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WeierstraB-Type Representation of Affine Spheres 

By J. DORFMEISTER and U. E I T N E R  

Abstract. Affine spheres are discussed in the context of loop groups. We show 
that every affine sphere can be obtained by solving two ordinary differential equa- 
tions followed by an application of a generalized Birkhoff Decomposition Theo- 
rem (which we proof in the Appendix). A geometric interpretation of the coef- 
ficients of the ODE is given. Finally the method is applied to construct all ruled 
surfaces. 

Differential geometry begins with surface theory in IR 3 . The surrounding Euclidean 
space provides notions like length, angles, normal and covariant derivative. Sur- 
faces that differ only by a rigid motion are considered essentially identical. The 
basic notions of surface theory are either invariant or transform appropriately under 
the group of rigid motions. FELIX KLEIN suggested to consider geometry relative 
to groups of "equiaffine" transformations, i. e. affine transformations for which the 
linear part has determinant 1. One then investigates surfaces together with basic 
(generalized) notions which transform appropriately under equiaffine transforma- 
tions. There is no obvious "first fundamental form". "Affine normal" needs to be 
defined. The details can be found in [1], [11], [15]. While it is important to have a 
consistent general theory, special (classes of) examples exhibit the applicability and 
the beauty of the field. 

Certainly one of the most basic example of surfaces are the spheres. It is there- 
fore not surprising that one of the first examples discussed in the context of KLEIN's 
program are "affine spheres". The study of affine spheres started with TZITZEICA 
in 1907. His approach was an Euclidean one and affine spheres arose in connection 
with tetrahedral surfaces. As it turns out, the class of affine spheres is large. Con- 
tributions towards a classification have been made since TZITZEICA'S initial study, 
but a classification is still elusive. A discussion of affine spheres can be found in 
[1], [11], [15], and in the lecture notes [13]. 

In recent years a new tool, essentially a derivative of soliton theory, has been 
used to investigate classes of surfaces and to facilitate computer visualization. It has 
been successfully employed for surfaces of constant mean curvature and surfaces of 
constant Gauss curvature. The starting point is the observation that into the moving 
frame equation one can insert a parameter t so that the compatibility condition for 
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the moving frame is satisfied for all values of this continuous parameter if and only 
if the surface is in the class of surfaces under consideration. Integrating the surface 
equations thus yields a whole family of surfaces in the class. The corresponding 
moving frame F(u,  v, t), u, v certain local coordinates, depends on the parameter as 
well. In the case of affine spheres u and v are (possibly imaginary) asymptotic line 
parameters. This extended frame F(u,  v, t) ~ SL(3,  I~) thus has values in the group 
A S L ( 3 ,  ~) = {t ~ g(t)  E SL(3,  I~)}. In the case of surfaces of constant mean 
curvature, t varies through the unit circle S 1, in the case of constant Gauss curvature, 
t is a real number. Considering the frame F as an element of a "loop group" provides 
new tools and techniques. Important in this context are decomposition theorems for 
loop groups. They allow one to split the frame into two parts. It turns out that all the 
information about the frame, and thus the surface, is already contained in one of the 
two factors. Moreover, this factor is the integral of a differential form that does not 
need to satisfy any constraints: all the constraints implied by the nonlinear defining 
equations for the surface class disappear in the splitting. Fortunately, this process 
can be reversed: starting from an unconstrained differential form one obtains one 
of the two factors of the frame by solving an ODE. A second splitting theorem 
produces a frame and the surface is produced from the frame. 

In the case of surfaces of constant mean curvature the unconstrained differential 
form consists of a meromorphic function and a holomorphic function. Thus one 
obtains Weierstraf3 data as in the case of minimal surfaces. 

In the first section we recall the basic notions of affine surface theory. We have 
followed here in large parts the lecture notes [13] of PAT RYAN. 

In Section 3 we have also used different sources. Section 4 introduces the twisted 
loop groups associated naturally with affine spheres and states the Generalized 
Birkhoff Decomposition Theorem (Theorem 4.3), which is of fundamental impor- 
tance for this paper. The generalized Weierstrass data for the associated family of 
an affine sphere are exhibited in Section 5, and are called "potentials" (associated 
with an affine sphere). Section 6 shows that a very simple type of ~.-dependence for 
a Maurer - Cartan form characterizes, modulo gauge transformation, the frames of 
the associated family (which is parametrized by ~.) of an affine sphere. 

The main results of this paper are contained in Section 7, showing that there is 
a bijection between all affine spheres and (normalized) potentials. This implies that 
all affine spheres can be constructed from normalized potentials by the procedure 
outlined in this paper. In particular, the normalized potentials parametrize all affine 
spheres. We would like to make it very clear though that the transition from a 
normalized potential to an affine sphere is technically complicated because of the 
required group splitting. As a consequence, the relation between properties of the 
potential and geometric properties of the corresponding affine sphere is difficult to 
trace through the group splittings used. 

In Section 8 we show that potentials essentially determine two transversal as- 
ymptotic lines. Thus the splitting procedure employed in this paper serves to fill 
in the rest of the surface without solving any further differential equation. So the 
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construction of affine spheres is reduced to solving two ordinary differential equa- 
tions and the largely algebraic procedure of splitting. This makes the method of this 
paper well suited for the computer aided visulization of affine spheres. 

The last section contains examples and the Appendix the proof of Theorem 4.3. 

1 Basic notations and results 

Let ~ be a real two-dimensional manifold and f : ~" --~ I~ 3 an immersion. A 
transversal vector field ~ is a mapping ~ : ~" -+ I~ 3 such that for each x E 

~ ~ f , (Tx$ ' )  = ~3. (l.1) 

In Euclidean geometry the unit normal vector field is a "natural" transversal vector 
field. There is no natural notion of "normal" in the equiaffine geometry, hence no 
transversal vector field is preferred. 

For vector fields X and Y on .T we split the usual directional derivative D ac- 
cording to (1.1) and obtain 

Df, x f ,  Y = f , ( V x Y )  + h(X, Y)~. (1.2) 

This defines a linear connection V on a ~ and a symmetric (0, 2)-tensor field h, the 
affine fundamental form. 

Differentiating ~ similarly, we obtain 

Dj, x~ = f , ( - S X )  + r (x)  ~. (1.3) 

This defines the shape operator S as a (1, 1)-tensor and the transversal connection 
r as a 1-form on $' .  

Finally, the standard volume form co of l~ 3 induces a volume form 0 on $" via 

O(S, Y) = w ( f , ( X ) ,  f , (Y ) ,  ~). (1.4) 

Let 

S A ( 3 ) = { x - - > A x + b I A 6 S L ( 3 , ~ ) ,  b E I ~  3} (1.5) 

denote the group of equiaffine transformations on ~3. Then the standard volume 
element of ~3 is up to a non-zero factor the only volume element on R 3 that is 
invariant under SA(3). Therefore, from an equiaffine point of view 0 is essentially 
unique (also see Section 2). Recall [11], an equiaffine structure on Y" is a torsion- 
free connection together with a parallel volume form. Then we note 

Proposition 1.1. For D, co, V, 0 and r as above, 

(D, w) is an equiafflne structure for N 3 and VxO = r(x)  0. (1.6) 

Thus, (V, 0) is an equiaffine structure on ~ if and only if r = O. 
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2 The affine normal field 

If  ~ and ~ both are transversal vector fields for the immersion f of  Y', then 

~ = f , ( Z )  + r Z E F ( T ~ ) ,  

and ~p is a nowhere vanishing real-valued function. Then for vector fields X and Y 
we have 

1 h(x, y), (2.1) ~ (x ,  ~) = 

1 h(X, Y) Z, (2.2) (TxY = V x Y  - -~ 

1 (h(Z, X) + X~o) (2.3) r = r ( x )  + ~ 

S ( X )  = ~oS(X) - V x Z  + ~ ( X ) Z ,  (2.4) 

= r O. (2.5) 

From (2.1) we see that the rank of  h is independent of  the choice of  the transversal 
vector field. Therefore it makes sense to define: f ( Y ' )  is called a non-degenerate 

affine surface if h is non-degenerate for some transversal field ~ 1. In this case h is 
a semi-Riemannian metric on :F and therefore has its own Levi-Civita connection 
V h and its own volume form O h, given by 

0 h (Xl, X2) = + [Idet(h(Xi,  Xj))i,j=l,2 I] 1/2 (2.6) 

Setting k = det (h(Xi ,  Xj))i,j=l, 2 for any frame X1, X2 of  U we obtain 

k attains the same value for all frames satisfying 0(X1, X2) = 1. (2.7) 

If/~ is defined for ~ and/~, then fc = q9 -4 k. (2.8) 

This shows that the quantities defined above transform in a simple way under a 
change of  the transversal field. 

