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O n  the Greatest Common Divisor o f  T w o  C u l l e n  Numbers 

By F. LUCA 

Introduction 

Recently, BUGEAUD, CORVAJA, and ZANNIER (see [2]) showed that if a and b 
are two multiplicatively independent positive integers, then for every e > 0 there 
exists a positive integer n~ so that gcd(a n - 1, b n - 1) << exp(en) holds for all 
n > n~. The restriction that a and b be multiplicatively independent integers is, of  
course, needed for such a result to hold, for if otherwise, then it is easy to see that 
there exists a computable constant cl depending only on a and b such that gcd(a n - 
1, b n - 1) >> exp(cln)  holds for infinitely many positive integers n. The result from 
[2] was recently generalized in [5], and such a generalization was efficiently used 
to give an affirmative answer to a question concerning the largest prime divisor of  
an expression of  the form (ab + 1)(ac + 1)(bc + 1) with positive integers a,  b, and 
c due to GYORY, SARKOZY and STEWART which was stated in [4]. This question 
was also settled independently by P. CORVAJA and U. ZANNIER (see [3]). 

Also recently, a different kind of problem which in a sense is related to the above 
result from [2] was investigated by us in [7], and slightly extended to more general 
situations in [6]. Namely, in [7], we investigated the following problem: 

Let r and s be non-zero integers with r 2 + 4s # 0 and let (Un)n>O be a non- 

degenerate binary recurrent sequence o f  integers o f  characteristic equation 

X 2 - - r x  - s  = 0 .  (1) 

That is, uo, Ul 6 Z and the recurrence 

U n + 2  : rUn+l + SUn 

holds for all non-negative integers n. It is then well-known that there exist two 
constants c, d which can be immediately computed in terms of  u0, u l, r and s, so 
that with ~ and/~ the two roots of  the equation shown at (1), the formula 

un = cot n + dE n (2) 

holds for all n > 0. By non-degenerate above we mean that or//5 is not a root of  1 
and that cd # O. Then, in [7], it is shown that if r and s are coprime and c / d  and 
~//5 are multiplicatively independent, then there exists an effectively computable 
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constant c2 so that gcd(un, Urn) <~ exp(c2~/-m) holds for all m > n. Both con- 
ditions, namely the fact that r and s are coprime and the fact that c/d and u/fl  
are multiplicatively independent are necessary for such a result to hold, for if not 
then there exists an effectively computable constant c3 depending on u0, u l, r and 
s so that the inequality gcd(un, urn) >> exp(c3m) holds for infinitely many pairs of  
positive integers m > n. 

An interesting application of the main argument in [7] to the characterization of 
pairs of  integers (a, b) in terms of the occasional "largeness" of  gcd(Fm +a, Fn +b) 
as a function of max(m, n), where Fn is the nth Fibonacci number, is given in [6]. 

In this paper, we extend the main result from [7] in the following sense. 
Let a and b be two non-zero coprime integers with a/b # 4-1 and let f and 

g be non-zero polynomials with integer coefficients such that the rational function 
h := f i g  is non-constant. For any positive integer n set 

Un :=  f (n)a  n + g(n)b n. (3) 

Our main result is the following: 

Theorem.  Suppose that (Un)n> 0 is a sequence of integers whose general term is 
given by formula (3), where a ~ +b are coprime non-zero integers and f and g 
are non-zero polynomials with integer coefficients such that the rational function 
h := f i g  is non-constant. Then there exist two computable constants Cl and c2 
such that the inequality 

1 

gcd(un, Um)< exp(c2(m log m) ~) (4) 

holds for all but finitely many pairs of positive integers m > n > Cl. 

