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Random Walks on Diestel-Leader Graphs 

By D. BERTACCHI 

Abstract. We investigate various features of a quite new family of graphs, intro- 
duced as a possible example of vertex-transitive graph not roughly isometric with 
a Cayley graph of some finitely generated group. We exhibit a natural compact- 
ification and study a large class of random walks, proving theorems concerning 
almost sure convergence to the boundary, a strong law of large numbers and a cen- 
tral limit theorem. The asymptotic type of the n-step transition probabilities of the 
simple random walk is determined. 

1 Introduction 

The subject of  the present work is the study of  some probabilistic features of  a partic- 
ular family of  graphs, which are obtained by coupling two homogeneous trees: the 
DL-graphs. These graphs are named after their "inventors" REINHARD DIESTEL 
and IMRE LEADER, who introduced them with the aim of  providing an example of  
a vertex-transitive graph that is not roughly isometric with a Cayley graph of  some 
finitely generated group (see DIESTEL and LEADER [6] for a detailed exposition of  
the problem; see also WOES S [14] Paragraph 3.A for the definition of  rough isom- 
etry between metric spaces and its relations with graph and random walk theory). 
This problem is still open, so that the actual aim is to collect various features of  the 
DL-graphs. 

DL(p, q) is an induced subgraph of  the cartesian product of  two homogeneous 
trees "lI"p and ~q (where p and q are the degrees, not necessarily equal). One chooses 
ends Wl of  qi'p and o92 of"i['q and considers the horocyclic functions h 1 and h2 on the 
two trees with respect to these ends. Then DL(p, q) consists of  the couples XlX2 of 
"iFp x qrq such that h 1 (Xl) + h2 (x2) = 0, and XlX2 is a neighbour of  YlY2 if xi is a 
neighbour of  Yi for i = 1,2 (see Section 3). 

We first deal with a wide class of  random processes (Zn)n on DL(p, q) (induced 
by particular random walks on AUT(DL(p, q))). We prove that irreducible, in- 
variant (in which sense will be clear in the sequel) random walks on DL(p, q) are 
particular cases of these random processes. We show that under some conditions 
one has almost sure convergence to a natural boundary (Theorems 5.1 and 5.2), 

1991 Mathematics Subject Classification. 60J15. 
Key words and phrases, tree, horocyclic function, DL-graph, transition probabilities. 

~, Mathemati~hes Seminar der Ilniversitat Ilamburg, 2(1111 



206 D. Bertacchi 

then we prove a strong law of large numbers (Theorem 6.1) and a central limit the- 
orem (Theorems 7.1 and 7.2) for the sequence (d(o, Zn))n where o is the starting 
point of the random walk and d is the distance on the graph. The basic tool in the 
proof of these results is to study how the random walk on DL(p, q) projects onto a 
random walk on Z through the horocyclic map and the use of analogous results for 
the homogeneous tree proved by CARTWRIGHT, KAIMANOVICH and WOESS (see 
[5]). 

Then we study the asymptotic decay of the transition probabilities of the simple 
random walk on DL(p, q). More precisely, we determine its asymptotic type, and 
observe that, by a result of PITTET and SALOFF-COSTE ([10]), this coincides with 
the asymptotic type of any symmetric random walk on D L (p, q) which is invariant 
under the automorphism group and has a finite second moment. 

Asymptotic type is a weaker concept than asymptotic equivalence: two sequences 
(an)n and (bn)n which are asymptotic to each other are of the same asymptotic type, 
but sequences of the form (e -xn Q(n))n where ~. > 0 and Q is a polynomial are 
all of asymptotic type (e-n)n . (For the definition of asymptotic type see Section 8). 
The asymptotic type of a strongly periodic random walk is the asymptotic type of 
the sequence (p(nd)(x, X))n where d is the period. 

The asymptotic type of the simple random walk on DL(p, q) is already known 
in the case p ~ q; it is (e -n)n  . We show that the asymptotic type in the case p = q 

. n l / 3  
is (e-  )n, see Corollary 8.5. 

In Section 2 we present the construction of DL-graphs and other basic prelimi- 
naries. In Section 3 we state and prove three propositions which are needed in the 
sequel, but are also interesting in themselves: Proposition 3.1 provides an expres- 
sion of the graph distance on DL-graphs given the distances on qrp and qrq, Propo- 
sition 3.2 exhibits a natural compactification of these graphs, and Proposition 3.3 
shows a useful representation of AUT(DL(p, q)) in the case p ~ q. Section 4 is 
devoted to the definition of the class of random walks which we consider on DL- 
graphs and of the tools needed for this study. In Section 5 we study almost sure 
convergence to the boundary of the random walks of the family previously defined 
(Theorems 5.1 and 5.2). In Sections 6 and 7 we prove respectively a strong law of 
large numbers (Theorem 6.1) and a central limit theorem (Theorems 7.1 and 7.2) 
for the distance of the random walk from the origin. Finally, in Section 8 we de- 
termine the asymptotic type of the simple random walk on DL(p, q) with p = q 
(Theorem 8.4, Corollary 8.5 and Corollary 8.6). 

2 Homogeneous trees and DL-graphs 

A tree is a connected graph '~ without loops or cycles. A characteristic feature of a 
tree is that for every pair of vertices x, y there is a unique geodesic path connecting 
them, which we denote ~(x, y). 

A homogeneous tree ~ is a tree where all vertices have the same degree: we de- 
fine ~p as the homogeneous tree where each vertex has exactly (p + 1) neighbours. 
From now on we consider only homogeneous trees. 
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It is well known that the simple random walk on ql'p is transient for every p > 2 
(see, for instance, [14]). 

Now we define a boundary for 'I': a geodesic ray is an infinite sequence (Xn)n 
of successive neighbours without repetitions. If  the symmetric difference of  two 
rays (considered as sets of  vertices) has finitely many elements then the two rays are 
equivalent;an end is an equivalence class of  rays. We denote the set of  ends by 0qr 
and define qi' :=  qi' t3 0~I': if ~ ~ 0~1" and x 6 ql" then there is a unique ray 7~(x, ~) 
starting at x representing ~. Analogously, if ~ and 77 are two different ends, there is 
a unique (bi-infinite) geodesic 7r(~, rl) connecting them. 