Since we are interested in equiaffine surface theory we need to have also natural 
transformations under SA (3) 

Proposi t ion 2.1. Let f : 5 ~ ~ I~ 3 be an immersion and et ~ SA(3). Let 

be a transversal vector f ield f o r  f . Then a ,  f is a transversal vector f ield f o r  the 

immersion et o f . With these choices o f  transversal vector fields, f and ~ o f induce 
the same V, h, S, r, and 0 on ~ .  

Finally we note that for non-degenerate affine surfaces one can always choose 
locally so that the corresponding (V, 0) defines an equiaffine structure on Y'. 

Proposi t ion 2.2. Let f : :F ~ I~ 3 be a non-degenerate affine surface. Then f o r  

each Po ~ ~ there is a transversal vector f ield ~ defined in some neighbourhood o f  
po such that r = 0 and 0 = q-O h. Such a ~ is unique up to sign. 

1Take s e the unit normal vector from the Euclidean geometry. Then the corresponding h is the second 
fundamental form. Thus an affine surface is non-degenerate iff the second fundamental form is non- 
degenerate, i.e. if the Gaussian curvature does not vanish. 
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A transversal vector field satisfying the conditions of the proposition is called 
affine normalf ield and the corresponding h is called the associated affine metric. 

We note that computationally the affine normal can be obtained by the following 
steps: 

Start with any transversal vector field s e. (2.9) 

Pick vector fields Xi on  a ~ such that O(X1, X2)  ~- 1. (2.10) 
1 

Set k = det(h(Xi ,  Xj)i,j=l,2) and ~p = Ikla. (2.11) 

Choose Z so that h(Z ,  X) = -~p r (X)  - Xcp. (2.12) 

Then f , ( Z )  + ~o ~ is the desired affine normal. 
It is easy to see that for a non-degenerate affine surface changing the sign of the 

affine normal changes the signs of 0, h, and S, but not of V. Therefore V is globally 
defined on ~V. The triple (V, h, S) associated with an affine normal is called a 
Blaschke structure for .T. A non-degenerate affine surface together with a globally 
defined affine normal is called a Blaschke surface. 

Of the two possible choices for O h we choose the one agreeing with 0. 

Theorem 2.1. For a Blaschke surface the following identities hold: 

R(X ,  Y ) Z  = h(Y, Z ) S ( X )  - h(X,  Z ) S ( Y )  (Gauss equation). (2.13) 

(Vxh) (Y, Z) = (Vyh) (X, Z)  (Codazzi equation). (2.14) 

(VxS) (Y) = (VyS) (X) (Ricciequation). (2.15) 

VO = 0 ( < > r = O) (equiaffine condition). (2.16) 

0 = O h (volume condition). (2.17) 

Here R denotes the curvature tensor of  the connection V. 

In the Riemannian case important classes of surfaces are defined by conditions 
for the shape operator. Here we have 

Proposition 2.3. Let ~ be a Blaschke surface. 

S = 0 i fandon ly  i f R  = O. 

I f  S = )d, then )~ is constant. 

(2.18) 
(2.19) 

Since in affine geometry there is no natural "first fundamental form", additional 
tensors are needed to enable strong structural information. Such a tensor is the 
(0, 3)-tensor C defined by 

C(X,  Y, Z) = (Vxh) (Y, Z). (2.20) 
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P ropos i t ion  2.4. Let ~ be a Blaschke surface. Then for  all vector fields X, Y, Z 
on 5 ~ we have 

v r-v Y =vyx-v x. (2.21) 

C is symmetric in all three arguments. (2.22) 

h(Y, V z X  - v h x )  = h(X,  VzY - v h y ) .  (2.23) 

C(X,  Y, Z)  = - 2 h ( V x Y  - VhxY, Z).  (2.24) 

In a sense C measures the difference between Vx Y and V~ Y. This cubic form, 

first introduced by Blaschke, is called the affine cubic form of ~ .  
Starting with the unit normal vector field ~ = N as transversal vector field one 

obtains using (2.1) that the affine metric is a scalar multiple of  the Euclidean second 

fundamental form//Euclidean. More precisely one can check directly 

//Euclidean 
h --  2 ~  K the Gaussian curvature of  the induced metric f *  < , >R3. 

(2.25) 

Consider the "conormal field" 

~= N 
" N the Euclidean normal. (2.26) 

< N , ~  > '  

Then V h is the connection on Y" induced by ~. Finally the affine normal ~ fulfills 

= �89 Ah ( f ) ,  where Ah denotes the Beltrami operator induced by h. (2.27) 

Moreover, by (2.2) it is clear that the affine metric h is the difference between the 
Levi-Civita connection of  the induced metric and the connection induced by the the 
transversal field f . ( Z )  + ~o N. 

Propos i t ion  2.5. Let f : ~ ~ I~ 3 be an immersion. Then the following are 
equivalent 

1.) The Gaussian curvature o f  5 ~ never vanishes, 

K (p)  # O, for  all p E U.  

2.) The Blaschke metric is non-degenerate. 
3.) I f  K < 0 then there exist two different asymptotic directions at each point. 

I f  any o f  these conditions is satisfied, then the affine normal can be defined as out- 
lined above. 

From now on we assume K < 0 2. It is convenient to use asymptotic line coordi- 

nates u, v .  In terms of these coordinates one finds from (2.25) and (2.27) that there 
exists a functions o9, A, B " 5 ~ --+ ~,  such that 

h = e a'O''v) du dr ,  ~ = e-a'(u'v) fur, C = Adu 3 + B d v  3. (2,28) 

2The case K > 0 is similar to the approach developed here. The asymptotic line coordinates u and v 
need to be replaced by complex coordinates z and ~, conformal with respect to the second fundamental 
form. 
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Consider the moving frame f2 = ( f , ,  fv, ~)t. Then the evolution of  this frame gives 
the following linear system: 

( ) H  Ae-C~ ~co) ( 0 0 ~  ~ 
f2u = 0 f2, f2v = B e -~~ wv ~ (2.29) 

Av e -2w ~kBu e -2w - H  

where the affine mean curvature H = I tr(S) is given by 

H = - e  -~~ wuv - A B e -3~~ (2.30) 

The linear system is compatible iff 

Hu = e -3 ~o A Bu - e -~ (Zv e-~~ (2.31) 

Hv : e -3 ~o Av B - e -~ (Bu e-~~ (2.32) 

As for Euclidean geometry here one also has a "Bonnet" theorem: 

Theorem 2.2. (BLASCHKE [l], pp. 137) Consider a manifold ~ admitting an 
affine metric h and a cubic form C, in local coordinates u, v : ~ ~ ~ satisfying 

h = e ~~ dudv, e ~~ > 0; C = Adu 3 + Bdv  3. 