The constant Cl above can be chosen to be any constant larger than both the 
maximum absolute value of the roots z of  the polynomial equation f ( z )  �9 g(z) = O, 
and the largest n for which Un = 0, while the constant c2 above can be chosen to be 
any constant larger than 2 .  max(rodeg(fg), log lal, log lbl), where r0 is the leading 
coefficient of  the non-constant polynomial f �9 g and deg ( fg )  is its degree. While 
the above Theorem provides a very specific (and rather "small") upper bound for 
gcd(un, urn), we do not have a way of computing all the (finitely many) pairs of  
positive integers m > n > Cl for which inequality (4) might fail. The reason is 
due to the nature of  the auxiliary results from Diophantine Equations which we will 
use during the proof of  the above Theorem. That is, we show that unless the pair of  
integers m > n > Cl satisfies a certain exponential-polynomial type of diophantine 
equation, then inequality (4) must hold. Thus, the problem reduces to deciding 
whether or not the exponential-polynomial diophantine equation that we encounter 
does indeed have only finitely many solutions. In some cases (for example, when the 
polynomial f . g  is a power of  a linear polynomial), we can employ effective methods 
to conclude that inequality (4) holds for all pairs of  integers m > n > cj,  except 
for, eventually, finitely many effectively computable such pairs, but for the general 
case we employ a result of  W. SCHMIDT concerning the finitenes of  the number of  
integer solutions (x, y) of  a diophantine equation of the type ot x = R(x, y), where 
ot is a non-zero complex number which is not a root of  unity and R 6 C(X, Y) is a 
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rational function which is not of  a certain form, but this result is ineffective in the 
sense that its method of proof does not allow one to compute an upper bound for the 
largest possible integer solution (x, y) of  the above diophantine equation. 

Recall that for a fixed non-negative integer n > 0 the nth Cullen number  is given 
by the formula Cn := n2 n + 1. Notice that the general formula of  the nth Cullen 
number is precisely formula (3) with a = 2, b = 1, f ( X )  = X and g ( X )  = 1, 

and from what we have said before, gcd(Cn, Cm) can be bounded from above as 
shown in formula (4) for all pairs of  positive integers m > n, except for finitely 
many effectively computable such pairs. 

The method of proof of the above Theorem can be used to derive even more 
general results. For example, it follows from our method of proof, that if 

Un = f ( n ) a  n + g (n )b  n (5) 

and 

Vn = f l ( n ) a  n + g l ( n ) b  n (6) 

hold for all non-negative integers n with f ,  f l ,  g and gl non-zero polynomials with 
integer coefficients such that at least one of the two rational functions h := f i g  and 
hi := f l / g l  is non-constant, then there exist two computable constants c3 and c4 
depending only on a, b, f ,  g, f l  and gl so that the inequality 

1 

gcd(un, Vm) < exp(c3(m logm)7)  (7) 

holds for all but finitely many pairs of  positive integers m > n > cl provided 
that both rational functions h and h l satisfy some mild technical assumptions (for 
example, when all four polynomials f ,  g, f l  and gl are monic and both rational 
functions h and hi have at least three simple singular points (i.e., zeros and poles)). 
Of  course, "bad examples" of  pairs of  numbers (Un, Vm) of the form shown at (5) 
and (6) and for which gcd(un, Vm) is large infinitely often do exist, such as 

Un : 2 n - 9n 2 

and 

Vn : 2 n + 8n 3 

for which 2 n + 6n divides gcd(uzn, V3n) for all n > O. 

The Proof  of  the Theorem 

Throughout this proof, we use cl,  c2 . . . .  to denote constants (which are computable 
or not) depending on our initial data a,  b, f and g, and we use the Landau symbols 
O, o and the Vinogradov symbols << and >>, with the meaning that they too depend 
on our initial data. 

We also assume that ]a] > Ibl. It is clear that a constant Cl exists so that Un ~ 0 

when n > Cl. We shall also assume that cl is larger than anyone of the roots of  
the polynomial equation f ( z )  �9 g(z )  = 0 and from now on we shall work under the 
assumption that m > n > Cl. 
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We also notice that we may assume that f and g are coprime in Q[X]. Indeed, 
for if not, then with d := gcd(f,  g), f = dfl, and g = dgl, we have that all three 
polynomials f l ,  gl, d are with integer coefficients and so setting 

! U n = f l  (n)a n -{- gl (n)b n 

for all n > 0, we obviously get that 

gcd(un, urn) <_ gcd(u' n, U'm)" d(n)d(m) < gcd(u' n, U~n)" exp(c2 logm), (8) 

holds with any constant c2 strictly larger than 2deg(d) and for large enough values 

o fm.  By comparing (8) with (4) and using the fact that logm = o((m logm)�89 it 
follows that it suffices to prove that (4) holds for the sequence ( U n ) n > O  replaced by 