We fix a reference vertex or origin o ~ '~ and write Ixl = d(o, x) for every 
x 6 qi'. We also fix an end w 6 0~ and define the confluent with respect to w of two 
elements x, y of  ~,  which we denote by x /x  y, as the first common vertex of  the 
paths r~(x, w) and re(y, co). We also denote by 0*T :=  0qr \ {w}. 

The horocyclic function (depending on the choice of  o and co) h : qI" --+ Z is 
defined as follows: 

h(x) :=  d(x, x /x  o) - d(o, x /x  o). 

This function partitions ql" into horocycles, where the k-th horocycle is defined as 

Hk :----- {x C 'IF : h(x) = k}, k E Z .  

Thus one can think of  ql" as an "infinite genealogical tree" with co as the "mythical 
ancestor"(see CARTIER [4]). Then the horocycles represent successive generations 
and each x 6 Hk has a unique "father" in Hk-1 and p "sons" in Hk+l. Then it should 
be clear what we mean by the n-th ancestor of a vertex x (that is the unique vertex 
lying on the geodesic path Jr(x, w) at a distance n from x), and, on the converse, by 
the n-th generation descending from x (that is the collection of  all vertices y such 
that d(x, y) = n and x E Jr(y, co)). 
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Finally, we define a metric 0 on T \ {co}, which turns out to be an ultrametric 
(that is O(x, y) < max{0(x, z), O(z, y)} for all x, y, z E T \ {CO}): 

p--h(xAy) i f x  # y; 

O(x,y) :=  i f x  = y. 

We will also say that a sequence (x,,)n in T \ {CO} converges to x 6 T \ {CO} if 
O(xn, x) tends to zero as n tends to infinity, and that it converges to CO if O(xn, o) 
tends to infinity. (Note that 0 is not topologically equivalent to the natural distance 
d). We recall that this notion of convergence is the same induced by the ultrametric 

A 

defined on "1I" using confluents with respect to the origin (namely the ultrametric 0 
defined in [5] Section 2.A). 

We now define the Diestel-Leader graphs (see also [6]). DL(p, q) is an induced 
subgraph of the cartesian product of  two homogeneous trees qF 1 = qI"p and ql "2 = qrq 
(p and q not necessarily equal). We fix an origin (respectively ol and o2) and an 
end (respectively o91 and o.)2) in each tree and consider the horocyclic functions 
hi " ,~1 __+ Z and h2 " ~2 _+ • thus determined. Then 

DL(p, q) := {XLX2 ~ ~1 • ,~2 . hl(Xl) q- h2(x2) = 0}, 

with the following neighbourhood relation: XlX2 ~ YlY2 if and only if xi ~ Yi for 
i = 1 , 2 .  

To visualize DL(p, q), draw "11 "1 as in Figure 1 and on its right q~2 in the same 
way, but upside down, with the respective horocycles H~(qI "1) and H_k(ql "2) on the 
same level. Imagine that the two origins are connected by an infinitely elastic spring 
which can move along the two trees, but has to remain horizontal. Then from OlO2 E 
DL(p, q) one may move upwards to the father of ol and to one of the sons of  02, 
or downwards analogously, reaching one of the neighbours of  OlO2 (which we will 
briefly call o). Similarly one can catch the idea of the simple random walk on 
DL(p, q). 

COl 

092 

Figure 2." the representation of DL(2, 2) 
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3 Metrics and automorphisms on DL-graphs 

The DL-graphs are endowed with the natural graph distance: 

d(x ,  y) = min{n " 3 xo . . . . .  xn c D L ( p ,  q) and x = xo ~ Xl . . . . .  Xn = y}. 

The following proposition will be useful in the sequel, but is interesting in itself, 
as it links graph distance on D L ( p ,  q) with graph distances on T 1 and 'II "2 and the 
horocyclic function. 

Proposition 3.1. Let XlX2 and YlY2 be two elements o f  D L ( p ,  q). Then 

d(yly2,  XlX2) = dl (Yl, Xl) + d2(Y2, x2) - Ihl (Yl) - hi (Xl)I. 

Proof. We first note that it is sufficient to prove the thesis in the case that YlY2 = 
OlO2 = o. Recall that, if we define ki :=  di(xi ,  xi A oi) and l i :=  di(xi A Oi, Oi) 
(i = 1,2), then 

di (oi, xi) : ki + li, 

hi(xi)  = ki - li. 

We distinguish three cases and in each of  them exhibit a path with minimal length. 

(a) If  hi(x1) < 0 choose a path divided into two parts: oio2 --~ -xx2 --> xlx2,  
where Y c ~I "1 is such that ~ = Y A Ol and hi(Y) = hi(x1) (that is ~ is the 
ancestor of  the origin on the same horocycle as Xl). The projection of  the first 
part of  this path onto T 2 is the shortest path from o2 to x2 (whose length is 
12 + k2), its projection onto ~,1 may be any path descending from Ol to any of  
the origin's sons at distance l: and then climbing back to the origin and then to 
Y. The projection of the second part of  the path onto ~,1 is a path going from 
to Xl/x O1 (whose length is 11 - ]h 1 (Xl)1) plus a path descending from xl /x  01 
to Xl (whose length is kl). Its projection onto q1 "2 may be any path descending 
from x2 to any of  its sons and then climbing back to x2. The described path 
has total length d1(01, x l )  + d2(02, x2) - Ihl(xl)l and any other path from 
0102 to XlX2 will be at least as long. This concludes the proof in this first 
case. 

(b) If  hl(Xl) = 0 choose a minimal path leading from OlO2 to XlO2 and then to 
XlX2: its length will be equal to dl(ol ,  Xl) + d2(o2, x2) and will be minimal. 

(c) If  hl(Xl) > 0 the choice of  the path is analogous with the one we explained 
in case (a), once we reverse the roles played by T 1 and T2: the path will lead 
from OlO2 to x12- and then to XlX2, where g ~ T 2 is the ancestor of  the origin 
on the same horocycle as x2. 

