2^n(x + y)) + f(2^n(x - y)) - 2f(2^n x) - 2f(2^n y)||$
 $\leq 4^{-n}(\xi + \eta(||2^n x||^v + ||2^n y||^v))$
 $\leq 4^{-n}\xi + 2^{n(v-2)}\eta(||x||^v + ||y||^v).$

For $n \to \infty$ we get the equality

$$
g(x + y) + g(x - y) - 2g(x) - 2g(y) = 0.
$$

Consider the case $x = 0$, $y \neq 0$, we put into that equation $x = y$ getting $g(2x) = 4g(x)$ for $x \in E_1$. Moreover, setting $y = -x$, we obtain $g(-x) = g(x)$ for $x \in E_1$. Therefore,

$$
g(y) + g(-y) - 2g(0) - 2g(y) = 0,
$$

i.e. g is a quadratic function.

The estimation (6) we may obtain directly from the inequality (4).

To prove the uniqueness assume that there exist two quadratic functions $g_i: E_1 \rightarrow E_2$, $i = 1, 2$ such that

$$
||g_i(x) - f(x)|| \le c_i + b_i ||x||^v, \quad x \in E_1 \setminus \{0\}, i = 1, 2,
$$

where c_i , b_i , $i = 1, 2$ are given nonnegative constants. Then we have

$$
g_i(2^n x) = 4^n g_i(x), \quad x \in E_1, n \in \mathbb{N}, i = 1, 2.
$$

Now we obtain for every $x \in E_1$ $(g_1(0) = g_2(0) = 0)$

$$
\|g_1(x) - g_2(x)\| \leq 4^{-n} \left(\|g_1(2^n x) - f(2^n x)\| + \|g_2(2^n x) - f(2^n x)\| \right) \\ \leq 4^{-n} (c_1 + c_2) + 2^{n(\nu - 2)} (b_1 + b_2) \|x\|^{\nu},
$$

whence, if $n \to \infty$, we get $g_1(x) = g_2(x)$ for all $x \in E_1$.

Let L be any continuous linear functional defined on the space E_2 . Consider the mapping $\varphi : \mathbb{R} \to \mathbb{R}$ defined as follows

$$
\varphi(t) = L[g(tx)]
$$
 for all $t \in \mathbb{R}$ and $x \in E_1$, x fixed.

It is easy to see that φ is a quadratic function. If we assume that f is measurable, then φ as the pointwise limit of the sequence of measurable functions

$$
\varphi_n(t) = 4^{-n} L[f(2^n tx)], \quad n \in \mathbb{N}, t \in \mathbb{R}
$$

is measurable. Therefore φ as a measurable quadratic function is continuous (see [5]), so has the form

$$
\varphi(t) = t^2 \varphi(1) \quad \text{for} \quad t \in \mathbb{R} \, .
$$

Consequently

$$
L[g(tx)] = \varphi(t) = t^2 \varphi(1) = t^2 L[g(x)] = L[t^2 g(x)],
$$

whence taking into account that L is any continuous linear functional, we get the property (7). This ends the proof of the theorem. \Box

Theorem 2. Let E_1 be a normed space and E_2 a Banach space and let $\eta \geq 0$ *and v > 2 be given real numbers. Let* $f: E_1 \rightarrow E_2$ *satisfy the condition*

(9)
$$
||f(x + y) + f(x - y) - 2f(x) - 2f(y)|| \leq \eta (||x||^{\nu} + ||y||^{\nu})
$$

for all $x, y \in E_1$ *. Then there exists exactly one quadratic mapping h:* $E_1 \rightarrow E_2$ *such that*

(10)
$$
\|h(x)-f(x)\| \leq 2(2^{\nu}-4)^{-1}\eta \|x\|^{\nu} \text{ for all } x \in E_1.
$$

If, moreover, f is measurable or $\mathbb{R} \ni t \to f(tx)$ *is contunuous for each fixed* $x \in E_1$, then h satisfies the condition (7).

Proof. Define the sequence

(11)
$$
h_n(x) = 4^n f(2^{-n}x), \quad x \in E_1, n \in \mathbb{N}.
$$

Since $f(0) = 0$, applying (5), we get for $x \in E_1$ and $n > m$,

$$
||h_n(x)-h_m(x)||\leq 2^{1-\nu}\cdot 2^{m(2-\nu)}(1-b)^{-1}\eta ||x||^{\nu},
$$

which implies for $v > 2$ that $\{h_n(x)\}\$ is a Cauchy sequence for every $x \in E_1$. Define

$$
h(x)=\lim_{n\to\infty}h_n(x),\quad x\in E_1.
$$

Then in view of (8) we may verify that h is a quadratic function. Using again the estimation (5) we obtain (10).

It is not difficult to prove that

(12) $h(\lambda x) = \lambda^2 h(x)$ for all $x \in E_1$ and all rational numbers λ .