! (Un)n>O, i.e., we may assume that f and g are coprime. 
For two positive integers m > n > Cl set D(m, n) to be the largest common 

divisor of Um and Un which is free of prime factors dividing f(m)g(m)f(n)g(n)ab. 
And we claim that it suffices to show that 

1 

D(m, n) < exp(c3(m logm)~) (9) 

holds for m > n > Cl. Indeed, write gcd(um, Un) = D(m, n)D ~, where D'  is the 
largest divisor of gcd(um, Un) composed of primes dividing f(m)g(m)f(n)g(n)ab 
and let p be a prime divisor of D p. Assume, for example, that p [ f(m). Since 
p [ urn, we get t h a t p  I bg(m). Then e i therp  [ b o r p  [ g(m). Assume that 
P J g(m). Since f and g are coprime in Q[X], a positive integer E exists so that 
gcd(f(m),  g(m)) [ E holds for all integers m (here, one may take E := Res(f,  g) 
to be the resultant of the two polynomials f and g). The above argument shows that 
all prime divisors of D ~ are also prime divisors of abE. Let p be any fixed prime 
divisor of D ~. Clearly, p I Um and p cannot divide both a and b because a and b are 
coprime. Assume again that p I f(m). Then either p I b or p I g(m). Assume, for 
example, that p does not divide g(m). Then p [ b and obviously 

ordp(f(m)) << logm 

because f (m)  ~ O, and since ordp(b m) > m, we get that 

ordp(um) << logm. (10) 

Here, and throughout the paper, for a non-zero rational number r and a fixed prime 
number p we use ordp(r) for the exact order at which p appears in the prime factor 
factorization of r. 

Assume now that p I g(m). If  p I b, we get again inequality (10). If p does not 
divide b, set ~ m  = min(ordp (f(m)), ordp (g(m))) and notice that 

U m = ptLm(fl(m)am + gl(m)bm), (11) 

f (m) g(m) 
where fj  (m) := and gl (m) := are integers. Clearly, ],~m ~< C4, where plZm plZm 
one can take c4 to be the maximal exponent at which some prime number appears 
in the prime factor factorization of E, and it remains to bound the order at which 
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p can divide f l  (m)a m + gl (m)b m. Since this last expression is not zero (because 
Um # 0), one may use a p-adic linear form in logarithms (see [10]), to infer that 

ordp(f l  (m)a m + gl (m)b m) << log 2 m (12) 

holds, where the implied constant in << above depends on p, but p is a prime divisor 
of  the fixed number E. From (10) and (12) above, we get that 

ordp(um) << log 2 m 

holds for all rn > cl, so that 

D / < exp(c5 log 2 m). (13) 

By comparing (13) with (4), and using the fact that log 2 m = o((m log m) �89 ), we get 
that in order to prove the Theorem it suffices to show that inequality (9) holds. 

Let us now notice that 

exp(c6n) < lUnl < exp(c7n), (14) 

holds for all sufficiently large positive integers n, where one can take c6 and c7 to 
be two positive constants with c6 slightly smaller than loglal and c7 slightly larger 

1 
than loglal (this is because [al > Ib] > 1). In particular, i fn  < (m logm)~,  then 

1 

gcd(un, Urn) < lUnl < exp(c7n) < exp(c7(mlogm)~)  (15) 

and therefore inequality (4) is satisfied in this case. From now on, we shall assume 
1 

that n > (m logm)~.  
We now use the method explained in [7]. We write mo :=  m, ml :=  n, and the 

Euclidian algorithm 

mo :=  qoml q- m2, 

ml :=  qlm2 q- m3, 

mj  :=  q j m j + l  + m j+2, 

1 
where we assume that j > 0 is the smallest index for which m j+2 < (m logm)~.  

L mml--~l J Here, mi > mi+l holds for all i = 0, 1 . . . . .  j + 1, and qi :=  is always 

a positive integer. The existence of  the index j follows from the fact that we are 
1 

assuming that ml = n > (m logm)7.  Notice that m j+2 might be equal to zero, but 
1 

this happens precisely when mj+l  > (m log m)7 is the greatest common divisor of  

m0 and m 1. 
We now fix i c {0, 1 . . . . .  j +2}. From the Euclidian algorithm above, we deduce 

the existence of  two integers Ai and Bi so that 

mi = Aimo - Biml .  (16) 

It is easy to see that A0 = 1, B0 = 0, A1 = 0, B1 = - 1  and that if i >_ 2 but 
i < j + 2 ,  then 