Assume moreover, the coefficients of h and C satisfy (2.30), (2.31), (2.32). Then 
there exists an immersion 

f : f -  ~ ]~3, f -  the universal cover of 

with induced affine metric h and cubic form C. This immersion is unique up to an 
equiaffine transformation of R 3. 

3 Affine Spheres and their associated families 

Working with the shape operator S (see 1.3) is more complicated in the affine case 
than in the Riemannian case, since S may not be diagonalizable and its eigenvalues 
may not be real. But things should be more tractable if S = x I.  The Blaschke 
surfaces with this property are called affine spheres. If  S = 0, they are called 
improper affine spheres, if S ~= 0 proper affine spheres. 

Proposition 3.1. I f  J: is an affine sphere, then 

~(p) = - x  ( f ( p )  - x o ) f o r s o m e x o  e I~ 3, i f ~  isapropersphere, (3.1) 

The vectors ~(p) E ]~3, p c 5 v are parallel to each other. (3.2) 

This follows from (1.6), since r = 0 and S = x I,  x constant. 
Note that (3.1) generalizes a well known property of  spheres: all normals meet 

in one point. 
We will restrict our attention to proper affinc spheres. Therefore we can assume 

= - H  f ,  (3.3) 

where H = l tr(S) : ~ --+ R is called the affine mean curvature. 
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Remark 3.1. If  S -~ 0, equation (1.3) yields that the affine normal ~ is a constant 
vector. The surfaces are special affine minimal surfaces (H  = 0). The moving 

frame equation for these surfaces can be integrated explicitly (see [1 ], p. 216). 

By our assumption, the affine mean curvature is constant and different from zero. 
We need to study the moving frame equations (2.29) in more detail. We will assume 
from now on that 5~ is a proper affine sphere with K < 0 and that we have asymp- 
totic line parameters as global coordinates. 

We normalize the factor - H  in (3.3) to be H = - 1 :  In view of (2.28) we can 
scale the surface U in ]I{ 3 SO that H = d : l .  Changing u -+ - u ,  v ~ v if necessary 
we obtain 

Without restriction of the generality we will assume H = - 1. (3.4) 

Also note that (3.3) shows in view of (3.4) that the immersion f is an affine normal. 
Therefore, in the moving frame equations (2.29) we can replace ~ by f .  Thus for 
the moving frame (fu, fv,  f ) t  we obtain the system of equations 

fv / , (3.5) 
f u 

( : : / ( 0  0 
B e -~ o)v . (3.6) 

\ f ] v  \ 0 1 

The compatibil i ty conditions (2.30), (2.31), (2.32) consequently are 

O)uv = e ~~ - A B e -2w. (3.7) 

Av = Bu = 0. (3.8) 

In this setting we have (see e.g. [1], w together with p. 211) 

e ~~ = det(fu,  fv,  f ) .  (3.9) 

The coefficients A, B occurring in the previous section are the coefficients of  the 
cubic form C = Adu 3 + Bdv  3 (see [1]) introduced in (2.20). One can show [1], 
w 123 

A 2 = det(fu,  fuu, fuuu), (3.10) 

B 2 = - det(fv,  fvv, fvvv). (3.11) 

This means geometrically that A 2 and - B  2 are the "windings" of  the curves v = 

constant and u = constant respectively. 
Away from points, where A or B vanish, one can reparametrize the asymptotic 

coordinate u ~ h(u), v -+ g(v) so that locally A = B = 1. Geometrical ly this 
means that the asymptotic lines are parametrized by affine arc length [14]. 

Points, where A or B vanish, are planar points of the curves f ( u ,  vo) or f (uo,  v) 
respectively. 

Actually, if A = B = 1, then (3.7) becomes 

Wuv = e ~~ -- e -2~ (3.12) 
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This is the Tzitzeica equation, named after the Rumanian mathematician G. TZI- 
TZEICA, who first found and investigated this equation. His goal was a classification 
of  all tetrahedralian surfaces 

2 2 2 
axe- + b y . ~  + c z  .~ = 1. (3.13) 

For a more detailed discussion of  the connection between affine spheres and tetra- 
hedralian surfaces see [8]. 

TZITZEICA already noticed that (3.12) admits 1-parameter families of  solutions, 
l since u ~ ot u, v ~ ~ v leave the equation (3.7) invariant. Thus we obtain moving 

frame equations, where the coefficient matrices also depend on the additional real 
parameter ~. The set of  surfaces fu associated with this parameter c~ form the 
"associated family" of  an affine sphere. Any fa  is obviously also an affine spheres. 

To make these coefficient matrices particularly simple we "gauge" the moving 
frame and replace ot by ~. = ,;}~. We set 

~P (~., u, v) = 0 )~ e -~ 

0 0 

and obtain (!o! / (Oo 
dpu(~.,U, l l )~ (~ . ,U ,  l j)_ 1 = O)u --1 + ~. 

2 0 e~~ 

A e -O9 

0 
0 

/oOi/ /o o qbv(~., u, v) qb(~., u, v) -1 = w--v-v 1 + ) - 1  B e -~~ 0 

2 0 0 e ~~ 

We call further qt, the modified f rame  of the affine sphere f .  

(3.14) 

0) 
eWo2 , 

(3.15) 

(3.16) 

Lemma 3.1. Let  w be a solution to (3.7) smooth at u = v = 0 and satisfying (3.8). 
Then after scaling, the coordinates with constants we can assume w(O, O) = O. 

Proo f  Define 3 = e w(~176 Then in the new coordinates s = ~ u, t = 8 v we 
obtain 

e "(u'v) dudvl(..v):(o,o) = ds dtl(.,,)=(o,o), 
i.e. the coefficient of  the affine metric in the new coordinates 

~o(s, t) = w(u ,  v) - 2 In(g) 

satisfies (5(0, 0) = 0. []  

4 Twisted loop groups associated with affine spheres 

In this section we discuss the dependence of  the modified frame ~b on ~. in more de- 
tail. It will turn out to be occasionally useful for our purpose to extend the orginally 
real parameter ~. so that arguments from complex analysis can be applied. This can 
be easily done, since in the differential equations considered the occuring ~.'s can be 



234 J. Dorfmeister and U. Eitner 

allowed to vary on most of the complex plane. For geometric evaluations we will 
always restrict to real ~.'s. 

First we note: 

Theorem 4.1. Every solution �9 to (3.15) and (3.16) with initial condition 
�9 ()~, O, O) = I is analytic in )~ ~ C* = C \ {0}. Moreover 

�9 (2, u, v) = ~(~., u, v), 

Q qb(e ~., u, v) Q-1 = qb(~., u, v), 

T [ * ( - ) ~ , u , v ) - l ] t  T = * ( ) ~ , u , v ) ,  

(4.1) 

(4.2) 

(4.3) 

where 

27rl 
E = e-~-, (4.4) 

Q = 82 , (4.5) 

0 

T = 0 . (4.6) 
0 

Proof For the first statement we note that the coefficient matrices in (3.15) and 
(3.16) are obviously analytic in ~. c (2*. Therefore also the solution is analytic in 
)~ c C*, since the initial condition is analytic in ~. c C*. To verify the equations (4.1) 
to (4.3) it is sufficient to verify the "corresponding equations" for the coefficient 
matrices, where these corresponding equations are obtained by differentiating qb for 
some additional parameter t at t = 0 (see Lemma 4.1 below). [] 

For the purpose of  this paper we need to apply "loop group methods". Usually, 
for such methods ~. E S 1 = {/z ~ C I I#] = 1 }. Since the modified frames used in 
this paper are defined for - and uniquely determined by their restriction to - ~. 6 S 1 , 
we do not lose any generality by considering qb as a map from S 1 to S1(3, C). For 
applications to affine spheres we will always extend the matrix functions occurring 
from S 1 to C* and restrict to R* = C* C~ II{ = R \ {0}. 

