On the Stability of the Quadratic Mapping in Normed Spaces

By St. Czerwik

Abstract. The problem of the stability of the quadratic functional equation (including ULAM-HYERS and RASSIAS types of stability) in normed spaces is investigated.

1. The problem of the stability of functional equations has been posed by S.M. ULAM in [7]. D.H. HYERS in [3] has given a positive answer for the stability of the linear functional equation

(1)
$$f(x + y) = f(x) + f(y)$$
.

From that time many other related questions have been studied (see e.g. [2], [4], [6]).

For the quadratic functional equation some results are contained in [1]. In this paper we prove theorems concerning some other types of stability of the quadratic functional equation in normed spaces.

Let us note that $f: X \to Y$, where X and Y are groups is called a quadratic function iff f satisfies the following functional equation

(2)
$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$
 for all $x, y \in X$.

2. Let $(E_1, \|\cdot\|)$ and $(E_2, \|\cdot\|)$ be two normed spaces and let \mathbb{R} stand for the set of all real numbers.

We shall prove the following

Lemma. Assume that there exist $\xi \ge 0$, $\eta \ge 0$ and $v \in \mathbb{R}$ such that a function $f: E_1 \rightarrow E_2$ satisfies the inequality

(3)
$$||f(x+y) + f(x-y) - 2f(x) - 2f(y)|| \le \xi + \eta(||x||^{\nu} + ||y||^{\nu})$$

for all $x, y \in E_1 \setminus \{0\}$. Then for $x \in E_1 \setminus \{0\}$ and $n \in \mathbb{N}$ (the set of all natural numbers)

(4)
$$\|f(2^n x) - 4^n f(x)\|$$

 $\leq 3^{-1}(4^n - 1)(\xi + c) + 2 \cdot 4^{n-1}\eta \|x\|^{\nu}(1 + a + \dots + a^{n-1}),$
(5) $\|f(x) - 4^n f(2^{-n}x)\|$

$$\leq 3^{-1}(4^n-1)(\xi+c)+2^{1-\nu}\eta\|x\|^{\nu}(1+b+\cdots+b^{n-1}),$$

where $a = 2^{v-2}$, $b = 2^{2-v}$, c = ||f(0)||.

AMS (1980) subject classification: Primary 39C05. Key words and phrases: the stability of functional equations.

Proof. Put $x = y \neq 0$ in (3). We get

$$\|f(2x) - 4f(x)\| \le \|f(0)\| + \xi + 2\eta \|x\|^{\nu}$$

which proves (4) for n = 1. Now, let us assume that (4) is true for $k \le n$ and $x \in E_1 \setminus \{0\}$. Then for n + 1 we have

$$\begin{split} \|f(2^{n+1}x) - 4^{n+1}f(x)\| \\ &\leq \|f(2 \cdot 2^n x) - 4f(2^n x)\| + 4\|f(2^n x) - 4^n f(x)\| \\ &\leq (\xi + c) + 2\eta \|2^n x\|^v + \frac{4}{3}(\xi + c)(4^n - 1) + 2 \cdot 4^n \eta \|x\|^v (1 + a + \dots + a^{n-1}) \\ &= 3^{-1}(4^{n+1} - 1)(\xi + c) + 2 \cdot 4^n \eta \|x\|^v (1 + a + \dots + a^n) \,, \end{split}$$

which proves the inequality (4) for all natural n.

Analogously, taking $x = y = \frac{t}{2}$, we can verify the inequality (5) for n = 1. Applying the induction principle we get the result for all $n \in \mathbb{N}$, which completes the proof.

Having done this, we are able to prove the following

Theorem 1. Let E_1 be a normed space and E_2 a Banach space and let $f: E_1 \rightarrow E_2$ be a function satisfying the inequality (3) for all $x, y \in E_1 \setminus \{0\}$ and let v < 2. Then there exists exactly one quadratic mapping $g: E_1 \rightarrow E_2$ such that

(6)
$$||g(x) - f(x)|| \le 3^{-1}(\xi + c) + 2(4 - 2^{\nu})^{-1}\eta ||x||^{\nu}, x \in E_1 \setminus \{0\}.$$

If, moreover, f is measurable (i.e. $f^{-1}(G)$ is a Borel set in E_1 for every open set G in E_2) or $\mathbb{R} \ni t \to f(tx)$ is continuous for each fixed $x \in E_1$, then g satisfies the condition

(7)
$$g(tx) = t^2 g(x)$$
 for all $x \in E_1$ and $t \in \mathbb{R}$.