[] 

Using the ultrametric defined on homogeneous trees, we can define a metric | 
on D L ( p ,  q) (which is not an ultrametric): 

| YlY2) :--- 01(Xl, Yl) + 02(x2, Y2), 

where Oi is the ultrametric defined on q1 '~ \ {wi}, i = 1,2 (see Section 2). Moreover 
we say that a sequence 1 2 (XnXn),~ C D L ( p ,  q) converges to sel~ 2, where ~i E ~i ,  
i = 1,2, if and only if i (Xn)n converges to ~i, i = 1,2 (according to the definition 
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of  Section 2). We note that if the l im i t  ~1~2 is such that  ~i ~k o9i, i = 1,2, then we 
have convergence with respect to the metric | 

There is a natural compactification D L ( p ,  q)  of D L ( p ,  q),  obtained as the clo- 
sure of D L ( p ,  q)  in ~1 x ~2. 

Proposition 3.2. 

P r o o f  Given a sequence 1 2 (XnXn)n C D L ( p ,  q),  we may look at the two sequences 
(Xl)n C ~1 and (X2n)n C q1 '2 separately, keeping in mind that h l ( x  2) + h2(xn 2) = 0 

for all n �9 N. 
We suppose that d(o102, 1 2 XnXn) tends to infinity and that (Xi)n converges to an 

element of  ~i,  for i = 1,2. For sequences in "1i 'i, we distinguish between the three 
following limits: ogi, ~i �9 0, ,~i ,  x i �9 ~i  (i = 1 ,2 ) .  

There are only five possible limits: (o91,se2), (~1,o92), (o91,c02), (o91,x2), 
(x 1, o)2). We provide an example for each: 

1 and x 2 --~ �9 for instance vertex ~2) (1) x n -+ ogI ~2 0.,]1"2: le tx  2 bethe  in n'(o2, 
1 be the j - th  ancestor at a distance n from o2, and let j = h2(x2). Now let x n 

of ol if j > 0, Xn 1 = Ol if j = 0 and let Xn 1 be one of  the ( - j ) - t h  descendants 

o f o l  i f j  < 0; 
(2) x nl ___, set �9 0"qi q and x 2 --+ are: the example is constructed as in the preced- 

ing case, but with the roles of  ql "l and qi "2 reversed; 
1 i i (3) x n --+ o91 a n d x  2 --+ o)2: for instance, l e t x  n �9 H i f o r i  = 1,2, with 

di(oi ,  x i )  ~ --}-~; 
1 2 X 2 for all n �9 N, and let (4) x n ~ ogl and x 2 ~ x 2 �9 ql'2: for instance, let x n = 

j = h2(x2). Then choosexn 1 �9 H 1 with dl(Ol, X 1) ~ q-OG; - - j '  
1 X 1 ql,1 andxn 2 _+ (5) x n --~ �9 o92: the example is constructed as in the preceding 

case, but with the roles of  qi ' I  and qr 2 reversed. 

In other words, it is impossible that 

(a) x nl _+ ~1 �9 0 ' ~  I and x 2 7/+ 0)2 or x 2 --+ ~2 �9 0.,11,2 and x nl 7~ o91. In fact, if 
i ~1  (Xn 1) __+ 2 x n -+ then hi + 00  and then h2(x 2) -+ - 0 0  and this forces x n to 

tend to w2; 
(b) X n 1 _._> X 1 �9 qi "1 and x 2 ~ 092 or Xn 2 --+ X 2 �9 'II ̀2 and X n 1 /+ o91. In fact, 

�9 2 x 2 ,11,2 1 2 2 XnXn) ~ +OO; the other hand, i f  x n -+ if x n -+ �9 then d(o lo2 ,  on 
~2 �9 0.,]i,2 then h 2 ( x  2) --,'- --r in contradiction with the hypothesis that 

h z ( x  2) = - h i  (x 1) fo r  all sufficiently large n. 

[]  

Finally, we present a useful representation for the automorphism group 
A U T ( D L ( p ,  q))  in the case p # q. This representation was first observed by 
O. SCHRAMM (personal communication to W. WOESS); here, we give our own 
proof. We recall that, given a homogeneous tree qr with a fixed end w, its affine group 

is the group AFF(qr) of  all automorphisms y �9 AUT(T) which fix o9 (note that a 
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different choice of  w merely corresponds to a choice of  a conjugate of  AFF('II')). We 
note that 

y(Jr(x, w)) = Jr0/x,  w), Vy �9 AFF(qI'), x �9 q1'. 

Now let F'l = AFF(qI '1) and F2 = AFF(ql "2) (with respect to o91 and 0)2 respec- 
tively): the following proposition holds. 

Proposi t ion 3.3. I f  p # q then AUT( D L (p, q ) ) coincides with the group 

F' :=  {YlY2 �9 I"1 x I~2 : ha(ylOl)-+- hz(y2o2) ~--0}. 

Proof It is obvious that 1-" is a subgroup o fAUT(DL(p ,  q)). Now we construct an 
injective group homomorphism f : AUT(DL(p,  q)) ~-+ 1-' and this will prove our 
thesis. 

I f  y �9 AUT(DL(p,  q)) then f(2/)  = V17'2 where Vi is defined as follows: 

yixi -~- Yi, i = 1,2, 

whenever y(XlX2) = YaY2. 
In order to prove that f is well defined, we prove that it is impossible that, given 

a fixed y �9 AUT(DL(p,  q)), y(xlx2)  = yly2 and y(xt22)  = Z l Z 2  with Yl # zl 
(in which case Y1 would not be well defined - we focus on the first component, but 
the argument applies to the second component as well). 

Suppose that y(xlx2) = YlY2 and y ( x 1 2 2 )  = ZlZ2: since x2 and 22 lie on the 
same horocycle in "11 '2, their distance is even, let dz(x2, 22) = 2k. Then there are 
exactly pk distinct geodesic paths between xlx2 and x122, and each of  them must 
be mapped by f to a distinct geodesic path between yly2 and zlz2 (and viceversa, 
since y - 1  is an automorphism too). We distinguish between two cases: 

(a) if Y2 = z2 then Yl and zl lie on the same horocycle in q1 '1 and 

2k = d(ylY2, ZlZ2) = dl(Yl, Zl). 

Hence there are qk distinct geodesic paths between YlY2 and zlz2, but then it 
should be pC = qk, which contradicts our hypothesis that p # q. 

(b) if Y2 • z2 we distinguish between two subcases: 
(b 1) if y l and z 1 lie on the same horocycle: then 

dl(yl ,  Zl) = 2n, d2(Y2, z2) = 2m, 

where n, m �9 N and 2k = 2n + 2m. In this case there are pmqn geodesic 
paths between YIY2 and zlz2, then it should be pnpm = pmqn, again a 
contradiction. 