By G[kI we denote the group of  continuous maps ~ : S 1 --+ Sl(3, C) satisfying 
for all ,k ~ S 1 

0(2)  = ~P00, (4.7) 

Q ~ ( s  ~.) Q 1 = ~()~), (4.8) 

T [ ~ ( _ ) , . ) - l ] t  T -~- 1,b'(~.), (4 .9)  

For the Fourier expansion �9 (X) = Z ~ .  k 0k we have y~ll~P~ II < ec. (4.10) 
k~Z keg 
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For an arbitrary function h()0 we define a norm by setting 

Ilhll = ~-~[hkl, i fh(Z) = Z X  k hk. (4.1 1) 
k~Z k c Z  

The space ,A of all functions for which (4.1 l) is finite is a Banach space ("Wiener 
algebra"). For an arbitrary matrix function A = (a(i (L)) we set 

IIAII = mjax{ Zl la i  j [11 (4.12) 
i 

It is straightforward to verify that the set of matrix functions for which (4.12) is 
finite is a Banach algebra. Moreover, 

A Sl(3, {2) = {A(~.) I det(A) = 1} is a Banach Lie group, (4.13) 

The group G[~.] is a Banach Lie group. (4.14) 

For later use we note the straightforward 

Lemma 4.1. The Lie algebra Lie G[~.] consists of the matrix functions 

kEZ  

such that 

~(~) = ~ ( ~ ) ,  (4 .15)  

Q ~(e  )~) Q- I  = ~(Z), (4.16) 

- T  ~ ( - ~ ) '  T = ~p(~.), (4.17) 

trace 0P()Q) = 0. (4.18) 

More specifically, the ~k are the form 

,0 a0i/ ( ~176 / 0 3 

0 a23 0 

(i O a3, O 00) 
~'6k+2= - a 1 3 0 0 0 ) ,  ~6k+3=  ~00 allo - -2al l  ' 

(000o I (0o013) 
1/.r6k+4 = 0 3 , l P 6 k +  5 m_ 1 0 . 

- - a 2 3  0 a13 

(4.19) 

Proof Differentiation of the defining equations for G [k] for an additional parameter 
t at t = 0 ,  ~p(t = 0, L) = I, yields (4.15)-(4.18). Conversely, if 7t(~) satisfies these 
equations, then exp(t ~p().)) c G[~.] as is easily verified. [] 

An essential part of our method is the decomposition of a matrix in G[~.] into a 
product of more special matrices. To this end we introduce the following Banach 
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Lie subgroups 

G(+)[X] = {~ c G[~.] ] ~0 = I and ~Pk = 0 i fk  < 0}, (4.20) 

G(-)[~.I = {~p e G[~.] ] ~P0 = I and ~Pk = 0 i fk  > 0}, (4.21) 

G (~ = {~p e G[~.] ] ~ diagonal }. (4.22) 

The corresponding Banach Lie algebras are 

LieG(+)[X] = {Tt ~ L ieG[X]  ] ~k = 0 i f k  < 0}, (4.23) 

LieG( - ) [X]  = {Tt E L i e G [ X ] I  @k = 0 i f k  > 0}, (4.24) 

Lie  G o = {~  ~ L i e  G[X] I ~ diagonal }. (4.25) 

In the following sections we will generalize the Birkhoff Decomposition Theorem 
to our situation. To this end we introduce somewhat larger groups 

G(+)[~.] = {~p e G[X] I ~Pk = 0 i fk  < 0}, (4.26) 

G(,-)[Xl = {$ 6 G[XI I ~k = 0 i fk  > 0}. (4.27) 

Similarly we define A (• Sl(3, C) and A(, i )  Sl(3, C). Clearly, the ,-groups only 
differ in ~P0 from the un-starred groups. 

First we recall the classical 

Theorem 4.2. (Birkhoff Decomposition Theorem) 

A c) = UA , c).D. A '  c) (4.28) 
D 

where D = diag()~ a, X b, Xc), a > b > c. 

A ( - ) S I ( 3 ,  C) .  A~+)s / (3 ,  c )  (4.29) 

is open and dense in A Sl(3, C). Moreoevr, g_ D g+ = ~_ D ~+ implies D = D, 

g_ = ~_ v_ , g+ = v+ ~+, where D -1 v_ D = v+ e A(,+)sI(3, C). 

Note that in (4.28) we can interchange -I- and - and in (4.29) we can move the 
"*" to either side. This also holds for the Birkhoff Decomposition Theorem stated 
below. The proof of this theorem will be indicated in the Appendix. 

Theorem 4.3. (Generalized Birkhoff Decomposition Theorem) 

G[~.] = U G(*-)[~'I D G~+)[~.] (4.30) 
o 

where D is one o f  the matrices 

D = diag(co ~3 k, ~.-3 k, CO) (4.31) 

where k is odd i f  co = - 1  and k is even i f  co = 1. (0 c0 3 +100/ 
D = -X  -3k-1 0 (4.32) 

0 0 co 
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where k is even if co = 1 and k is odd if co = -1 .  Moreover, the decomposition is 
unique in the sense that g_ D g+ = g_'  D' g+' implies D = D' and g_ '  = g_ v_, 
g+~ = v+' g+, where D -1 v_ D = v+. 

In addition we have 

G (-) [Z] �9 G(. +) [~] is open and dense in G [~]. (4.33) 

The multiplication map G(-)[~]  • G~+)[~.] --+ G(-)[Z]G~.+)[3.] is 
(4.34) 

an analytic diffeomorphism. 

5 Potentials for affine spheres 

We return to the discussion of affine spheres. We recall from Theorem 4.1 that the 
modified frame ~(~., u, v) attains values in G[M and satisfies the modified moving 
frame equation (3.15) and (3.16). We also recall that we assume w.r.g. ~ 0-, 0, 0) = 
I. 

In view of Theorem 4.3 we would expect that ~(~., u, v) is for "most  (u, v)" in 
the "open cell" 

[2 = G(-)[)~] �9 G (~ �9 G(+)[X]. (5.1) 

To make this precise, we consider the "singular set" 

= {(u, v) e D I ~(;~, u, v) r s2}. (5.2) 

and prove 

Proposition 5.1. I f  f : D ~ I~ 3 is an affine sphere and if  f is analytic, then the set 
is the set o f  zeros o f  a non-constant real analytic function and is nowhere dense 

in D. 