A i :=  Ai_ 2 - q i_ lA i_  1 (17) 
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and 

Bi :=  Bi-2 - q i - lB i -1  (18) 

hold. Indeed, (17) and (18) follow immediately from the relation 

A i m o  - n i m l  = m i  = m i - 2  - q i - l m i - 1  

= ( A i - 2 m o  - B i - 2 m l )  - q i - l ( A i - l m o  - B i - l m l )  

= ( A i - 2  - q i - l A i - 1 ) m o  - ( B i - 2  - q i - l B i - 1 ) m l  

by identifying the coefficients of  m0 and ml.  It is clear that Ai and Bi are coprime 
for all i 6 {0, 1 . . . . .  j -4- 2}. Indeed, this is clear for i = 0 and i = 1, and for i > 2, 
by multiplying, say (17) by Bi-1 and (18) by Ai-1,  respectively, and subtracting the 
two resulting equations we get 

A i B i - 1  - A i - l B i  = - ( A i - l B i - 2  - A i - 2 B i - 1 ) .  (19) 

But repeated applications of  (19) show that 

A i B i - 1  - A i - l B i  = ( - 1 ) i - I ( A 1 B o  - A o B I )  = ( - 1 )  i -1 , (20) 

which, in particular, implies that Ai and Bi are coprime. 
We shall make use of  the properties of  the numbers Ai and Bi as follows. Write 

D := D(m,  n) and rewrite the relations D I Um and D I un as 

f ( m o ) a  m~ -4- g(mo)b m~ =- 0 (mod D) (21) 

and 

f ( m l ) a  ml + g ( m l ) b  ml =-- 0 (mod D). (22) 

Since D is free of  primes dividing f ( m ) g ( m ) f ( n ) g ( n ) a b ,  it follows that we may 
invert some elements modulo D in the relations (21) and (22), and rewrite them as 

ot m~ + h(mo) = 0 (mod D), (23) 

and 

Ot ml -]'- h(ml )  =-- 0 (mod D),  (24) 

with ot :=  b/a  and h := f i g .  We claim that (23) and (24) are particular instances of 
a more general congruence, namely that for all i ~ {0, 1 . . . . .  j + 2} the congruence 

Ol mi "4- h ( m o )  ai �9 h(ml)  -8,  - 0 (mod D) (25) 

holds, where Ai and Bi are the numbers defined previously. In (25) above, we mean 
that there exists a choice of  the sign -4- so that (25) holds with this choice of  sign. 
Notice that (23) and (24) prove (25) at i = 0 and i = 1. Assume, by induction, that 
i > 2 and that (25) holds at i - 1 and i - 2. Hence, both 

Ol m'-2  ~ : T . h ( m o ) Z ' - 2 h ( m l )  - B i - 2  (mod D) (26) 

and 

olmi-I ~ :Th(mo)Ai- lh(ml)-Bi  1 (mod D) (27) 
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hold. We raise congruence (27) to the power qi-1 and use the fact that mi_ 2 = 
qi- lmi-1  + mi to rewrite the system of congruences (26) and (27) as 

(Ol mi-lqi- l)  �9 ~l rrli "Jr" h(mo)ai-2h(ml)-Bi-2 = 0 (mod D) (28) 

and 

(Olmi-lqi-l) "1- h ( m o ) a i - l q i - l h ( m l )  -Bi-lqi-1 ~ 0 (mod D). (29) 

Equations (28) and (29) tell us that the pair (X, Y) : =  (ol m i - l q i - I  , 1) is a non-zero 
solution (modulo D) of the modular homogeneous linear system 

{etmiX+h(mo)ai-2h(m )-Ri-2y - - 0  (rood D), 
X 4- h(mo)ai- lqi- lh(ml)-Bi- lq,-Iy  = 0 (mod D). (30) 

In particular, the modular homogeneous system shown at (30) is degenerate, and 
therefore its determinant which is 

~ +h(rno)ai-2h(ml)-Bi-2 , (31) 
+h(mo)Ai - lq i - l  h (ml ) -B i - lq i -1  

is zero modulo D. Imposing the condition that the determinant shown at (31) is zero 
modulo D and inverting some elements, we get 

o~mi 4- h ( m o ) a i - 2 - q i - l a i - l h ( m l )  -Bi-2+qi-lBi-1 ~ 0 (mod D), (32) 

and, in light of the recurrence formulae (17) and (18), we recognize that congruence 
(32) is precisely congruence (25) at i. 