(b2) if Yl and zl do not lie on the same horocycle: 

dl(yl ,  zl) = [hl(Yl) - hl(zl) l  + 2n = :  h + 2n, 

d2(Y2, z2) = h + 2m, 

2k = d(yly2, ZaZ2) = 2n + 2m + h, 

where h, m, n, k �9 N. Without loss of  generality we can suppose that 
m < n: then there are pmqn geodesic paths between YlY2 and zlz2, as in 
the preceding case, whence the same contradiction. 
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It is easy to see that F1 and Y2 are automorphisms of ,~1 and '1I `2 which fix 091 and 
co2 respectively, and that hi(ViOl) + h2(y202) = O. Finally, given Y1Y2 6 F there 
exists only one y 6 AUT(DL(p, q)) such that f ( y )  = ylY2, namely y(XlX2) = 
Yl (X1)Y2(X2) and f is injective. [] 

4 Induced processes on DL-graphs 

In the sequel we will study a rather general kind of  random walks on DL-graphs. 
We start with some definitions, first recalling some features of homogeneous trees 
(see CARTWRIGHT, KAIMANOVICH and WOESS [5]) and then introducing their 
analogs on DL-graphs. 

Observe that AFF(T) maps horocycles onto horocycles and 

h()/Xl) - h(yx2) = h(xl)  - h(x2) VT., c AFF(T),  xl, x2 G T. (1) 

Hence the mapping 
: AFF(T) ~ Z, y w-~ h(yo) 

is a group homomorphism such that yHk = Hk+~(• for every k 6 Z, and repre- 

sents the "drift" of  y on the horocycles. 
We define horocyclic group HOR(T) the kernel of ~ ,  that is the subset of  AFF(T) 

which preserves any horocycle (as a set). 
We say that a subgroup A of  AFF(T) is exceptional if A C HOR(T) or if it fixes 

an element of O*~. 
Now let/z be a Borel probability measure on F, and let #1 and/z2 be its projec- 

tions on F1 and F2, that is 

# l ( a )  = # ( a  x F2), a E ~(F1) ,  (2) 
#2(B)  /z(F1 x B), B 6 2 (F2) ,  

where ~ ( F i )  is the family of the Borel sets of  Fi, i = 1,2. 
Basic assumption: we assume that the closed subgroups generated in F1 and F2 

respectively by the support of  #1 and #2 are non-exceptional. Here, "closed" refers 
to the topology of  pointwise convergence on AUT(T). 

Let (Xn)n be a sequence of  i.i.d. F-valued random variables with distribution #.  
The right random walk on F with law/z is the sequence of random variables 

R0 = id, Rn = id X1 �9 "" Xn 

where id is the identity in F. This random walk induces two random walks, on F1 
and F2 respectively, which we call (Ra)n and (RZ)n. Furthermore, (Rn)n induces 

processes on DL(p, q), ,~1 and T 2 respectively: (Rno)n, (Rlol)n and (RZo2)n. It 

is worth noting that in general (Rinoi)n (i = 1,2) is not a Markov chain, but has 
independent distance increments (see [5]). Moreover, by the same arguments as 
in [5], Section 3.A, (Ra)n and (RZ)n both are transient (that is with probability one 
they leave any compact set after finite time), hence so is (Rn) n. 

Next we define 

ylY2 ~ hl(ylOl) 
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which represents a projection of  the random walk on F (and then also of  the induced 
process on DL(p,  q)) onto a random walk on Z. Note that if we put ~i(Yi) = 
~(Yi), i = 1,2, then 

~(}-'1}"2) = ~1(}-'1) = - -~2(y2) .  (3) 

From Equation 1 it follows that q5 is a group homomorphism. 
We define the absolute moments of  #:  

E(IX~ I r) = fr d(o, zo)rl~(dy),  mr (/J~) 

where r > 0 and IYI :=  d(o, yo). Moreover, let ~ ( # )  be the image o f #  on 7/,: 

~P(/~)(k) = # ( ~  l({k})) = # ( { y  " h l (y lOl )  = k } ) .  

Then ~(Rn) = ~(X1)  + ' "  + ~(Xn),  since ~ is a group homomorphism and by 
the definition of  Rn, that is ~(Rn) is the sum of n i.i.d, random variables ~(Xi)  
with law ~ ( # ) .  

If  ~ ( # )  has finite first absolute moment, we define the mean drift as 

MEAN(qb(#)) :=  Z k ~ ( l ~ ) ( k )  = fv  ~ ( y l # ( d y ) -  
kcZ 

By Equation 3 we get that whenever ml ( ~ ( # ) )  exists and is finite we have 

MEAN(qb(#)) = M E A N ( ~ l  (#1)) = - MEAN(qb2(/~2)), 

and whenever m2(~(/~)) exists and is finite then 

VAR(qb (P0) = VAR(~I  (#1)) = VAR(qb2 (/~2)), 

where VAR(.) denotes variance. 

Remark 4.1. Even if the induced processes (Rno)n are not, in general, Markov 
chains, any irreducible, F'-invariant random walk on DL(p,  q) can be viewed as a 
particular case of  such processes, satisfying our basic assumption, which implies 
that the results of  Sections 5, 6, 7, apply to these random walks. In fact, the follow- 
ing proposition holds. 

Proposi t ion 4.2. Given an irreducible, F-invariant random walk (Zn)n on 
DL(p,  q), there exists a Borel probability measure # on F, satisfying our basic 
assumption, and such that if ( Sn)n is the induced right random walk on F, ( Sn O )n is 
a model of the random walk (Zn)n starting at o. 

Proof Following WOESS [ 13], Section 3, we construct a Borel probability measure 
# o n  F: 

/x(dy)  = p(o, yo) dy, 

where d 7 is the left Haar measure on F such that fro dy = 1 (Fo is the subgroup of 
1-' which fixes o), and {p(x, y) : x, y ~ DL(p, q)} is the set of the transition prob- 
abilities of  (Zn)n. (For further details about integration on locally compact groups 
and the properties of the Haar measure, see HEWlTT and R o s s  [8] or WOESS [ 14]). 
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Thus we can define a sequence of independent random variables (Xn)n dis- 
tributed according to/z  and the right random walk on F as 

Sn = id.  XI �9 X2"'" Xn. 