Proof  We follow the procedure of  [5] and consider the representation Jr of  G[~] C 
A Sl(3, C) in the group of automorphisms of an infinite dimensional Grassmannain 
Gr. If  r denotes the canonical section of the det* bundle over Gr, then we consider 
the map ~o(u, v) = r(~r(g(~, u, v) �9 H+)) .  It is known that g(~,  u, v) ~ f2 iff 
~0(u, v) = 0. Since ~o(0, 0) r 0, ~o does not vanish identically and ,$, as the set of  
zeros of  a real analytic function, is of  the type stated. [] 

Remark 5.1. We would like to point out that the immersion is analytic if the affine 
metric is definite, since then the defining equation is elliptic [1], w In our case 
the metric is not definite and the defining equation is hyperbolic. Using the standard 
theorem on the solvability of  hyperbolic partial differential equations [2], pp. 319, 
we obtain, that under certain circumstances the affine sphere can be real analytic, 
but will not be real analytic in general. Namely, considering a Goursat problem to 
solve equation (3.7) with initial values on the characteristic rays u > 0, v = 0 and 
v > 0 ,  u = 0 which are continuous but not differentiable on all these rays. The 
uniqueness theorem of the solution (see [2], pp. 319) yields a solution for the affine 
metric that is continuous by not differentiable at least on the points of  the boundary. 
The same uniqueness theorem can be used to extend the solution in a small strip of  
the characteristic rays. This solution is clearly not differentiable on all this strip. 
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The discussion in the rest of the paper only applies to (u, v) E D \ -$ O ,$*, where 

~* = G(+)[X] �9 G O. G(-)[X] (5.3) 

-8' = {(u, v) E D I ~(X, u, v) # f2*}. (5.4) 

The following is obvious now 

L e m m a  5.1. Let �9 be the modified frame of an affine sphere and (u, v) E D\-$ U-S*. 
Then there exist uniquely determined V (+) E G(+)[X] and L (• E G o. G(• such 
that 

qb = L (+) V (-) = L (-) V (+). (5.5) 

nary differential equations 

d V (-) (V(-))  -1 = ~ - l ( t ~ + ) ) - I  O w 0 L ( 0 + )  ) - 1 Z  (-) 
dv 

e~O/2 

(5.8) 

with initial condition V(-) (v  = O) = I. 

Proof Differentiating the second equation in (5.5) and sorting terms yields 

dV(+) (V(+0-~ = ( L ( - 0 - 1 d |  |  L(-)  - ( L ( - ) ) - I  dL  (-~ . (5.9) 

In this equation the coefficient matrix of dv on the left side only involve positive 
powers of ~,, while on the right side we obtain in view of (3.16) only non-positive 
powers of X. Therefore 30 V (+) = 0 and V (+) only depends on u. Next we compare 
the coefficient matrices at du. On the left side only powers )~k, k > 0, occur. On the 
right, in view of (3.15), only one term with positive power of ~ occurs (namely ~1). 
This yields (5.7), proving a.). Part b.) is shown analogously. [] 

We will call every pair of matrices T (+), T (-) of the form (5.7) and (5.8)potential 
(for an affine sphere). 

We will frequently write 

L (+) = L~ +) L (+), where L~0 +) E G O and L (+) E G(+)[X]. (5.6) 

The matrices V (+) inherit "moving frame equations" from q~: 

Proposi t ion 5.2. Let cb be the modified frame of an affine sphere and let V (~) be 
defined by (5.5)for (u, v) E D \ 8 0 8* Then 

a.) V (+) does not depend on v and satisfies the following linear system of ordi- 
nary differential equations 

( 0 0  Ae-~ ~ / )  
d V(+)(V(+)) - I  = X(L~-))-I  0 e 2 L~ -) = XT (+) (5.7) 
du 

e w/2 0 

with initial condition V (+) (u = O) = I. 
b.) V (-) does not depend on u and satisfies the following linear system of ordi- 
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6 Frames of affine spheres modulo gauge 

So far in this paper we have started from an affine sphere and have considered dif- 
ferential equations for the modified frame and other associated objects. In the next 
sections we will start from associated objects ("potentials", see below) and construct 
affine spheres. For this we prove the crucial observation 

Theorem 6.1. Let (0,0) ~ D C ]~2 be a domain and ~/, I/ �9 D --~ LieG[X] 

continuous maps of  the form ~/ = ~/o + X ~/1, I/ = I/o + X -1 I/1. We assume that the 

coefficient functions (U1)23 and (V1)t3 never vanish on D. Assume moreover that 
the differential equation 

d ~ p ~ p - t = { ( ~ Y o + X ~ Y l ) d u + ( ~ ' o + X - ' I / t ) d v }  (6.1) 

with initial condition ~p(O, O) = I is solvable, then there exists a "gauge" C c G (0), 

uniquely determined up to sign, such that ~ = C ~P C(O, 0) -1 is the modified frame 
o f  an affine sphere satisfying also q~ (X, 0, 0) = I. 

Proof  We note that due to the assumption that ~,' and V take values in the Lie 
algebra LieG[X] we have in U and ~' the same distribution of zeros as in (3.15) 

and (3.16). We want to o b t a i n  (~ r l )23  = (V1)13 > 0. The sign can be adjusted, 
if necessary, by changing u --* - u  and / or v ~ - v .  Introducing a gauge C as 
stated in the claim yields new maps U, V �9 ID --~ L ieG[M where U = 3uC �9 

C - I + C U C  - t a n d V = o v C . C  - I + C ~ ' C  - 1 . I f C = d i a g ( r , !  1 ) ~ G  (~ 
r ~ 

(V1)13 = r(l~'t)13 and ( U 1 ) 2 3  : r-1(b'D23, These two coefficients are the same iff 

r2 : (~J1)23 [(V1)13] -1. By our assumption, this equation can be solved with some 
positive r. 

Now we s e t  e r ~  = ( U 1 ) 2 3 ,  A = ( U 1 ) 1 2  �9 ((U1)23) 2 and B = (VI )21  �9 ( ( V 1 ) 1 3 )  2. 

Then U1 and V1 are of the form (3.15) and (3.16). Note also that U, V c LieG[X] 

(l I implies, that Uo and V0 are of the form oto -1 and flo 1 respectively. 
0 0 

The compatibility condition for the solvability of (6.1), i.e. for 3u �9 = U q~, 3v �9 = 
V ~ is 3vU-Ou V = - [ U ,  V]. Collecting terms at like powers of X this is equivalent 
with - 3 , V 1  = -[U0, V1], OvUo - 3,Vo = -[U1, VI] and 3vUt = - [U! ,  V0]. In 
terms of the matrix coefficients the first and the third equation are equivalent with 

O) u 
oto = ~ - ,  O, ( B e  -~~ = - 2 ~ o B e  -~~ (6.2) 

O) v 
~0 = ~ - ,  3v (a  e -~~ = - 2  floa e -w. (6.3) 

Note that this fixes U0 and V0 in the form required by (3.15) and (3.16). The remain- 
ing conditions are equivalent with 3uB = 0 and OvA = 0. The remaining matrix 
equation is now equivalent with Wuv = - A  B e -2w - e w, i.e. with (3.7). [] 

Remark 6.1. The definition (3.14) of �9 shows that the affine sphere (immersion) is 
given by the last row of ~.  Since C does not effect this last row, the immersion f 
can be read of already from +. 

As a corollary to the proof above we obtain 
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Corollary 6.1. We retain the assumptions of  the Theorem above and denote the 

rows of + by + j. Then C = I iff 

(+3) u = )~Ot +1 and (+3)0 = I. -1 ot +2 (6.4) 

for some positive function or. 

Proof Taking into account the form of the matrices U'j, Vj we see 

(+3)u = ). (s +1 and (+3)v -=. ).-1 (gl)  13 +2. 

This implies the claim. [] 

Remark 6.2. If the Corollary applies, then ot = e '~ Moreover, if the coefficients 
in (6.4) are cr and 13 respectively (instead of or), then the gauge C = diag(r, r -1 , 1) 
yields & = ot r = /3  r -1 = e ~ whence 

ot 13 = e C~ (6.5) 

7 Weierstrag representation for affine spheres 

Using the results of Section 6 we are able to reverse the construction outlined in 
Section 5, i.e. we will construct affine spheres from given potentials. This is the 
crucial result for this paper. 

