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The stability of Homomorphisms and Amenability, 
with applications to functional equations. 

by G. L. FORTI 

1. I n t r o d u c t i o n .  

The investigation in respect of the stability of homomorphisms, i. e. of the Cauchy 
functional equation, was proposed in 1940 by S. M. ULAM during a talk before the 
Mathematics Club of the University of Wisconsin. D. H. HYERS solved the problem 
in 1941 (see [8] and Theorem 1 of the present paper). 

In the last ten years this result has been used by many authors, especially by 
people working in the field of functional equations. 

This led to a great number of papers dealing with generalizations of HYERS' result 
in different directions (see, for instance, the vast bibliography in [9]). 

Others important investigations have used the stability of homomorphisms in 
order to solve some non-homogeneous functional equations and in particular 
alternative functional equations of Cauchy type. As far as I know the first result of 
this kind is in [3]. 

The original HVERS' theorem holds when the mapping involved is defined on an 
abelian group. This yields to the following question: is this fact indeed essential? The 
answer is no. L. SZ~rd~LYnlDI in [16] proved that the amenability of the group is 
enough to ensure stability. Now another question naturally arises: what are the 
connections between stability of homomorphisms and amenability of the group 
where they are defined? 

In the present paper we try to give answers to the previous questions. 
In Section 2 the notion of stability is defined and some consequences of it are 

proved. The results are not all new, but they are reported in order to make the paper 
self-containing. 

The third section deals with the connections between stability and amenability of 
groups (or semigroups) and a necessary and sufficient condition for amenability in 
term of stability is proved. 

In Section 4 some results of the former two sections are used to solve an 
alternative functional Cauchy equation, that is an equation of the form 

f ( x y )  - -  f ( x )  - -  f ( y )  ~ V 

where Visa  particular set. The result obtained extends known results to a more 
general frame. 
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2. Stability of Homomorphisms. 

We start this section with the following 

Definition 1. Let G be a group (or a semigroup) and B a Banach space. We say that the 
couple ( G, B) has the property of the stability ofhomomorphisms (shortly ( G, B) is H S) if 
for every function f: G ~ B such that 

I[f(xy) - f ( x )  -f(Y)ll < g 

for every x, y E G and for some K, there exist cb ~ Horn ( G, B) and K' depending only on 
K such that 

I[f(x) - ~(x)ll _-< g '  (1) 

for all x ~ G. 
Different definitions of stability for the homomorphisms (or, that's the same, 

stability for the Cauchy functional equation) are given and studied in several paper, 
see for example [14] and [11]. 
The definition above is suggested by the following theorem ([8]): 

Theorem 1. (D. H. HYERS)-Let E and E' be Banach spaces and let f: E ~ E' be such that 
I[f(x+y) - f(x) - f (y ) l l  < ~, x,ye E. Then the limit l(x) = lim 2-"f(2"x) exists for 

n"*  + oO 

each x ~ E, l (x) is an additive function, and the inequality Ill(x) - l(x)][ < 6 is true for 
all x in E. Moreover l (x) is the only additive function satisfying this inequality. 

A glance to the proof  of Theorem 1 shows that it remains true if the Banach space 
E is substituted by an arbitrary abelian group or semigroup; so we can say that for 
all Banach spaces B and all abelian groups (or semigroups) G the couple (G, B) is HS. 

From Theorem 1 we get easily the following 

Proposition 1. Let G be an arbitrary group (or semigroup) and let B be a Banach space. 
Assume that f: G ~ B satisfies the inequality 

I[f(xy) - f ( x )  -f(Y)II < g 
for all x, y E G. 

Then the limit g(x) = lim 2-" f (x  2") exists for all x 6 G  and 
n"*  + oO 

I [ f (x )  - g ( x ) l l  < K and g(x 2) = 2g(x)for all xeG.  (2) 

The function g is the unique satisfying conditions (2). 

Proof The existence of the limit and the first of the (2) are contained in the first part 
of the proof  of Hyers' theorem. The second of the (2) is an immediate consequence of 
the definition of g. Let now h : G --, B satisfying conditions (2), then 

[[f(x 2") - h(x2")ll = Ibqx 2") - 2" h(x)ll < K, 
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dividing by 2" and letting n ~ + 0% we have g (x) = h (x). 
Proposi t ion 1 shows that  the existence of the limit 
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lim 2 - " f ( x  2") 
n - - *  -t- oo 

depends only on the completness of the space B. Whether  the function g is additive 
or not depends on the group G. 
These simple remarks enable us to prove the following 

T h e o r e m  2. Let the couple (G, B) be HS, then the smallest constant K' fulfilling 
inequality (1) is equal to K, moreover the homomorphism �9 satisfying (1) is unique. 