Then Lemma 3.1 in [13] states that (Sno)n is a model of  the random walk (Zn) n 
starting at o. 

Hence in order to prove our thesis we only need to show that if /Zl and/z2 are 
the projections o f / z  as defined in Equation 2, then the closed subgroups generated 
in F1 and F2 respectively by the support of/Xl and/z2 are non-exceptional. But this 
is a consequence of the hypothesis of  irreducibility. 

Let us suppose that the closed subgroup generated by the support o f / z l ,  which 
we call C1, fixes the horocycles, that is for all yl 6 C1, h 1 (yl o 1) = 0. We prove that 
in this case p(o, XlX2) = 0 if Xl r H 1, whence from any vertex of DL(p,  q), with 
a finite number of steps, we can reach only vertices on the same horocyclic level, 
in contradiction with irreducibility. Suppose that p(o, yly2) ~ 0 with yly2 ~ Hd: 
then A := {y : yo  = YlY2} is an open set in F (with respect to the topology of 
pointwise convergence), hence has positive Haar measure I AI. Thus 

Iz(A) = Jl  p(o, Vo) dy > O. 

Moreover, let C = supp/z:  C C C1 • F2; /z(A) < /z(A N C) = /z(0) = 0, a 
contradiction. 

Now suppose that C1 fixes an end s e 1: then it fixes zr (ol, s e 1) as a set. In this case 
we prove that p(zlz2, XlX2) = 0 if zl 6 zr(ol, s el)  and Xl r zr(ol, set), whence 
whence from any vertex of zr(Ol, ~1), with a finite number of  steps, we can reach 
only vertices with the first component  in Jr (o 1, se 1), in contradiction with irreducibil- 
ity. It suffices to prove that p(o, xlx2) = 0 if xl r zr(Ol, ~1). I f  there exists YlY2 
such that p(o, YlY2) # 0 and yl r zr(ol, ~1), then/z(A) = / z ({  V : Vo = YlY2}) > 
0, whereas/z(A) < # ( A  A C) = / ~ ( 0 )  = 0, again a contradiction. [] 

5 Convergence of Rno 

We study convergence of  the sequence (Rno)n with respect to the metric | on 
DL(p,  q). We note that, since the random walk (Rn)n is transient, d(o, Rno) tends 
to infinity almost surely. We first deal with the case of  nonzero mean drift. 

T h e o r e m  5.1. 

(a) If  m l (Iz ) < ~ and MEAN( ~(lz ) ) < O, then Rno ~ (COl, R 2 )  almost surely, 
where R 2 is a random element of 0"1i '2. 

(b) I fm l (# )  < ~ andMEAN(~(Iz) )  > O, then Rno ~ (R 1 ,  at2) almost surely, 
where R 1 is a random element of O*q~ 1. 

Proof (a) From the hypotheses we get 

MEAN(qbl (#I ) )  < 0 and MEAN(~2(/z2))  > 0. 

Then by [5] Theorem 2 we have that Rlnol --~ 091 almost surely and (R2o2)n con- 
verges almost surely to a random element of  0"/I "2. 
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(b) The proof is the same as in (a), with the roles of  ,~1 and "11 `2 reversed. [] 

We note that in the case MEAN(q~(#))  = 0 the hypothesis m l ( # )  < e~ is not 
sufficient to guarantee almost sure convergence to the boundary. On the other hand, 
in this case the random walk (dP(Rn))n on Z is recurrent (see SPITZER [12]) and 
if (Rno)n converges almost surely, then it converges to wlw2 ((Rioi)n does not 
converge to x i E qr i since this would imply that Rioi : x i for all sufficiently large 
n, nor does it converge to ~i c 0*q[ 'i, since this would imply that hi (Rioi)  tends to 
infinity). We give a sufficient condition for almost sure convergence in the driftfree 
case. 

Theorem 5.2. I f  m l (IX ) < e~, M E A N ( ~ ( # ) )  = 0 and he following two conditions 
hold 

E(]ol A ( X ] ) - l o l l  pl~176 < oo, (4) 

E(Io2/x (X12)-1o21 qlo2AX~o21) < ~ ,  

where X~ is the Fi-valued random variable (i = 1,2) induced by X1, then Rno --+ 
WlW2 almost surely. This holds, in particular, if  these two simpler conditions are 
both satisfied 

E(plXl I) = Jr, pdl(~176 d#l(Yl)  < ~ ,  (5) 

E(qlX~l) = fr2 qa2(o2,• d#2(y2) < ~x), 

or if X1 has bounded range. 

Proof. The fact that Conditions 4 are sufficient to guarantee almost sure conver- 
gence to WlW2 is simply a corollary of  the result of  CARTWRIGHT, KAIMANOVICH 
and WOESS [5] Theorem 2.c. The Conditions 5 are particular cases. [] 

6 Law of  large numbers 

Given a random walk on F defined as in Section 4 and satisfying the hypotheses 
there stated, we can prove the following strong law of large numbers. 

Theorem 6.1. I f m l ( # )  < cx) then 

lim = IMEAN(~(#) ) [  n~ llR,,[ 

almost surely and in L 1. 

Proof. We first observe that since ml (/z) is finite, by Kingman's  subadditive ergodic 
theorem [9], nl Inn I converges almost surely and in L 1. Note that from di (oi, xi) _> 
]hi(xi)[ i = 1, 2 it follows that d(olo2, XlX2) > Ihl(Xl)[ and m l ( # )  _> ml(dP(#)) .  
Moreover from the hypothesis we get m l ( # i )  < ~ ,  i = 1,2, and then we can 
apply [5], Theorem 4 both to l e 11 and [en21: 

�88 ~ [MEAN(qbl(#I))I ,  

l i e 2 1 - - - +  IMEAN(~2(#2)) I ,  
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almost surely and in L 1. Moreover, by the strong law of large numbers, since 
(Rn) = ~ (X t) + " "  + ~ (Xn) is the sum of n independent identically distributed 

random variables IOi'(Rn)l/n converges to IMEAN(C'(/z))I almost surely. Then, 
applying Proposition 3.1, 

1 I(IR11 2 nlRn[ = ;i" n, + I e , , I -  I r  > [MEAN(qb(#))I 

almost surely, but this must be the L 1 limit too. [] 

7 Central  l imit  theorem 

We prove a central limit theorem for random walks as defined in Section 4. We first 
deal with the case of  nonzero mean drift. 