We now evaluate (25) at i := j + 2 and read that 

Ct rnj+2 4- h (mo)a j+2h(ml )  -Bj+2 =- 0 (mod D). 

Set 
kj+2 := otto J+2 4- h(mo) A j+2 �9 h(ml)  -B:+2. (33) 

In what follows, we will make the following Hypothesis 

~-j+2 # 0. (H) 

Assuming that (H) holds, it then follows that D must divide the numerator of the 
non-zero rational number ~-j+2, and an immediate calculation then shows that this 
numerator is not larger than 

exp(c8max(mj+2, ]Aj+2] log m, ]Bj+2] log m)), (34) 

where the constant c8 can be chosen to be any constant larger than max(log]a], 
2deg(fg)).  Clearly, m j+2 <_ (m logm) 1/2, and so the inequality (9) will follow 
from (34) (under hypothesis (H)), where the constant c3 shown at (9) can be taken 
to be equal to our present c8, provided that we can show that 

1 
max(IAj+21, [Bj+21) _< (35) 

Let us make the following observations: 

1. ( -1 ) iA i  > 0 f o ra l l i  > 0andAi  # 0 f o r i  > 2 .  
2. ( -1 ) iB i  > 0 f o r a l l i  > 0andBi  # 0 f o r i  > 1. 
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3. [Bi[ >_ IA i l f o ra l l i  > 1. 
4. The formula 

mo = IBi+llmi + ]Bilmi+l (36) 

holds for all i E {0, 1 . . . . .  j + 1 }. 

To justify 1, notice that it is true at i = 0 and at i = 1, and now the recurrence 
formula (17) tells us that 

(--1)iAi = qi-1 " ( - 1 ) i - l A i - 1  + ( - 1 ) i - 2 A i - 2  (37) 

holds for i 6 {2 . . . . .  j + 2}, therefore, by induction, ( - 1 ) i A i  > 0. In particular, 
( -1) lAg  = rAil holds for all i 6 {0, 1 . . . . .  j + 2} and the above recurrence (37) 
also implies that Ai ~ 0 for i >_ 2. The same argument proves 2 above and the fact 
that 

( - 1 ) i B i  = ( - 1 ) i - l q i _ l B i _ l  + ( - 1 ) i - 2 B i _ 2  holds fo r /  E {2 . . . . .  j + 2}. 

(38) 
The facts 1 and 2 above together with formulae (37) and (38) show that both rela- 
tions 

[Ai[= q i - l l A i - l l  + [Ai-2l (39) 

and 

I Bil = q i -  1 I B i -  1 [ + [Bi-2[ (40) 

hold for all i 6 {2 . . . . .  j +2} .  Since [nil = 1 > 0 = [AI[ and In2[ = ql ~ 1 = 
IA21, it follows, by induction on i using recurrences (39) and (40), that 3 holds as 
well. Finally, to see 4, let i 6 {0, 1 . . . . .  j + 1 }, write 

Aimo - Biml  = mi, 
(41) 

Ai+lmo - Bi+lml  = mi+l,  

and treat the system (41) as a system of two linear equations in the unknowns m0 and 
ml.  Solving the above system with Kramer 's  rule and using (20), we get precisely 
formula (36). 

It is now easy to see that the combination of 1-4 above prove (35). Indeed, since 
mj+l  > (m logm) 1/2, we get, by (36), that 

1 

m = mo = [Bj+2lmj+l + [Bj+llmj+2 > [Bj+z[mj+l > [Bj+2[. (m logm)~,  

therefore 
1 m 

[Bj+2[ < ( l o - ~ )  . (42) 

Inequality (42) together with the fact that [B j+2[ > [A j+2[ proves (35). 
In order to complete the proof  of  the Theorem, it suffices to show that hypothe- 

sis (H)  holds for all but finitely many pairs of  positive integers m > n > cl. 
So, we shall suppose that )~j+2 = 0 and write A : =  [A j+2[ and B : =  [Bj+21. 

Since at any rate A j+2 and B j+2 have the same signs and are coprime, we get, from 
(33), that 

h(mo)A = .4_ymj+2h(ml)B, (43) 
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where y = u o r  0 / - 1 ,  according to whether A j+2 > 0 or A j+2 < O. 