Proof Let g be the function defined as in Proposi t ion 1, it fulfills the conditions (2). 
Since (G, B) is HS, there exists 4~ e Horn (G, B) such that Ibr(x) - 45 (x)JI < K '  for all 
x �9  ff(x 2") - ~(x2")ll = ff(x 2") - 2" q~(x)ll < K',  dividing by 2" and taking the 
limit as n ~ + 0% we have g (x) = �9 (x), thus if K '  is the smallest constant  fulfilling 
(1), we get K ' <  K. On the other hand, if we take f ( x ) =  ~(x)+c ,  where 
cb�9 and IlclJ = K, we get I b r ( x y ) - f ( x ) - f ( y ) l l  = RiceR = K and elf(x) 
- 4~(x)li = K, whence the smallest constant  fulfilling (1) must be K. 

The uniqueness of 45 follows from the Proposi t ion 1. 

Corollary 1. I f  G is a finite group (or semigroup), then (G, B) is HS for every Banach 
space B, and �9 = O. 

T h e o r e m  3. Assume that the couple (G, IE)(or(G, R))  is HS. Then for every complex 
(real) Banach space B, the couple (G, B) is HS. 

Proof Let f :  G -~ B be such that  I[f(xy) - f ( x )  -f(y)ll  < K for all x, y e G. I f  B' is the 
(topological) dual of B, for every L e B' we have [g  {f(xy) - f i x )  - f ( y ) } [  = 
[L (f(xy)) - L OC(x)) - Lf(y))l < K [I L II, thus there exists ~L �9 Horn (G, rE) such that  
IL(f(x)) - ~L(x)l < KIILll. Define 4~(x) = lira 2 - " f ( x  2") (the limit exists by Pro- 

n ~  -k o0 

position 1); we have ~L (x) = lira 2-" L {f(x2")) = L (~ (x)), by the continuity of L. 
n ~  q- oo 

So L(~(xy))  = ~L(xy) = ~L(x) + rbL(y) = L(~(x))  + L(~(y)) for every L�9  
hence 4~ (xy) = �9 (x) + r (y). By Proposi t ion 1 we have that  (G, B) is HS. 

From now in this section we assume that  the couple (G, B) (G group or semigroup) 
be HS, and i f f  is a function from G into B, by ~f(x,y) we denote the Cauchy 
difference ~s = f(xy) - f(x) - f(y). I f  <s is bounded, by 4~ I we intend the 
homomorph i sm approximating f as indicated in Definition 1. 

We now study the relations between the range of <gf (when bounded) and the 
range of f -  4~ I. The results we achieve will be used to solve some alternative 
functional equations. 

D e f i n i t i o n  2. Let M be an arbitrary subset of a real or complex vector space, by C (M) 
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we denote the convex hull of  M,  that is the set of  all elements of  the form ~, ~i xl ,  ~i > O, 

~i = 1 , x i � 9  
1 

The following useful theorem is a straightforword generalization (with its proof) 
of Theorem 2 in [3]. 

Theorem 4. Assume that (g f (x ,y)  �9 M,  where M is a bounded subset o f  a Banach space 

B. Then h (x) �9  C ( - M ) ,  where h = f -  ~ f .  (By A we intend the closure of  A). 

Proof. Let x �9 G and u = h (x). Then for every positive integer s we have 

s - 1  

h(x s ) = s u  + ~ m i , m i � 9  
i = 1  

This can be proved by induction over s: 

h(x 2) - 2h(x) = f ( x  2) - 2 f ( x ) e M ,  so h(x 2) = 2h(x) + m l , m  1 = 2u + m l e M ;  
h (x s + 1) _ h (x s) - h (x) = f ( x  s + 1) _ f ( x  s) _ f (x )  �9 M,  

SO 

h(x s+l) = h(x  s) + h(x) + ms = ( s+ l )u  + ~ my 
i = 1  

Dividing (3) by s and taking the limit as 
s---~ + 0% we have 

$ - - 1  

u =  -- lim s-1 ~ mi 
n-* + co i = 1  

(the limit exists since h is bounded), hence u �9 C ( - M ) .  