Theorem 7.1. Let ot (+), t3 (+) be functions of  u ~ II), and o~ (-), /3(-) functions of 
v ~ Dr, such that ot (+) and ot (-) never vanish. We form the matrix functions 

T ( + ) ( u ) =  0 ot ) , (7.1) 
~(+) 0 

T ( - ) ( v ) =  13 ) 0 
~(-)  

(7.2) 

and consider the systems of  ordinary differential equations 

4 9  (+) = )~ T (+) 9 (+) (7.3) 

d g ( - )  = ) -1  T (-) 9 (-) (7.4) 

with initial conditions 9(+)(u = 0) = I and 9 ( - ) ( v  = 0) = I. 
Then 9 (+) ~ G(+/[M, 9(-1 ~ G(-)[)d and, after changing u ~ - u ,  v ~ - v  

if necessary, on the set 

I~ = {(u. v) e D, x e~ I v<-)(v) (9(+)(u))  -1 e a(,+)[Zl �9 a( ,-)[zl}  

we can find differentiable solutions {(• 6 G(+)[).] such that 

(L(+)) - 1 L  (-) = 9 (-) (9(+))  -1 (7.5) 

+ = i (-) 9 (+) = L (+) 9 (-) (7.6) 
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satisfies (6.1). In particular, there exists a gauge C E G (~ such that with Co = 
C(O, 0), r = C + Co I is the frame of an affine sphere. The matrices L (+) and 

V(+)of(5.5) then are L (+) = C L (+) CO 1, V (+) = Co 19(+) C -1. 

Proof On ]I]) we split (~(+))-1 L(-) = V (-) (V (+)) 1 with L (+) 6 G(+)[~.]. This 

splitting is unique and produces differentiable L (+) by Theorem 4.3, (4.34). We set 
+ = L(-) 19(+) = L(+) 19(-) and obtain 

d + .  +-1  = d L ( - )  . (L(-)) -1 _[_ i ( - )dV(+)  (V(+)) -1 (L(-)) -1 (7.7) 

d + "  +-1  = d i ( + )  . (L(+))-I q_ ~ ( §  (-) (g ( - ) )  -1 ( t (+ ) ) - l .  (7.8) 

Comparing these two equations we see that (7.7) contains only powers Zk, k < 1, 
while (7.8) contains only powers U,  r > - 1. Therefore, d +  �9 +-1 is of the form 

d+ . +-1 = ()~ []1 q- (JO) du + () - l  191 + 190) dv (7.9) 

with 0 = ~. 0"1 + t)0, 19 = ;~-1 191 + 190 c LieG[;q. 
Moreover, we note that due to our assumptions the coefficient (191)13 and the 

coefficient (0)23 never vanish on ]I]). Therefore we can apply Theorem 6.1 and 
after using a gauge C E G (~ if necessary, ~ = C + C(0, 0) - t  is the modified 

frame of an affine sphere. In view of (7.6) we set L (+) = C L (+) C(0, 0) - l  and 
V (i) = C(0, 0) 19(+) C -1 for the matrix functions defining (1) as in (5.5). [] 

Remark 7.1. The proof constructs an affine sphere in a unique fashion from T (+). 
More generally, an affine sphere is produced by two potentials T 0:) and T(+) only, 

if the corresponding + and (I) only differ by a gauge. But this is equivalent with 
1 ?(+) = Co T (+) Co t for some constant diagonal matrix Co. 

Conversely we have 

Proposition 7.1. Let T (+) and T(+) satisfy the assumptions of the Theorem above. 
Assume that there exists some constant matrix Co ~ G (~ such that 

T(+) = Co T (+) Co 1 and T(-) = Co T (-) CO 1. 

Then the potentials T (+) and T(~:) yield the same affine sphere. 

= (• 
Proof We follow the proof of the Theorem above. First we obtain V = 

Co 19(+) Co I and then R = 19(-) (19(+))-1 relates to the analogous/~ the same way: 
: ~(+) 

/~ Co R CO 1 . Then the choices for the L's yield necessarily = Co L (+) Co 1 

7(-) L(_) t~ = Co+Co 1. The choice and consequently L = Co Co t. Therefore, 
of gauge used to obtain the modified frame of an affine sphere is as explained in 
the proof of Theorem 6.1. This shows that the choices of gauge s and C for 

(~ and + is so that C : C CO 1 holds. But then 6"(0, 0) = C(0, 0)CO 1 and 

+ = CqbC(0,0)  -1 = C C o  1 C 0 + C o  1C 0C(0,0)  -1 = C + C ( 0 , 0 )  -1 = dO. [] 
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Corollary 7.1. There is a bijection between the family of affine spheres and the 
potentials T (+), T (-) for which ot (+) (0) = a ( - )  (0) > 0. 

Remark 7.2. Potentials of  this type will be called normalized potentials. 

Proof of Corollary 7.1. Since every normalized potential produces an affine sphere, 
we have a well-defined map ~o from normalized potentials to a n n e  spheres. Let 

be the modified frame of an a n n e  sphere and 2~(+), 2 (-) potentials for O. Then after 
conjugation with some Co e G (~ we can assume a(+)(0) = or(-)(0) > 0. In view 
of Proposition 7.1 the conjugated potential yields the same a n n e  sphere qb. Thus 

~o is surjective. Finally, let i ?(+), i? (+) be two normalized potentials producing the 
same a n n e  sphere, then, as outlined in Remark 7.1, the two potentials are conjugate 

by some Co e G (~ Since 27 (i) and T (+) are normalized, Co = I follows. Therefore 
~o is also injective. [] 

8 Geometric interpretation for the coefficients of T (+) 

The discussion so far has shown that for every affine sphere we obtain matrices 
A + T (+) of  the form (5.7) and (5.8). Conversely, Theorem 7.1 shows how from such 
matrices we can construct an a n n e  sphere. 

Theorem 8.1. Let cO be the modified frame of an affine sphere defined on D = 
ID, x I~v, satisfying q)(A, 0, 0) = I. Then the coefficientmatrices T (+) and T (-) in 
(5.7) and (5.8) respectively, obtained from V (+) and V (-) defined by (5.5) have the 
form of(7.1) and (7.2), where 

a(+)(u)  = e ~~189176176 (8.1) 

~ ( - ) (v )  = e ~176189176176176 (8.2) 

fl(+)(u) = A(u) e -2~176176176176 (8.3) 

f l ( - ) (v)  = B(v) e -2~176176176176 (8.4) 

Proof Let L (+), V (+) be defined by (5.5). Then 

L(+)(u, 1)) - 1  dP(tg, 1)) : V ( - ) ( u ,  1)) 

and 

L(-)(u,  v) -1 qb(u, v) = V(+)(u, v). 

Since ID is a product, we can put u = 0 and v = 0 respectively, obtaining 

L(+)(0, v) -1 qb(0, v) ---- V(-)(v)  (8.5) 

L(-)(u,  O) -1 C~(u, O) = V(+)(u). (8.6) 

If  u is fixed in (3.1 6), e.g. if u = 0, then one obtains an ordinary differential equa- 
tion for X(v, A) = qs(A, 0, v) with initial condition X(0, L) = I. Hence X(v, A) 
contains only the powers A k, k < 0. Therefore, in (8.5) the matrix L(+)(0, v) = 
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is diagonal and independent of ~.. With D(v)  = L(+)(0, v) and L~ +) (0, v) 
X(v ,  )~) = 4p()~, O, v) we then obtain from (8.5) by differentiation 

d ~ W ( - ) ' ( V ( - ) ) - l = - D - l d ~ V + V - l d - ~ X ' x - l v .  (8.7) 

With D = diag(0, 0 -1, 1) this yields 

Ov O)v 
0 2 ' (8.8) 

fl(-)(V) ---- 0(V) 2-  B ( v ) e  -~176 (8.9) 
~o(0,v) 

a(-)(v)  = e 2 (8.10) 
O(v) 

fo fo Since L~ +) (0, O) = I, we integrate ~ l n  0 dv = _ 1  Ovwdv and obtain 

lnO(v) = 1 (~o(0, v) - co(O, 0)).  