T h e o r e m  7.1. I f  m l ( # )  < oo, MEAN(qb(/z)) ~ 0 and VAR(dp(#))  < oo then 

I R, I - nlMEAN(C,(tz))l 
> r162 1), 

~/n VAR(dp (#))  

where JV(0, l) is the standard normal distribution and the limit is in law. 

Proof  Let MEAN(ap(#))  > 0. Then by Theorem 5.1, Rno ---> (R 1 ,  w2) almost 
surely and 

O1 A R~Ol > Ol A e 1 

almost surely, where Ol A R ~  is a random vertex on n(Ol, o91). Hence 

d1(Ol, e 1) = qb l ( e lo l )  q- 21Ol A g ~ l  

with probability one for all but finitely many n. Then, using Proposition 3.1, 

Ie,,I = d(o, Rno) = ~ (  Rn) + 21ol A R~I  + d2(o2, R2oa) - dP( en)  

= 21ol A e ~ l  + d2(o2, R2nO2) 

with probability one for all but finitely many n. Moreover, Iol A R ~ l / , f f i  ~ 0 
almost surely. Hence we only have to estimate 

d2(o2, R,~2o2) - n IMEAN(qb(/z))I d2(o2, R2o2) - n IMEAN(qb2(#2))I 

~/n VAR(~  (/z)) ~/n VAR(qb2 (/z2)) 

but this is the case of  the random walk on AFF(q~q), studied in [5] Theorem 6, which 
states that the limit in law is the standard normal distribution. 

The case MEAN(s < 0 is completely analogous. [] 

To study the driftfree case (MEAN(qb(#))  = 0) we shall need finiteness of  
m2+e(/z) for some s > 0 and some further notations. 

Suppose that MEAN(r = 0 and VAR(qb(/x)) < cx~ (these two quantities 
cannot be both equal to zero by the assumption on non-exceptionality). Let 

Mn = max{qb(Rk) : k = 0 . . . . .  n}, 

= min{q~(Rk) " k = 0 . . . . .  n}, 
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and let -Mi n, M~, i --- 1,2 be the corresponding random variables induced by qbi, 
i = 1,2. By duality (see e. g. FELLER [7]), 

qb(Rn) -- M n in l=aw ~ , ,  (6) 

and (see BILLINGSLEY [3], (1 1.2) and (1 1.1)) 

1 
(r M,~) ~ (U, V) in law, (7) 

~/n VAR(qb (#))  

where (U, V) is an ~2-valued random variable whose distribution has density 

/5 -  -(2v-u)2/2 
f ( u ,  V) = ~/ ~- (2V -- u)e 1]{v>_max{O,u}l(U, 1)). 

Theorem 7.2. I f  mz +e(IZ ) < oe for  some s > 0 and M E A N (  dO(# ) ) = O, then 

I R,, I 
4V - IUI - 2 u  

~/n VAR(~ (/z)) 

in law, and the density o f  the random variable 4V  - [U[ - 2U is: 

f4V-IUI-2U(t)  = 1---~(e-'2/4 -- e-t2)llt>_o(t). ' 

Proof  Let 

Note that 

Ti(n) = max{k 6 {0 . . . . .  n} : dPi(Rk) = Mn}.  

�9 , R i - 1  i Ie/I  = di(oi,  Ri  oi) = di((e~,i(n))- loi  (T i ( , , ) )  R~oi),  

s inced i (x ,  y) = d i ( y x ,  y y )  for every y 6 1-'i, i = 1,2. 
It can be easily seen that 

di(x,  y)  = di(x ,  x A y) + di(x  A y,  y) 

= h i (x )  + h i (y )  - 2hi(x  A y) ,  

hence 

i = 1 , 2 ,  

Hi i - 1 ~" IR~,I = hi((RiTi(n))-loi)  + hi(RT}(n)Oi) - 2hi((RT~(n )) oi A RtTi(n)Oi) 
i - 1 Hi Hi 

= rbi((RTi(n)) ) + *i(RTi(n))  -- 2hi ( (R~i(n)) - lo i  A Rwi(n)Oi) 

= --dPi(R~'i(n)) -- dPi(R~,i(n)) q- ~ i ( R  i )  - 2hi ( (R~i(n)) - lo i  A gTi(n)Oi) 
�9 H i 

= qbi(Ri') -- 2 ~ ,  -- 2hi((R~)( , , ) ) - loi  A RTi(,,)oi ) (8) 

where fi~(n) :=  (g~'~(n))-I Rin (note that we used the definition of  T/(n) and the fact 
that @i are group homomorphisms). 
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m l  
Moreover, let us note that, since ~I (R 1) = - -qb2(R2) ,  - ~  : Mn. Hence, 

using Proposition 3.1 and Equation 8, 

Ienl : q b l ( g  1) - 2M_M_. 1 - 2hl((e~' l (n))- lol  A Rl l (n )Ol )  

+ q~2(R 2) 2M____~2 2 -1 ~2 - - 2h2(RT2(n )) 02 A T2(n)02) -- I~(R,)I 

= 2(M~ - M__~ 1) - I d P ( R n ) l -  2 h l ( ( R ~ , ( n ) ) - l o l  A R~,,(,,)Ol) 

-- 2h2((R2,2(n))-lo2 A R~,z(n)o2) 

= 2Mln + 2(*l(Rn 1) - M__~ 1) - 2dPl (R 1) - Iq~(Rn)l 

- 2h1((tC , n))-1ol A - 2h2((R   nSlO2 

= 2M~ + 2(~1(R 1) - Mn l) - 2~(Rn) - I~(Rn)l 

- 2 h l ( ( R l ( n ) ) - l o l  A /~ll(n)O1 ) -- 2h2((R~,2(n))-1o2 A R~.z(n)O2). 

By Equation 6, the last term is equal in law to 

- - 1  
4 M  n - 2qb(Rn)  - - l e P ( R . ) I -  2h1((Rl (n) ) -1Ol  A Rll(n),nOl ) 

- 2h2((R22(n))-lo2 A R2,2(n),nO2). 