(3) 

As a consequence of Theorem 4, the range o f f -  ~s is contained in the closed 
subspace of B spanned by M. 
A result of this kind, under different assumptions, has been obtained by K. BARO~ in 
[1]. He proves the following 

Theorem 5. (K. BARON) Let G be an abelian group, Ya vector space over ff~ and Z an 
arbitrary subspace of  Y. A function f :  G ~ Y satisfies the condition 

f ( x l  + x2) - f(xl)  - f ( x2 )  e Z 

for all Xl, x2 e G, if  and only if  there exists an additive function g: G ~ Ysuch that f (x )  
- g (x) �9 Z for every x �9 G. 

It has to be noticed that the additive function g in Baron's theorem is not uniquely 
determined. 

The following theorem gives a stronger result than Theorem 4 and it will be used 
in Section 4 in order to solve some functional equations. 
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Theorem 6. Assume that c~ f ( x,y) �9 M (x,y �9 G) where M is a bounded subset o f  B and let 
h = f -  �9 f. I f  e is the identity of  G, let - h (e) = mo �9 M.  

Then h (x) �9 { - (mo + M) + C (M) } c~ C ( -  M). 

Proof. Since h (e) - h (x) - h (x- l) e M and - h (e) = mo e M, we have, for some 
m e M ,  h(x) = - h(x -1) - m o  - m, hence h(x )e  - h(x -1) - (too + M). By Theo- 

rem 4, - h (x-1)e C (M) and h (x)e C ( - M ) ;  thus we get the desired result. 

3. Stability and Amenability. 

In the previous section we obtained some consequences from the fact that the 
couple (G, B) has the property of the stability of homormorphisms. 

In this section we intend to analyse for which groups G the couple (G, B) is HS. We 
have already remarked that, as a consequence of Hyers' theorem and of Corollary 1, 
the couple (G, B) is HS for all abelian and all finite groups (or semigroups), whatever 
be the Banach space B. 

Definition 3 . - -  Let  G be a group or a semigroup and B (G) be the space of  all bounded 
complex--valued functions on G, equipped with the supremum norm JEll ~. 
A linear functional m on B(G) is a left invariant mean (LIM)  if." 

(ct) m ~ )  = m- -~ , f eB(G) ;  
(fl) in f{ f (x)  } < m(f)  < sup {f(x) } , for all real-valued f e B ( G ) ;  
(~) m (xf) = m (f), for  all x e G and f e B (G), where xf(t) = f(xt) .  

Likewise we say m is a right invariant mean if  m (f~) = m (1)for all x e G, where f~(t) 
= f( tx) ,  and we define two-sided invariance in the usual way. Condition (fl) is equiva- 
lent to m(]) > 0 i f f >  O, and re(l) = 1, hence Ilmll = l for every mean. 

The following two propositions hold (see [7]): 

Proposition 2. I f  G is a semigroup with a left invariant mean and a right invariant mean 
on B (G), then there exists a two-sided invariant mean on B (G). 

Proposition 3. I f  G is a group, there is a left invariant mean on (B ( G) if  and only if there 
is a right invariant mean on B(G). Hence, by Proposition 2, there is a two-sided 
invariant mean on B ( G). 

Definition 4. A semigroup G is left (right) amenable if  there is a left (right) invariant 
mean on B (G); if  G is a group these conditions are the same and we say that G is 
amenable. 

The following theorem due to L. SZEKELYI--IIDI ([16)] shows that amenability 
implies the stability of homomorphisms. We give here a direct proof. 

Theorem 7. (L. SZI~KELYHIDI) Let G be a left (right) amenable semigroup, then (G, IE) is 
HS. 
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Proof. Let f :  G --* IE be such that lf(xy) - f ( x )  - f(Y)l < K for all x, y e  G; then, for 
each fixed x e G, the functionf(xy) - f ( y ) ,  as a function of y, is in B (G). Let m r be a 
left invariant mean on B (G) (the suffix y denotes that m r acts on functions of the 
variable y) and define 

�9 (x) = m y { j - f } , x e G .  
4~(xz) = mr {xzf - f } = mr { x S -  ~f + ~f  - f } = mr {~(zf - f )  } + m r { j - J }  

= m r { j - f }  + 45(x) = ~(z) + ~(x), so ~ e H o m ( G ,  ff2). 

t~(x) -f(x)l = [my { x f - f }  - f ( x ) [  = [m r { ~ f - f - f ( x ) } [  < sup [fl(xy) - f ( x )  
y~G 

-f(Y)l < K, x e G, thus (G, IE) is HS. 