Let S(h)  be the set of all singular points of h (i.e., zeros and poles), counted 
without multiplicities; that is, S(h) is the set of complex roots z of the polynomial 
equation f ( z )  �9 g(z)  = O. We distinguish the following two cases: 

Case 1. IS(h)l >_ 2. 

In this case, we first show that both A and B are bounded. Indeed, relation (43) 
together with the fact that A and B are coprime implies, in particular, that there exist 
two rational numbers r and s such that both their numerators and denominators are 
divisible only with primes p dividing ab, and some other rational number p, so that 

h(mo) = rp B and h(ml) ~--- Sp a. (44) 

Writing h(mo) = f ( m o ) / g ( m o )  and using the fact that gcd(f(m0),  g(mo))  I E,  we 
get that there exist two integers rl and r2 composed only of primes dividing abE,  
and two other integers Vl and v2 so that both relations 

f (mo) = r l v  B and g(mo) = r2v B (45) 

hold, and multiplying now relations (45) we get that relation 

f (mo) . g(mo) = r3v B (46) 

holds with r3 = rlr2 and v3 = vl v2. Set u to be the radical of f .g (i.e., the product 
of all the irreducible factors of f �9 g) and set A := disc(u) to be the discriminant of 
u. Notice that deg(u) > 2. Pick kl to be any irreducible factor of f �9 g and assume 
that k~ 1 II f �9 g; that is, that the power at which kl appears in the factorization of 
f �9 g in Q[X] is precisely/zl. Equation (46) implies that 

kl~ I (mo) = r4 v B  , (47) 

where r4 is an integer composed only of primes dividing a b E  A,  and therefore that 

B ~ kl (too) = rsv 5 (48) 

holds with some r5 composed only of primes dividing a b E A  and some integer vs, 
where B t = B / g c d ( B ,  Izl). If deg(k0 > 2, then it is known (see [9]) that an 
equation like (48) has a totality of finitely many effectively computable solutions 
(m0, rs, vs, B r) for which B r > 3. So, except for these finitely many effectively 
computable values of m0, we should have B t < 2, which shows that B is bounded. 
If  we now assume that deg(kl) = 1, then from the fact that deg(u) > 2, it follows 
that there exists another irreducible factor k2 (which is also linear) of u, so that with 
/z2 being the order at which k2 appears in the factorization of f .  g in Q[X], we have 
that 

B It 
k2(m0) = r6v 6 (49) 

holds with some integer r6 which is divisible only by primes dividing a b E A ,  and 
with B" = B/gcd(B , / z2 ) .  Let 

B 
l := . (50) 

lcm(gcd(B,/Zl), gcd(B,/z2)) 
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If 1 > 3, then equations (48) and (49) show that 

kl (mo)k2(mo) = r7v I (51) 

holds with r7 = rs. r6 and some integer v7, and since the polynomial kl �9 k2 has only 
two simple roots, it follows by the same argument as above that an equation like 
(51) can have only finitely many effectively computable solutions (mo, r7, v7, l) 
with l > 3. In particular, except for these finitely many effectively computable 
solutions mo, we should have I < 3, which puts again a bound on B. Since B > A, 
we get that both A and B are bounded. 

The above argument shows that we may assume that A :=  A j+2 and B :=  B j+2 
are fixed, and now since -4-m j+2 = Amo - Bml ,  it follows that we may write 
mo = c l o m l  + Cllmj+2, where clo :=  B / A  > 1 and C l l  :=  + I / A  • 0 are fixed 
rational numbers. Set x :=  m j+2 and y :=  ml,  therefore mo = cloy + cl lx .  We 
return to equation (43) and write it as 

h(cloY -l- CllX) a = •  (52) 
h(y) B 

And we want to show that equation (52) has only finitely many integer solutions 
(x, y). Assuming that this were not so, we would distinguish two instances: 

Subease 1. There exists a constant K such that all integer solutions (x, y) of  equa- 
tion (52) have Ix l < K. 