Now, [5] Proposition 3 shows that 

1 i 1 R~,i(n),nOi) 0 ~/r~hi((RTi(n))- oi A "-->" 

in probability (hence in law), then, as n --+ ~ ,  IRn I /~/n VAR(qb(/z)) behaves in 
law as 

- - 1  
4 M  n - I~Px(gnl)l - 2qri)l(gn 1) 4 M n  - I~(g~)l - 2~(R~) 

~/n VAR(qb (#)) ~/n VAR(qb (#)) 

where equality holds both in law and almost surely. The result now follows from 7, 
while the density is easily computed. [] 

8 Asymptotic type 

In the preceding sections we studied a large family of random processes on 
D L ( p ,  q)  and then showed that irreducible, F-invariant random walks are elements 
of this family. Now we follow a somehow reversed path: we study the asymptotic 
type of the simple random walk on D L ( p ,  q)  and then observe that it is the same 
asymptotic type of more general random walks. 

We recall the definitions of the asymptotic type of a numerical sequence and of a 
random walk. 

Definit ion 8.1. Given two non-negative sequences (an)n and (bn)n, we say that an -< 
bn if there are C _> c > 0 such that for all sufficiently large n, an <_ C sup{bk : 
cn < k < Cn}; and an is of the same asymptot ic  type ofbn (and we write an "~ bn) 

if an -< bn and bn <_ an. 
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Note that if an n bn then also an ~ bn. Moreover, the definition can be simpli- 
fied if the sequences are monotone: if, for instance, ( b n )  n is non-increasing, then 
an ~ bn if there are C > c > 0 such that 

an < Cb[cn]+l 

for sufficiently large n. 

Definition 8.2. The asymptotic type of a random walk (X, P)  is the asymptotic type 
of the sequence (p(na)(x, x))n, where d = HCF{n : p(n)(x, x) > 0} is theperiod 
(HCF denotes the highest common factor). 

Note that by irreducibility the asymptotic type does not depend on the particular 
choice of  x. Indeed, let x, y ~ X, then there exist n 1, n2 6 N such that p(nl) (x, y) > 
0 and p(n2)(y, x) > 0. I f n  is a multiple o f d  (note that nl + n2 is surely a multiple 
of  d) 

p(n2)(y, x) �9 p(n)(x, X) �9 p(nJ)(X, y) < p(n+nl+n2)(y, y). 

Hence if C = max{2, 1/(p(nl)(x, y) �9 p ( n z ) ( y ,  X))}, C = 1 and n > nl + n2, we 
have that 

p(n)(x, x) < C sup{p(k)(y, y) : k - 0 mod d, cn < k < Cn} 

(note that n < n + n l  + n 2  < 2n _< Cn). 
In the case of  the simple random walk on DL(p,  q) we have of course 

p(n)(x, x) = p(n)(y, y) 

for all x, y, since these graphs are vertex transitive, and d = 2, whence 

p(2n+l)(x, x) = 0 

for every n 6 N. Moreover, (p(2n)(x, X))n is a monotone non increasing sequence, 
namely the following proposition holds (in the case of  random walks on groups this 
fact was stated by AVEZ [2]). 

Proposi t ion 8.3. I f (X,  P) is a symmetric random walk then for all x E X we have 

p(2n+2)(X, x) < p(2n)(x, X). 

Proof By H61der inequality and the symmetry of the random walk, 

p(2n+Z)(x,x) = Z p(n)(x, y)p(n+2)(y,x) 
ycX 

< , / Z  ( p(n)(x' y))2 Z ( p(n+2)(x' y))2 

V y~X ycX 

= v/p(2n)(x,x)p(2n+2)(x, x). 

Moreover, p(2n)(x, x) >_ (p(2)(x, x)) n > 0, hence p(2n+2)(x, x)/p(2n)(x, x) is a 

nondecreasing function of n. I f  this ratio were ever strictly greater than I then 
p(2n)(x, x) would go to infinity. Hence, it is always less than or equal to 1. [] 



220 D. Bertacchi 

If p # q the asymptotic type of the simple random walk on DL(p,  q) (indeed, 
of any symmetric random walk with finite range) is already known to be that of 
e -n. In fact the asymptotic type of symmetric random walks with finite range on 
non-amenable graphs is (e-n)n (see [14] Paragraph 15), and DL(p,  q) is amenable 
if and only if p = q (see [14], (12.18)). 

Therefore we are interested in determining the asymptotic type of the simple 
random walk on DL(p,  p). Since DL(p,  q) has exponential growth (even when 
p = q), we have the following inequality for the transition probabilities of the 
simple random walk: 

p(2n)(x, X) < CI exp(-C2nl/3),  

for some CI, C2 > 0, for a l ln  6 l~ and for all x ~ D L ( p , p )  (seeSALOFF- 
COSTE [1 1]). Then if we prove the following theorem it will be clear that the as- 

_hi/ 3- 
ymptotic type we try to determine is te ),,. 

Theorem 8.4. I f  p(n)(x, x) are the transition probabilities of the simple random 
walk on DL(p ,  p), then there are costants C, D > 0 such that 

p(2n)(x,x) > C e x p ( - D n  1/3) fora l ln ,  fora l lx .  

Corollary 8.5. The asymptotic type of the simple random walk on DL(p,  p) is 
nl/3 

e -  )n. 

Let us observe that, by a result of PITTET and SALOFF-COSTE [10], given a 
vertex-transitive graph and two transitive transition matrices P1 and P2 (that is 
pi(x, y) = pi(yx ,  yy)  for all y 6 AUT(X), for i = 1,2), and with finite sec- 

(nd). ond moment, the asymptotic type of Pl ~x, x) is the same as that of p~nd)(x, x) 
(see also [ 14]). 

Corollary 8.6. The asymptotic type of a transitive random walk on DL(p,  q) with 
finite second moment is (e-n)n if p # q and (e-nl/B )n if p = q. 

In order to prove Theorem 8.4 we need a lemma and a choice of coordinates on 
DL(p,  p). To a given point x = XlX2 ~ DL(p,  p) we associate three coordinates: 
a(x) := dl(xl,  Ol), b(x) := d2(x2, o2), c(x) := hl(xl) .  We note that if (Zn)n 
is the sequence of random variables which represents the simple random walk on 
DL(p,  p) then (c(Zn))n is a sequence of integer valued random variables which 
turns out to represent the simple random walk on Z. Indeed, the mapping 

: DL(p,  p) ~ Z 

XlX2 t'-+ hl(Xl) 

induces a projection of any random walk on DL(p,  p) onto a random walk on Z. 
Since the distribution of Z0 does not affect the asymptotic type of a random walk, 
for simplicity we will suppose that Z0 -- OlO2 (whence c(Zo) -- 0). 