Corollary 2. Let G be a left (right) amenable semigroup, then for all Banach spaces B, 
(G, B) is n s .  

Proof. From Theorem 7 and Theorem 3. 

Now a question arises naturally: are there groups or semigroups G such that 
(G, B) is not  HS for some B? 
In  view of Theorem 7 we must look among non amenable groups or semigroups. 
The following theorem (presented by the author to the 22 "d International Sympo- 
sium on Functional Equations) gives an answer. 

Theorem 8. Let F (a, b) (S (a,b)) be the free group (semigroup) generated by the elements 
a and b. The couple (F(a,b),R) ((S(a,b),R)) is not HS. 

Proof. We shall construct a function f :  F (a,b) -o P,. such that [~f(x,y)[ < 1 and for 
every �9 6 Horn (F (a,b), ~ )  the difference f -  �9 is unbounded. To do this, ifx ~ F (a,b), 
we assume that the "word" x be reduced, that is it does not contain pairs of the forms 
aa-  1, a -  la, bb-  x, b -  lb and it is written without exponents different from 1 and - 1. 
We now define a function f :  F (a,b) ~ R in the following way: if r (x) is the number of 
pairs of the form ab contained in x and s (x) is the number of pairs of the form b -  l a -  1 
contained in x, then f (x)  = r (x) - s (x). 

The function f is unbounded and for each x, y ~ F (a,b) we have 

f (xy)  - f (x)  - f(y) 6 { - 1, 0, 1 } 
so ]<gf(x,y)] < 1. 

Assume now that ~EHom(F(a ,b ) ,R)  exists so that f - 4 ~  is bounded. �9 is 
completely determined by the values �9 (a) and �9 (b) a n d f i s  identically zero on the 
subgroups generated by a and b respectively. Hence the boundedness o f f -  �9 on 
these two subgroups implies �9 = 0; thus f -  4~ = f, a contradiction since f is un- 
bounded. 

If  instead of the free group F (a,b) we consider the free semigroup S (a,b), we get the 
analogous result by defining f (x)  = r (x). 

I t  is well known that a group containing F (a,b) as a subgroup, is not amenable. 
Hence a question arises: can Theorem 8 be extended to groups containing F (a,b)? 

This can be formulated in the following way: 
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let G 3 F (a,b) and let f:  F (a,b) ~ R be defined as in Theorem 8; is it possible to 
extend f to f :  G ~ R such that ICg~(x,y)l < K for all x, y ~ G? 

This problem is till now open. 

Theorem 7 and 8 suggest to study the connections between the stability of 
homomorphisms and the amenability of groups or semigroups. 
In fact we obtain a theorem giving a necessary and sufficient condition for the 
amenability in terms of a kind of multi-stability. 

We denote with B" (G) the space of all bounded real-valued functions on G and 
with B'~ (G) the space of all real-valued functionsfon G for which cgfis bounded on 
G x G .  

Theorem 9. Let G be a group. G is amenable if and only if for every n-tuple 
fl,f2 . . . . .  f .  ~ B'rg (G), there exist ~1, ~2 . . . . .  @. ~ Horn (G, R), such that 
fig - ~bi ~ B'(G) and for all n-tuples x 1, x2, . . . ,  x. ~ G, the inequality 

H(XI, X2 . . . . .  Xn) < ~ {~i(Xl) --f/(x/)} < K ( x , , x  2 . . . . .  x.) (4) 
i=1  

holds, where 

H(xl,  x 2 . . . . .  x,) = inf ~ ~gfi(xl, y ) and K(Xl, X2 . . . . .  x.) = sup ~, ~fi(xi,Y). 
y~G i= 1 y~G i= 1 