Proof. Define the sequence of functions $\{g_n\}$ by the formula

(8)
$$g_n(x) = 4^{-n} f(2^n x), \quad x \in E_1, n \in \mathbb{N}.$$

Then $\{g_n\}$ is a Cauchy sequence for every $x \in E_1$. Really, for x = 0 it is trivial. Let $0 \neq x \in E_1$. We have for n > m,

$$\begin{aligned} \|g_n(x) - g_m(x)\| \\ &= 4^{-n} \|f(2^{n-m} \cdot 2^m x) - 4^{n-m} f(2^m x)\| \\ &\leq 4^{-n} \cdot 3^{-1} (4^{n-m} - 1)(\xi + c) + 2 \cdot 4^{-m-1} \eta \|2^m x\|^v (1 + a + \dots + a^{n-m-1}) \\ &\leq 3^{-1} \cdot 4^{-m} (\xi + c) + 2^{m(v-2)-1} (1 - a)^{-1} \eta \|x\|^v. \end{aligned}$$

Since v < 2, we guess that $\{g_n(x)\}\$ is a Cauchy sequence. Define

$$g(x) := \lim_{n \to \infty} g_n(x) \quad x \in E_1.$$

We shall check that g is a quadratic function. If x = y = 0, since g(0) = 0, it is clear. For y = 0, $x \neq 0$ we have

$$g(x+0) + g(x-0) - 2g(x) - 2g(0) = 0.$$

Let us now consider the case $x, y \in E_1 \setminus \{0\}$. We get the following estimations

$$\begin{aligned} \|g_n(x+y) + g_n(x-y) - 2g_n(x) - 2g_n(y)\| \\ &= 4^{-n} \|f(2^n(x+y)) + f(2^n(x-y)) - 2f(2^nx) - 2f(2^ny)\| \\ &\leq 4^{-n} (\xi + \eta(\|2^nx\|^v + \|2^ny\|^v)) \\ &\leq 4^{-n} \xi + 2^{n(v-2)} \eta(\|x\|^v + \|y\|^v) \,. \end{aligned}$$

For $n \to \infty$ we get the equality

$$g(x + y) + g(x - y) - 2g(x) - 2g(y) = 0.$$

Consider the case x = 0, $y \neq 0$, we put into that equation x = y getting g(2x) = 4g(x) for $x \in E_1$. Moreover, setting y = -x, we obtain g(-x) = g(x) for $x \in E_1$. Therefore,

$$g(y) + g(-y) - 2g(0) - 2g(y) = 0$$
,

i.e. g is a quadratic function.

The estimation (6) we may obtain directly from the inequality (4).

To prove the uniqueness assume that there exist two quadratic functions $g_i: E_1 \to E_2, i = 1, 2$ such that

$$||g_i(x) - f(x)|| \le c_i + b_i ||x||^{\nu}, \quad x \in E_1 \setminus \{0\}, i = 1, 2,$$

where c_i , b_i , i = 1, 2 are given nonnegative constants. Then we have

$$g_i(2^n x) = 4^n g_i(x), \quad x \in E_1, n \in \mathbb{N}, i = 1, 2.$$

Now we obtain for every $x \in E_1$ $(g_1(0) = g_2(0) = 0)$

$$\begin{aligned} \|g_1(x) - g_2(x)\| &\leq 4^{-n} \left(\|g_1(2^n x) - f(2^n x)\| + \|g_2(2^n x) - f(2^n x)\| \right) \\ &\leq 4^{-n} (c_1 + c_2) + 2^{n(\nu-2)} (b_1 + b_2) \|x\|^{\nu}, \end{aligned}$$

whence, if $n \to \infty$, we get $g_1(x) = g_2(x)$ for all $x \in E_1$.