Lemma 8.7. Let r, m ~ N and let 

Am,r : =  {X E DL(p,  p) : a(x) <_ r, b(x) <_ r, Ic(x)[ < m}. 

Then 
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(a) i fr  < m then IAm,rl = p r - l ( r  -4- p(r + 1)), 
(b) if r > m then 

pr( l  A- m) -4- mp r-1 i fr  and m have the same parity, 

IAm'r[ = [ prm -4- (m + 1)p r-1 otherwise. 

Proof (a) If  r < m, then A m , r  = {X C D L ( p ,  p) " a(x)  5 r, b(x) < r}, since 
[hl(xl)l < dl (ol, xl). In order to distinguish between the horocycles of  ql "1 and the 
ones of  qi "2, we put Hj for the j - th  horocycle of  "IF i, i = 1,2. Moreover, we define 

Hi, r : =  {x E Hj " di(oi, x) < r}, i = 1,2. 

Then, i f r  < m, Am r consists of  all the pointsxlx2 c D L ( p ,  p) such that xl 6 H 1 - -  , j , F  ~ 

x2 E H 2 . , IJl < r. From that we get the following expression for [Am,r]: --j,r 

g 

IAm,r] = ]Ul ,  r] 2 ~t_ 2 Z l H ) , r [ "  [g!j,r[ 
j = l  

where in the second equality we used the fact that the degree of  T 1 is the same as 
the degree ofqI '2. Then all we have to do is count the elements of H), r for [j[ -< r. 

We note that d1(ol, x)  = dl(x ,  x A Ol) + dl(Ol, x A o1) for all x ~ li "l, then if 
we let k(x)  = da(x, x A Ol) and l(x) = dl(Ol, x A Ol), 

dl(Ol, x) = k(x)  -4- l(x), 

hi (x) = k(x)  - l(x).  

Then H), r consists of  all x E ~1 such that k(x)  - l(x) = j and k(x)  + l(x) < r. 

We claim that JH),rl = p[r@].  Indeed, if k, l ~ N are such that k + l < r  and 
k - l = j ,  then all of  the k-th descendants of  the origin 's /- th ancestor (which are 
exactly pk) are elements of  H.  1 Let B(k, l) be the set of  these k-th descendants of  j,r" 
the/- th  ancestor of  the origin, then B(k + 1, l + 1) D B(k, l) and still (k + 1) - 
(l + 1) = j .  Moreover if k = max{k ~ N �9 k + l  < r ,k  - l = j} a n d l i s  the 

value o f / ( 7  = k -  j) ,  then k = I t @ ]  and H!g,r = B ( k , l ) .  Hence corresponding 

F r+j l 
[H),rl = pL~-J and 

JAm,r[ = p2[~] + 2  p['-Z-Jp[-Z'-]. 

j= l  

It is easy to see that whatever the parity of  r is, 

JAm,r] = Pr - l ( r  + (r + l )p) .  
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(b) If r > m, the computation of [Am,rl will deal only with H!  with IJl < m, j,r 
namely 

m 

Jam,r[ = ]Hl, rl 2 q- 2 EIH) , r ]  . ]Hlj,r[ 
j = l  

m I-~+;l r~-Jl 
= p2[~] + 2 Z  pL-Z-JpLTJ.  

j = l  

Then we distinguish two cases: it is easy to show that 

(i) if r and m have the same parity, then 

Iam,rl = p r - l ( m  + (m + 1)p). 

(ii) if r and m do not have the same parity, then: 

IAm,rl = pr- l  (m + 1 + mp). 

[] 

We also state a particular case of Lemma 1.2 of ALEXOPOULOS [1], which will 
be needed in the proof of Theorem 8.4. 

Lernma 8.8. Let (Sn)n be the sequence of random variables which represents the 
simple random walk on Z with So = O. Moreover, let Mn := maxl<_i<_nlSi] for 
n > 1. Then there are positive constants Cl, c2, too, no ~ N such that for all 
integers n > no, m > mo we have 

IP[Mn < m] > cle -c2n/mz. 

Now we are ready to prove Theorem 8.4. 

Proof of Theorem 8.4. Let x = o, A be a subset of DL(p,  p) and Zn be the random 
position of the walk in X at time n, using the Cauchy-Schwarz inequality (and the 
symmetry of the simple random walk) we obtain: 

(~---]~ )21A ~ 1 p(2n)(o, o) > ~ p(n)(o, y)2 > p(n)(o, y) = ~o[Zn e A] 2 
Ial yeA yeA 

Then the proof consists in finding a suitable family of sets among which we choose 
A (A will depend on n). Consider the family of sets 

Am := Am,3m = {x E DL(p,  p) �9 a(x) < 3m, b(x) < 3m, [c(x)[ < m}. 

We denote (c(Zn)) n by (Sn)n: (Sn)n satisfies the hypothesis of Lemma 8.8, and 
we let Mn be defined as in this lemma. 

If Mn < m, then a(Zn) < 3m and b(Zn) < 3m, hence 

~o[Zn E Am] > ~o[Mn < m]. 

Moreover, applying Lemma 8.8, 

I?o[M. < ml >_ Cl exp -c2  
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for n and m sufficiently large and for some cl,  c2 > 0. 
Now we choose m = [n 1/3] (where [.] denotes the integer part), and estimate 

IAml: by Lemma 8.7 

Jp[3nl/3](1 -q- [nl/3]) + [n 1/3] p[3nl/3]-I 
[Am[ 

I p[3nl/3][nl/3] + ([n 1/3] + 1)p[nl/3] -1 

In both cases 

if [3n 1/3] and [n 1/3] 
have the same parity, 

otherwise. 

[Am] < p3nl/3(1 + 2n 1/3) < 3nl/3p 3nl/3 < exp(c3(l  + log(n) + nl/3)) 

for some c3 > 0. Hence 

~o[Zn E Anl/3] 2 

]Anl/3] 

which leads to the conclusion. 

c~ e x p ( -  2c2n 1/3) 
> 
- exp(c3(1 + log(n) + nl/3)) ' 

[]  
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