Proof. Assume that G is amenable and let my be a left invariant mean on B (G). If 
fleB'Cg(G) we put ~i(x)=my{xfi--fi}, xeG; by Theorem 7 we have 
~i e Horn (G, R) and f / -  ~i ~ Br (G). Fix now xl, x2 . . . . .  xn e G, by (fl) of Definition 3 
we have 

inf { ~ ~(x ,y) - f~(y) )}  <my{ ~ (x,f~-f~)} < s u p {  ~f~(x ,y)- f~(y))} ,  
yeG i=1  i=1  yeG i=1  

hence from the definition of @i and o f f  we get 

inf { ~ fi(xi, y)} + f / ( x i )  < ~ ~[~i(xi) < sup { ~ fi(xi, y)} ~- ~ fi(xi) 
yeG i=l i = l  i=1  yeG i=1  i=1  

thus we get inequality (4). 
Conversely let fl,f2 . . . . .  fn ~ B' (G), then fl,f2 . . . . .  f~ e B r ~ (G) and the corresponding 
homomorphisms (existing by hypothesis) @~ are equal to zero. We now show that 
the inequality (4) implies the condition of DIX~ER (see [71). We must show that 

sup { ~ ~(x,y) -f,(y))} _>_ o. (5) 
yeG i = 1 

Assume that the supremum in (5) be equal to - ~ < 0, then 

~ f ~ ( x ~ ,  y) < - ~ - ~: f~ (x~), 
i=i i - I  

hence by (4) (the @i's are zero) we get 
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a contradiction. 
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S f , ( x , )  < - ~ - f , ( x , ) ,  
i = 1  i = 1  

Remark 1. Theorem 9 is stated for groups, but obviously it is true also for semi- 
groups and for left or right amenability. 

4. Applications to Functional Equations 

In  this section we shall use some results of the previous sections in order to solve 
some alternative Cauchy functional equations. 

The problem, in its general form, can be formulated as follows: tofind all functions 
f such that 

(*)v f (xy)  - f (x)  - f(y) �9 V 

where f:  G --+ H, G and H groups and V C H. 
The problem of solving an equation of this kind appeared the first time in a paper 

of R. GER ([6]) in the special case G = H = R and V =  {0,1}. 
Results have been obtained in [4] and in [12] when G and H are abelian groups and 
V has only two elements, in [3] when G is abelian, H is a Banach space and 
V =  {0, b, 2b . . . . .  Mb} for b �9 H and M positive integer, and in [13] when G is abelian 
and H and V satisfies some suitable hypotheses. 

Herein we assume that H is a Banach space B and that the couple (G, B) is HS and 
we study (*)v for special sets V. We shall use techniques similar to those contained in 
[3] and generalize some results of [13]. 
I t  is easy to see that one can always suppose, without loss of generality, that 0 �9 ld, 
indeed if a �9 Vand we put g (x) = f (x)  - a, thenf is  a solution of (*)v if and only if g is 
a solution of (*)v-a. 

Let vl,/)2 . . . . .  /)n be n independent vectors in B and let V = {0, vl, v2 . . . . .  v,}. I f  we 
consider equation (*)v, thanks to Theorem 4 of section 2, we can assume that the 
unknown function f is bounded and, identifying the vectors/)i with the standard 
basis in F," via an isomorphism, thatfassumes values in R"  or, more precisely, in the 
convex hull (contained in the unit cube) of the set - V(we use the same names for 
vectors vl and the set Veither as elements or subset of B or as elements or subset of 
R"). Since f :  G ~ R", byf i  we denote the i-th component  o f f  

Lemma 1, Let f:  G -* C ( -  V) be a solution of (*)v. Let Fja -- {v �9 C ( -  V): P2 (v) 
= c~},j = 1,2 . . . . .  n; ~ = 0,1, where P2 is the projection on thej-th coordinate axis. 
Then 

i) the sets Sia = {x e G :f(x) e F j,~}, ~ = 0,1, are either empty or subsemigroups of  G; 
ii) Hj = Si, o w Sj,1 is a (non empty) normal subgroup of G; 
iii) if y �9 Hj and x �9 G\Hj, then fj  (xy) = fj  (x) = f j  (xy). 
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Proof. The proof is similar to that of Theorem 6 in [3]. 
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Lemma 2. Let f :  G ~ C ( - l O  be a solution of  (*)v. Define H = {x ~ G:f(x)~ - V}. 
Then H is a normal subgroup of  G. 

Proof Since H = N Hi, the theorem follows from (ii) of Lemma 1. 
j = l  

Theorem 10. Let f :  G --* C ( -  IO be a solution of  (*)v. The range o f f  is contained in the 
segments joining the n + 1 points - v  o, - V l  . . . . .  - v ,  (where v o = 0). 