Let L be any continuous linear functional defined on the space E_2 . Consider the mapping $\varphi: \mathbb{R} \to \mathbb{R}$ defined as follows

$$\varphi(t) = L[g(tx)]$$
 for all $t \in \mathbb{R}$ and $x \in E_1$, x fixed.

It is easy to see that φ is a quadratic function. If we assume that f is measurable, then φ as the pointwise limit of the sequence of measurable functions

$$\varphi_n(t) = 4^{-n} L[f(2^n tx)], \quad n \in \mathbb{N}, t \in \mathbb{R}$$

is measurable. Therefore φ as a measurable quadratic function is continuous (see [5]), so has the form

$$\varphi(t) = t^2 \varphi(1)$$
 for $t \in \mathbb{R}$.

Consequently

$$L[g(tx)] = \varphi(t) = t^2 \varphi(1) = t^2 L[g(x)] = L[t^2 g(x)],$$

whence taking into account that L is any continuous linear functional, we get the property (7). This ends the proof of the theorem.

Theorem 2. Let E_1 be a normed space and E_2 a Banach space and let $\eta \ge 0$ and v > 2 be given real numbers. Let $f: E_1 \rightarrow E_2$ satisfy the condition

(9)
$$||f(x+y) + f(x-y) - 2f(x) - 2f(y)|| \le \eta(||x||^{\nu} + ||y||^{\nu})$$

for all $x, y \in E_1$. Then there exists exactly one quadratic mapping $h: E_1 \to E_2$ such that

(10)
$$||h(x) - f(x)|| \le 2(2^v - 4)^{-1}\eta ||x||^v$$
 for all $x \in E_1$.

If, moreover, f is measurable or $\mathbb{R} \ni t \to f(tx)$ is contunuous for each fixed $x \in E_1$, then h satisfies the condition (7).

Proof. Define the sequence

(11)
$$h_n(x) = 4^n f(2^{-n}x), \quad x \in E_1, n \in \mathbb{N}.$$

Since f(0) = 0, applying (5), we get for $x \in E_1$ and n > m,

$$||h_n(x) - h_m(x)|| \le 2^{1-\nu} \cdot 2^{m(2-\nu)} (1-b)^{-1} \eta ||x||^{\nu},$$

which implies for v > 2 that $\{h_n(x)\}$ is a Cauchy sequence for every $x \in E_1$. Define

$$h(x) = \lim_{n \to \infty} h_n(x), \quad x \in E_1.$$

Then in view of (8) we may verify that h is a quadratic function. Using again the estimation (5) we obtain (10).

It is not difficult to prove that

(12) $h(\lambda x) = \lambda^2 h(x)$ for all $x \in E_1$ and all rational numbers λ .

Now assume that there exist two quadratic functions $h_i: E_1 \rightarrow E_2$, i = 1, 2 such that

$$||h_i(x) - f(x)|| \le d_i ||x||^v, \quad i = 1, 2, x \in E_1$$

where d_i , i = 1, 2 are nonnegative constants. We get by (12) for $x \in E_1$

$$\|h_1(x) - h_2(x)\| = 4^n \|h_1(2^{-n}x) - h_2(2^{-n}x)\|$$

$$\leq 4^n (d_1 + d_2) \|2^{-n}x\|^v$$

$$= 2^{n(2-v)} (d_1 + d_2) \|x\|^v,$$

from which we guess that $h_1 = h_2$. The proof of the last statement of the theorem is quite similar to that one given for theorem 1.

3. Now we shall present an example concerning the special case v = 2. This is a modification of the example contained in [2].