Therefore 

0 (v) = e -  �89176 (8.11) 

fl(-) (v) = B(v)  e -2~~176176176176 (8.12) 

o~ (-) (v) = e ~176189176 (8.13) 

Similarly, from (8.6) we obtain in view of (3.15) L (-) (u, 0) = L~ -) (u, 0) = S(u) = 
diag(O, 0 -1, l) and the equation 

du'lV(+)" (V(+)) -1 ---- - S - I  3~u S + S-1 ~q ) (u ,  0) (qb(u, 0)) -1 S. (8.14) 

This is equivalent with 

/~u O)u 
- ( 8 . 1 5 )  

0 2 '  
fl(+)(u) = 0 -2 A(u)  e -~176 (8.16) 

a>(u,O) 
ot (+) = O(u)e  2 (8.17) 

As above this yields 

O(u) = e�89 (~~176176176 (8.18) 

fl(+)(u) = A(u)  e -2~~176176176 (8.19) 

oe (+) (u) = e~~176 <~176176 (8.20) 

This finally gives the claim. [] 

The definition of a normalized potential together with (8.20) yields 

Corollary 8.1. I f ( T  (+), T (-))  is a normalized potential, then ot (+) (0) = or(-)(0) = 

e�89 ~~176 for  the associated affine sphere. 
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Corollary 8.2. Let T (+), T (-) be any special potential for an affine sphere. Then 
w(O, O) = 0 iffcr(+)(O) = ot(-)(O) = 1. 

The second comment gives some geometric meaning to the special potentials for 
affine spheres. 

Proposition 8.1. Let (T (+), T (-)) be a normalized potential for an affine sphere 
and @ the associated modified frame. Consider the matrices V (=1=) = (v~))  satisfy- 

ing d~V (+) = ~.T(+)V (+), d v ( - )  = 3.-1T(-)V (-). Then 

/ (+) "~ 
Iv31 (u) 

y(+)(u) = / (+)(u)] 
/1)32 / (+) 
\I)32 (U)] 

(8.21) 

(8.22) 

are the asymptotic lines on the affine sphere corresponding to v = 0 a n d  u = 0 

respectively. 

Proof Using (8.1 1) and (8.18) respectively one finds 

[e-�89 (~~176 0 O1 ) 
L(+)(O, v ) =  D = ~ O0 e�89176176 ' 

L(-)(u,  O) = S = e-�89 . 

0 

Now usig ((I)31, @32, qb33) t : f in (8.5) and (8.6) respectily yields the claim. [] 

Remark 8.1. By the Proposition, giving a potential fixes two transversal asymptotic 
lines. The splitting procedure leading to q~ then "flls in" the rest of the surface. 

From the point of view of the differential equation (3.7) the potential gives es- 
sentially the boundary values along the curves u = 0 and v = 0. This is made more 
explicit by Theorem 8.1. 

9 Examples 

Even though the results of the previous sections give a 1-1-relation between special 
potentials and affine spheres, making this relation explicit is a different matter. 

We start with the easiest case from the potential side point of view. We would 
like to emphasize that all the surfaces considered in this section are assumed to be 
affine spheres. 
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9.1 A = B = 0. Assume that for a normalized potential (T (+), T (-))  we have 

Assume A = B = 0. (9.1) 

In addition, by Lemma 3.1, we can assume w. r. g. that co(0, 0) = 0 holds. 
Form [14] we know that these are ruled surfaces and are defined by quadratic 

equations. We will obtain this result by following the procedure outlined in (the 
proof of) Theorem 7.1. 

We start from the normalized potential (T (+), T( - ) ) ,  which due to Theorem 8.1, 
is of  the form 

o 

T (+) = 0 
e c~ 0 (!o 

T (-)  = 0 
eo~(o,o) 

o) 
ea'o'O) = e w(u'O) A I ,  

eWo, V) . = e  ~~ B1. 

o}  

(9.2) 

(9.3) 

We note 

T (+) and T (-) are nilpotent of  order three. (9.4) 

Setting 

fo UeW(S O) ds,  se(u) = :' (9.5) 

fo ( ( v )  = e '~176 dt ,  (9.6) 

we thus obtain for s 

s = exp(se(u) ,k A1), 

l ) ( - ) (v)  = exp( ( (v)  ~-1 nl) .  

(9.7) 

(9.8) 

Following the construction of Theorem 7.1 we need to consider s  (~(+))-1 = 
L. Clearly, L does only contain powers ~.k for - 2  < k < 2. Therefore, in 

(~,(+))-1 /%(_ ) = L (9.9) 

the two factors only contain ~0, ~1, )2 and ,k ~ ~-1, ~-2 respectively. An Ansatz 

~,(+) = I + X 0 + 2. 2 0 
/h 0 0 
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and similar for/~(-) = D (I + ~ - l  U + ~-2V)  with a diagonal matrix D yields 

2 ~. ~(u) A1}, 
L(+) = exp 2 - ~(u) i (v)  

{ 2 ~ ' - l ( ( v )  B I } ,  
L (-) = exp 2 - ~(u) ~(v) 

D = diag( 1 (2 - ~(u) ((O)) 2, 4 (2 - ~(u) i(V)) -2, 1). 

For (~ = L (+) 1~'(-) = L(-)  1~ '(+) we thus obtain 

eo(~., u,  v)  = 

C 

i2(V) t(V) 
1 

2~. 2 ~. 

2 ~(u)2 ~2 4 4~(u)  

(2 - ~(u) ~(v)) 2 (2 -- ~(U) ~(1))) 2 (2 -- ~(U) ~(1))) 2 

2~(u) ~. 2 i (v)  2 + ~(u) i (v)  

2 - ~(u) if(v) ~. (2 - ~(u) r 2 - ~(u) ~'(v) 

(9.10) 

(9.11) 

(9.12) 

C-1 (0, 0), 

(9.13) 

where 

e �89 (~o(u,0)-~o(0.v)) 
C = d i a g ( r , l , l ) ,  r = 2  2 - ~ ( u )  i (v)  (9.14) 

Recall (see also Remark 6.1) that the definition (3.14) of qb implies that the affine 
sphere (immersion) is the last row of q~ 

( 2 ~ ( u )  
1 2Z - l i (v)  / (9.15) 

f ( u ,  v) - 2 - ~(u) •v)  2 + ~(u) t ( v ) ]  

It turns out that the surface is a quadric, given by the equation 

z 2 = 2 x y  + 1. (9.16) 

We can use f ( u ,  v) to compute the general solution of the Tzitzeica equation for 
A = 0 o r B  = 0 .  I t is  

e ~ = 4 ~'(u) ~'(v) (9.17) 
(2 - ~(u) t(v)) 2' 

where ~' and ~" denote the derivatives of ~ and ff respectively. 

9.2 Genera l  ruled surfaces. General ruled surfaces are defined by 

A �9 B ~ 0 on all the surface. 

In this case the Blaschke metric is still of the form (9.17). We now discuss the case 
when only one of the differentials Adu 3 or Bdv  3 vanishes identically. W.l.o.g. we 
assume A ~ 0. 
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Let f " M 2 --+ ll~ 3 be an immersion of such a ruled surface. Then (3.5) imply 
e -~ fu = Y (v). Another differentation of this identity with respect to v compared 
with (3.5) yields the general formula for ruled surfaces 

f (u, v) = wu(u, v) 2/(v) + y'  (v) (9.18) 

which was first found by RADON [12]. Identity (3.9) implies det(y, y' ,  y") = -1 .  
Moreover, the second derivative fvv yields by (3.5) the following constraints on 2/: 

t t t  ,. 2 _ 2 (9.19) g = o t g + f l g ,  ot=B+covCOvv-COvvv, f l=co  v COw. 