Now assume that there exist two quadratic functions $h_i: E_1 \rightarrow E_2$, $i = 1, 2$ such that

$$
||h_i(x) - f(x)|| \le d_i ||x||^v, \quad i = 1, 2, x \in E_1,
$$

where d_i , $i = 1, 2$ are nonnegative constants. We get by (12) for $x \in E_1$

$$
||h_1(x) - h_2(x)|| = 4^n ||h_1(2^{-n}x) - h_2(2^{-n}x)||
$$

\n
$$
\leq 4^n (d_1 + d_2) ||2^{-n}x||^{\nu}
$$

\n
$$
= 2^{n(2-\nu)} (d_1 + d_2) ||x||^{\nu},
$$

from which we guess that $h_1 = h_2$. The proof of the last statement of the theorem is quite similar to that one given for theorem 1. \Box 3. Now we shall present an example concerning the special case $v = 2$. This is a modification of the example contained in [2].

Define

$$
\varphi(x) = \begin{cases} \alpha, & x \in (-\infty, -1] \cup [1, +\infty), \\ \alpha x^2, & x \in (-1, 1), \end{cases}
$$

where $\alpha > 0$. Put

$$
f(x) = \sum_{n=0}^{\infty} 4^{-n} \varphi(2^n x), \quad x \in \mathbb{R}.
$$

Then f is bounded by $\frac{4}{3}\alpha$ and satisfies the condition

(13)
$$
|f(x + y) + f(x - y) - 2f(x) - 2f(y)| \le 32\alpha(x^2 + y^2)
$$

for all $x, y \in \mathbb{R}$.

Really, for $x = y = 0$ or $x, y \in \mathbb{R}$ such that $x^2 + y^2 \ge \frac{1}{4}$ it is obvious. Consider the case $0 < x^2 + y^2 < \frac{1}{4}$. Then there exists $k \in \mathbb{N}$ such that

(14)
$$
4^{-k-1} \le x^2 + y^2 < 4^{-k},
$$

whence $4^{k-1}x^2 < 4^{-1}$ and $4^{k-1}y^2 < 4^{-1}$ and consequently

$$
2^{k-1x}, 2^{k-1}y, 2^{k-1}(x+y), 2^{k-1}(x-y) \in (-1,1).
$$

Therefore for every $n = 0, 1, \ldots, k - 1$ we have

$$
2^{n}x, 2^{n}y, 2^{n}(x+y), 2^{n}(x-y) \in (-1, 1)
$$

and

$$
\varphi(2^{n}(x+y)) + \varphi(2^{n}(x-y)) - 2\varphi(2^{n}x) - 2\varphi(2^{n}y) = 0
$$

for $n = 0, 1, \ldots, k - 1$. Now we obtain applying (14)

$$
|f(x + y) + f(x - y) - 2f(x) - 2f(y)|
$$

\n
$$
\leq \sum_{n=0}^{\infty} 4^{-n} |\varphi(2^n(x + y)) + \varphi(2^n(x - y)) - 2\varphi(2^n x) - 2\varphi(2^n y)|
$$

\n
$$
\leq \sum_{n=k}^{\infty} 6\alpha 4^{-n} = 2 \cdot 4^{1-k} \alpha
$$

\n
$$
\leq 32\alpha (x^2 + y^2),
$$

i.e. the condition (13) holds true.

Assume that there exist a quadratic function $g: \mathbb{R} \to \mathbb{R}$ and a constant $\beta > 0$ such that

$$
|f(x) - g(x)| \le \beta x^2 \quad \text{for all} \quad x \in \mathbb{R}.
$$

Since g is locally bounded, then (see [5]) it is of the form $g(x) = \gamma x^2$, $x \in \mathbb{R}$, where γ is a constant. Therefore we have

(15)
$$
|f(x)| \leq (\beta + |\gamma|)x^2 \text{ for } x \in \mathbb{R}.
$$

Let $k \in \mathbb{N}$ be such that $k\alpha > \beta + |\gamma|$. Then if $x \in (0, 2^{1-k})$, $2^n x \in (0, 1)$ for $n \leq k-1$ and we have

$$
f(x) = \sum_{n=0}^{\infty} 4^{-n} \varphi(2^n x) \ge \sum_{n=0}^{k-1} \alpha 4^{-n} (2^n x)^2 = k \alpha x^2 > (\beta + |\gamma|) x^2,
$$

which in comparison with (15) is a contradiction.

References

- [1] P.W. CHOLEWA, Remarks on the Stability of Functional Equations, Aequationes Mathematicae 27 (1984), 76-86.
- [2] Z. GAJDA, On the Stability of the Linear Mapping (to appear).
- [3] D.H. HYERS, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
- [4] D.H. HYERS, M. ULAM, Approximately Convex Functions, Proc. Amer. Math. Soc. 3 (1952), 821-828.
- [5] S. KUREPA, On the Quadratic Functional, Publ. Inst. Math. Acad. Serbe Sci. Beograd 13 (1959), 57-72.
- [6] T.M. RASSIAS, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72(2) (1978), 297-300.
- [7] S.M. ULAM, A Collection of Mathematical Problems, Interscience Publishers Inc. New York 1960.

Eingegangen am: 05.03.1991

Author's address: Stefan Czerwik, Institute of Mathematics, Silesian University of Technology, Zwycięstwa 42, 44-101 Gliwice, Poland.