Proof The theorem follows from Theorem 6 of section 2. We give here a direct proof. 
I f  e is the identity of G, we have - f ( e )  ~ V,, so for any x e G we get 
f(e) - f ( x )  - f ( x - 1 ) ~  V, s o f ( x -  1) = _ f(x) + f(e) - vi for some i = 0 . . . . .  n. Letf(e) 

= -- vk, then f (x  -x) = - - f ( x ) -  o k - -  viand - f ( x )  = ~ 2 jv j ,2 j>  0and  ~ 2j = 1. 
j=O j=O 

This yields 

f ( x - 1 )  = ~ 2jr  i + ( 2 k - 1 )  v~ + ( 2 i - 1 ) v i  
j=O 

j * i , k  

and s incef(x-  1) e C ( -  V), this implies 2j = 0 for j  4: i, k and 2 - 2k -- 2i < 1, that is 

2k + 2i = 1 and f ( x )  = -- 2k Vk -- 2i Vi. 

Theorem 11. Let f :  G-*  C ( -  V) be a solution of  (*)v. 

i) The range o f f  is contained in only one of  the segments joining the points of  - V; 
ii) f is constant on the non-zero cosets of  H (H is the subgroup of  G defined in Lemma 

2). 

Proof (i) Let x ~ G be such thatf(x) = - 2k Ok - -  2i Vi, 2k q- 2i ~--" 1, 2 k > 0, 2 i > 0, and 
let y e H  be such that - f ( y )  = vj, j 4: k,i. Then, by (*)v, we have 

f (y)  - f ( x )  - f ( y x  -1) = - v~ + 2kv k + 21v i - f ( y x - 1 ) e  V, 

that is 
- f ( y x -  X)e vj - 2k V k "Jr 2 iV  i "~ V; 

ifvk 4: VO, Vi 4: VO this implies that either the coefficient Of Vk or that ofvi is negative; a 
contradiction. 
IfVk = VO = 0, then - f ( y x -  1) = vj + (1 - 2i) vi, a contradiction by Theorem 10. Let 
now y ~ G be such that f (y)  = - pj vj - #~ vz, ~tj +/1, = 1,/~J > 0,/al > 0, where the 
pairs (Vk, Vi) and (v j, vi) are different. By (*)v we have 
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f ( y )  - - f ( x )  - - f ( y x  -1) = -- # jv j  -- #tvt + 2kVk + 2iVi - - f ( Y X - 1 ) ~  V, 

tha t  is 

n 

- f ( y x  -1) = S, a , v , ~ # j v j  + #lvt - f~k ! . ) k  - -  " ~ i V i  -[- V. 
r = 0  

I f  the four vectors  vj, vt, Vk, Vi are  different and  Vk * VO, Vi ~ V o, then e i ther  a k or  tr~ is 

negat ive,  a con t rad ic t ion .  I f  Vk = Vo = 0, we mus t  have  - f ( y x - ~ )  = I~j vj + Ih vt 
+ (1 - 2~) v~, aga in  a con t rad ic t ion ,  since, by  T h e o r e m  10, all tr, bu t  two mus t  be zero. 

Assume  now vj = Vk; we have  - f ( y x - 1 ) ~  (l~j - • k ) V j  "[- •l Vt - -  "~i Vi "[- V. I f  v j, vz, vi 
are  different f rom v o = 0, we have two possibil i t ies:  #j  4: 2k, then - f ( y x - 1 )  = (#j 
- -2k )V j+  p~Vl + (1--2)Vi, a con t r ad i c t i on  as above;  pj  = 2k, then  ,/1 l = ~-1 and  
- f ( y x - ~ )  = ~1 vl + (1 - ~ ) v ~ ,  this means  tha t  the three  p o i n t s f ( x ) , f ( y ) , f ( y x - 1 )  lie 
on  three  different segments  j o in ing  the po in ts  of  - V, thus,  by  the first pa r t  of the 

proof ,  H mus t  be empty ;  a con t rad ic t ion .  