Locally we can consider s e = u, ~" = v. In terms of these coordinates one finds 

f (u, v) = 2 u  yz-ff7 y(v)  + y (v), with y'"(v) = B(v) y(v).  (9.20) 

B -= 0 is included in the above construction. For the curve g one obtains 

/ 
y(v, = [ 2 f f / : y , l  (9.21, 

In this case the whole surface family (9.15) can be obtained by 

~(u) ~ X~(u), if(v) ---, ~ if(v). (9.22) 

Remark 9.1. Due to Corollary 7.1 the immersions for ruled surfaces are obtained 
from certain normalized potentials. In view of (5.7) these are exactly the potentials 
for which T(~ -) = 0. 

Appendix 

The goal of this Appendix is to outline the proof of Theorem 4.3. 
We consider the three automorphisms of A Sl(3, C) 

(~Ol g) (X) = T [g(_)~)t]-t T, (a . l )  

(~02 g) ()~) = Q g(e x) Q- l ,  (A.2) 

(q)3 g) (X) = g(2), (A.3) 

where T and Q are given in (4.6) and (4.5) respectively. 
On the Lie algebra level we obtain the automorphisms 

(r g) (X) = - T  g(-,k)' T, 

(~b2 g)(X) = Qg(eX) Q-I ,  

(~3 g) (k) = g(~.). 

Note that ~b2 and ~b3 
Mat(3, &). 

(A.4) 

(A.5) 

(A.6) 

actually are automorphisms of the associative algebra 
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It is straightforward to check 

q)l o q)2 = q92 o q)l, q)l o ~03 = ~3 o q)l, 

We are interested in 

q9 2 0  ~0 3 = q9 3 o r 2 . ( A . 7 )  

G[~] = Fix(qgl) f) Fix(go2) f) Fix(~03), (A.8) 

where Fix(~0j)= {g E A S/(3, C) [~ojg = g}. 

~Ol, ~P3 have order 2 and ~o2 has order 3 (A.9) 

99 = ~01 o ~02 has oder 6 and we have Fix(~o) = Fix(~oO N Fix(~o2). (A. 10) 

The analogous statements hold on the Lie algebra level. 
For the proof of  Theorem 4.3 we will use methods and results from Kac-Moody 

Lie algebras. If  ~bo denotes the restriction of ~b to g = sl(3, C) the "constant" 
matrices i n / ~  sl(3, C), then a comparison with [9], Section 8.1 shows 

Fix(~b) = L(g, ~b0). (A. 1 1) 

This allows us to exploit [9], 8.1 and [6], 10.5. 
It is easy to see that ~b0 is an outer automorphism of sl(3, C). Therefore, [9], 

Theorem 8.5, [6], Theorem 5.13 

L(g, ~o) ~-- L(g, Iz) (A.I2)  

where # is a standard outer automorphism of sl(3, C). In particular, L(g, ~b0) is the 
�9 ( 2 )  

loop part of  a Kac-Moody algebra of  type A 2 . 
In such an isomorphism, positive roots go to positive roots. Therefore, in loop 

algebra realizations positive powers of  ~. are mapped to positive powers of ~.. 
Now the Birkhoff-Decomposition Theorem for L (g, ~b0) follows from [10, 4], in 

the form 

Fix(~o) = U (Fix(cP))~-)" w .  (Fix(cp))~, +) , (A.13) 
wE'W 

where w denotes a representative in Fix(cp) for w E 3~, where W is the Weyl group 

of L(g, ?Po). 
W is finitely generated and the fundamental reflections generating "W have rep- 

resentatives 

wi = exp(f i )  - e x p ( - e i )  - exp(f i ) ,  (A. 14) 

where ei (resp. f / )  are representatives for the simple positive (resp. negative) root 
spaces. 

In Fix(~b) we set 

H0 = d i ag ( -1 ,  +1) ,  (A.15) 
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E0 

eo 

Fo 

fo 

Note these are the 
It is important 

contained in g[k] 

(oo ) (o,o) 
= o o  , E l =  oo , ( A .  16)  

1 0  0 0 0  

= XEo, el = XEI, (A.17) 

(o o) ( o  oo)  (A. 18) 0001 F1 = 1 
1 0 0  

= L-1 Fo, fl  = k -1 F1. (A.19) 

choices of [9], 8.2 associated with ~b0. 
to note that all the matrices listed in (A.15)-(A.19) are actually 
= L i e G [ ; q .  Moreover, since these matrices generate g[M, we 

obtain naturally a basis of Fix(~b) which is also basis for g[M. Moreover, "W per- 
mutes these basis elements. Therefore, the proof of [ 10, 4] carries through without 
change for g[X] and G[X]. This shows 

G[XI = U G(*-)[X]" w.  G~+)IXI. (A.20) 
t o ~ W  

We discuss ~ in more detail. From [9], Proposition 6.5 we know 

34; = W ~ 3" (A.21) 

where W is the Weyl group of the finite dimensional Lie algebra ~ C g[X]. Follow- 
ing the construction in [9], 8.2 - see also the warning in [9], 8.3 - we obtain 

- o ~_ s l ( 2 I ~ )  (A.22) g= 

3~ = {I, r}, (A.23) 

where T is given by (4.6). It remains 
From [9], 6.5 we know that 3" = 

6.5.3 and/k 1 is the root system for 
to,, where ot = �89 oq. Since ~ i ( c )  = 

to determine 3". 
{t~ ] a E �89 Z Xl}, where t~ is given by [9], 
(see [9], 6.2). Therefore, a generator for 3- is 
0, c the center of the Cartan algebra of g[M, 

[9], 6.5.5 shows ta(ot i)  = o t i  - -  ( o t i , o l )  3 - ~  o t  i - -  l cti a l l  a i l  8, i = 0, 1. Since 

ao = 2, a l  = 1, rio = 1, a l  = 2, a ~  2; = ( a i j )  = (_21 24), tc~(ot0) - or0 + 23, 
/ a ( ~ l )  ----- Ot 1 - -  23. Note 8 = 2oe0 + oq by [9], 6.4. In our realization a straight 
forward computation shows [e0, [e0, el]] = X 3 diag(R, R, -2R) ,  where R is ,k- 
independent. Thus the action of t~ preserves the position, but increases/decreases 
the ;~-power by six. Therefore, a generator for 3- is realized by a matrix of the 
form D = diag(ot X 3k, fl~3k, y), or,/3, X E IlL But D c g[;q is equivalent with 
T D  -1  T = D ,  whence (-1)/'/3 -1 = o~, y - I  = y. This yields the matrices in 
(4.31 ). Using (A. 14), (A. 17) and (A. 18) we obtain for W the explicit realization 

(i  i)J 34; = /1, 1 0 . (A.24) 
/ 

0 

In view of (A.21) this yields the additional matrices of (4.32). 
The uniqueness of the double cosets is part of [10, 4]. 
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Next we show that G(-)[~.] �9 G~+)[~.] is open and dense in G[~]. One way of 
proofing this is to observe that the proof of  [4], 3.5 carries through also over the 
field IR (instead of (13). Another proof  follows the argument of [3].: One considers 

the action p of G(.-)[~.I x G~+)[,kl on G[~.], given by (g_, g+) - g = g_ g g+t .  
It is easy to show that the image of the differential of  p has over w 6 W finite 
codimension # 0 if w # I. Therefore the corresponding orbits through w 6 W 
are locally closed and nowhere dense in G[~.]. The Baire Category Theorem now 
implies the claim. 

The final claim follows e.g. from [4], Corollary 3.1.4. 
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