Define

$$\varphi(x) = \begin{cases} \alpha, & x \in (-\infty, -1] \cup [1, +\infty), \\ \alpha x^2, & x \in (-1, 1), \end{cases}$$

where $\alpha > 0$. Put

$$f(x) = \sum_{n=0}^{\infty} 4^{-n} \varphi(2^n x), \quad x \in \mathbb{R}.$$

Then f is bounded by $\frac{4}{3}\alpha$ and satisfies the condition

(13)
$$|f(x+y) + f(x-y) - 2f(x) - 2f(y)| \le 32\alpha(x^2 + y^2)$$

for all $x, y \in \mathbb{R}$.

Really, for x = y = 0 or $x, y \in \mathbb{R}$ such that $x^2 + y^2 \ge \frac{1}{4}$ it is obvious. Consider the case $0 < x^2 + y^2 < \frac{1}{4}$. Then there exists $k \in \mathbb{N}$ such that

(14)
$$4^{-k-1} \le x^2 + y^2 < 4^{-k},$$

whence $4^{k-1}x^2 < 4^{-1}$ and $4^{k-1}y^2 < 4^{-1}$ and consequently

$$2^{k-1x}, 2^{k-1}y, 2^{k-1}(x+y), 2^{k-1}(x-y) \in (-1,1).$$

Therefore for every n = 0, 1, ..., k - 1 we have

$$2^{n}x, 2^{n}y, 2^{n}(x+y), 2^{n}(x-y) \in (-1,1)$$

and

$$\varphi(2^{n}(x+y)) + \varphi(2^{n}(x-y)) - 2\varphi(2^{n}x) - 2\varphi(2^{n}y) = 0$$

for n = 0, 1, ..., k - 1. Now we obtain applying (14)

$$\begin{aligned} |f(x + y) + f(x - y) - 2f(x) - 2f(y)| \\ &\leq \sum_{n=0}^{\infty} 4^{-n} |\varphi(2^n(x + y)) + \varphi(2^n(x - y)) - 2\varphi(2^n x) - 2\varphi(2^n y)| \\ &\leq \sum_{n=k}^{\infty} 6\alpha 4^{-n} = 2 \cdot 4^{1-k}\alpha \\ &\leq 32\alpha(x^2 + y^2), \end{aligned}$$

i.e. the condition (13) holds true.

Assume that there exist a quadratic function $g: \mathbb{R} \to \mathbb{R}$ and a constant $\beta > 0$ such that

$$|f(x) - g(x)| \le \beta x^2$$
 for all $x \in \mathbb{R}$.

Since g is locally bounded, then (see [5]) it is of the form $g(x) = \gamma x^2$, $x \in \mathbb{R}$, where γ is a constant. Therefore we have

(15)
$$|f(x)| \le (\beta + |\gamma|)x^2 \quad \text{for} \quad x \in \mathbb{R}.$$

Let $k \in \mathbb{N}$ be such that $k\alpha > \beta + |\gamma|$. Then if $x \in (0, 2^{1-k})$, $2^n x \in (0, 1)$ for $n \le k-1$ and we have

$$f(x) = \sum_{n=0}^{\infty} 4^{-n} \varphi(2^n x) \ge \sum_{n=0}^{k-1} \alpha 4^{-n} (2^n x)^2 = k \alpha x^2 > (\beta + |\gamma|) x^2,$$

which in comparison with (15) is a contradiction.

References

- [1] P.W. CHOLEWA, Remarks on the Stability of Functional Equations, Aequationes Mathematicae 27 (1984), 76-86.
- [2] Z. GAJDA, On the Stability of the Linear Mapping (to appear).
- [3] D.H. HYERS, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
- [4] D.H. HYERS, M. ULAM, Approximately Convex Functions, Proc. Amer. Math. Soc. 3 (1952), 821–828.
- [5] S. KUREPA, On the Quadratic Functional, Publ. Inst. Math. Acad. Serbe Sci. Beograd 13 (1959), 57-72.
- [6] T.M. RASSIAS, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72(2) (1978), 297–300.
- [7] S.M. ULAM, A Collection of Mathematical Problems, Interscience Publishers Inc. New York 1960.

Eingegangen am: 05.03.1991

Author's address: Stefan Czerwik, Institute of Mathematics, Silesian University of Technology, Zwycięstwa 42, 44-101 Gliwice, Poland.