I f  vj = Vo = 0, then  - f ( y x - 1 )  = #1 vl + ( 1 -  21)vi; a con t r ad i c t i on  as above.  
I f  vl = Vo = 0, then  - f ( y x - 1 )  = (p j _  2k)Vj + (1 --)..)Vi; aga in  a con t rad ic t ion .  

l 

I f  vi v o = 0, then - f ( y x - 1 ) ~  ( p j _  2k ) Vj + #t Vl + V,, so ei ther  
- f ( y x -  1) = ( p j _  2k) Vj + ~I Vi or --  f ( y x -  ~) = (1 + p j - -  2k) V i + Pl Vl, bu t  this two 
po in t s  are  no t  on the requi red  segments.  

(ii) I f  f =  (0 . . . . .  f/, 0 . . . . .  0), the t h e o rem follows f rom L e m m a  1. 
I f f ( x )  = f / (x)  vl + f j  (x) v j, where f i , f j :  G ~ [ - 1,0] are so lu t ions  of (*) {o. 1/such tha t  
f~ ( x ) + f j ( x )  = - 1 ,  then by  (i), H = {x : f ( x ) =  - v~} w {x : f ( x ) =  - v j} = 
{x : f j (x )  = 0} u {x:f~(x) = 0} = {x : f j (x )  = 0} u {x : f j (x )  = - 1} and,  by  L e m m a  
1,fj is cons tan t  on the non-ze ro  cosets  of H; sincef~ + f j  = - 1, alsof~ is cons t an t  on 
the non-ze ro  cosets  of H and  so this h a p p e n s  for f 

Theorem 12. A function f :  G ~ C ( - 11') is a solution of  equation (*)v if and only if it has 

one of  the following forms: 

i) f = (0 . . . . .  0,fi, 0 . . . . .  0) for  some i = 1 . . . . .  n and fi : G --* [ - 1,0] is a solution of  

(*) ~o,~; 
ii) f = (0 . . . . .  0,f/, 0 . . . . .  0,fj, 0 . . . . .  0) for  some i and j, where f / , f j :  G ~ [ - 1,0] are 
solutions o f  (*){o,1/, such that fi (x) + f j  (x) = - 1  for  all x ~ G. 

Proo f  The p r o o f  follows immed ia t e ly  f rom T h e o r e m  11. 

Remark 2. I t  has to  be observed  tha t  if there  are so lu t ions  of (*)v of the form (i) of 
T h e o r e m  12, then there are  a lso  of the form (ii); indeed let f :  G ~ [ -  1,0] be a 
so lu t ion  of (*) {0,1/, it is immed ia t e ly  seen tha t  the funct ion g (x) -- - f ( x )  - 1 is a 

so lu t ion  of (*) {0.1~. 

Till  now the set Vwas a special  finite set; we in tend to extend,  when possible ,  the 
p rev ious  resul ts  to  the ease of  Vinfinite.  

Cons ide r  as before the Banach  space B and  assume it is a real  space of infinite 
d imens ion .  As any  vec tor  space,  B has  a H a m e l  basis,  i.e. a set V =  {vj} j~s of 
i ndependen t  vectors  spann ing  B, in the sense tha t  any  e lement  of B has  a un ique  
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representation as a finite linear combination of elements of V. We can always assume 
that all v~'s have norm 1, so V i s a  bounded subset of B. 

Now we consider the equation (*)v for the set V described above. As in the 
previous case we can suppose that the unknown function f is bounded and takes 

values in C ( - V )  = C ( - V ) .  
For  any subset I of J, by p~ we denote the coordinate projection given by 

PI( x ) =  pI( 20~jvj)= 2IXjVj, x e B ,  
jeJ jel  

(where only a finite number of ct/s are different from zero). 
For  any I ( J,f~ -- Pl of. Obviously if f :  G -+ C ( -  V) is a solution of (*)v, then for 
any I ( J , f t  is a solution of (*)p,tv). 

Then from Theorem 12 we get immediately the following 

Theorem 13. Let f:  G ~ C ( -  V) be a solution of (*)v; then f has only these possible 
forms: 

i) there exists k ~ J such that for every i ~ J, i 4: k, fl = 0 and fk = 2k Vk, where 
2k : G ~ [--1,0]  is a solution of(*)~oAt; 

ii) there exist k, h ~ J such that for every i~ J, i 4: k, i 4: h, fi = 0, and fk = 2k Vk, 
fh = 2h Vh where 2k, 2h:G ~ I---1,0] are solutions of(*) ~o,ll such that 
2 k (x)  + 2 h (x)  = - 1. 
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