In this case, there exists an integer value x0, such that equation (52) has infinitely 
many integer solutions (x, y) with x :=  x0. And so, with fixed y (equal to either ot 
or o,-1), r ; =  Cl lXO and C13 " =  y xO or _yxo, the equation 

h(cloY -k- c12)  a 
h(y)B = c13 (53) 

has infinitely many solutions y. In particular, the rational function 

h(c lOX + c12)  a 
h t (X) :=  (54) 

h(X) B 

is constant, therefore S(hl) = 0. This tells us that every singularity of  h (X) is also 
a singularity of  h(cloX + c12) and viceversa, and therefore with the linear function 
L(X) :=  cloX + c12 we get that S(h) is invariant under L. But S(h) is finite, and 
the only instance in which the linear function L with Cl0 and cll rational numbers 
and Cl0 > 1 can havefinite orbits; i.e., finite subsets of  the form {Ln(XO) I n > 0}, 
where we use L n for the nth fold composition of  L with itself, is when cl2 = 0 and 
c10 = 1. But in this case we have m0 = ml,  or m = n, which is not acceptable. 

Subcase 2. Equation (52) has solutions with arbitrarily large values of x. 

In this case, there exists a choice of  sign e = • 1 and a choice of  y (equal to 
either c~ or or-l) such that equation (52) has solutions with arbitrarily large positive 
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values of x with this particular choice of signs e and this fixed F appearing in the 
right hand side of (52). In particular, with 

h(cloY + CllX) A 
hi (X, Y) := e (55) 

h(Y)  B 

the diophantine equation 

hi (x ,  y) = F x (56) 

has solutions with arbitrarily large positive values of x. Let us now make a few 
remarks about this subcase: 

1. deg(f )  # deg(g). 
2. A ~ : B .  

Indeed, assume, for example, that deg( f )  = deg(g). In this case, for large values of 
z, h(z) tends to a fixed limit c14, where c14 is the ratio of the leading coefficient of 
f to the leading coefficient of g, and rewriting now equation (43) as 

h(mo) A 
h(ml )B  - -  .4-ymj+2 

1 
we get that for large m0 and ml >_ (m0 logmo)~, the number ]ymJ+21 is close to 
cA4 B. This shows that m j+2 is bounded, which is not the case we are discussing. 
I f A  = B, t hens inceA and B arecoprime, it follows that A = B = 1. By 
interchanging f with g, and a with b (hence, h with h -  1, and y with y -  1 ) if needed, 
we may assume that deg( f )  > deg(g). In particular, h has an expansion at infinity 
of the type 

h(X)  = c14 X l  -~- c15 X I - 1  -q- . . . .  (57) 

where c14 is again the ratio of the leading coefficient of f to the leading coefficient 
of g and l = deg(f )  - deg(g) > 0. But in this case, with A = B = 1, we get 

1 

( mo "~ andso mo = ml + m j+2, where m j+2 < \ l o g m o J  ' 

h(mo) a h(mo) 
4-YmJ+2 - h (ml )  B - h(mo + mj+2) 

is close to 1 for large values of mo, which shows again that m j+ 2 is bounded, which 
is not the case we are discussing. 

And so, we may assume that deg( f )  ~ deg(g) and that A < B. By interchanging 
again f with g and a with b (hence, h with h -  l, and y with y -  1 ) if needed, we may 
assume that deg( f )  > deg(g). Set 

h(Y)  8 
h2(X, Y) = h i ( X ,  y ) - l  = e E Q[X, Y], (58) 

h(cloY + c11X) a 

and notice that we are assuming that the equation 

h2(x, y) = y{  (59) 
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has integer solutions (x, y) with arbitrarily large values of x, where Yl = y--1. 
Notice also that the function h2(X, Y) has (as a rational function of Y) an expansion 
at infinity of the form 

h2(X, Y) = ClsY t + R I ( X ) Y  t-1 + . . . .  (60) 

where t = (B - A)l  = (B - A)(deg(f)  - deg(g)) > 0, c15 = EcB4Acl At, and 
R1 . . . .  are rational functions in X. We now recall the following Theorem due to W. 
SCHMIDT (see [8]): 

Theorem S. Suppose that R(X ,  Y) ~ C(X, Y) is a rational function which, as a 
function o f  Y, has an expansion at infinity o f  the type 

R(X,  Y) = ro Yt -4-r l (X)Y t-1 q- . . . .  (61) 

where ro ~ 0 is a constant and r! . . . .  are rational functions in X, and assume that 
y is a non-zero complex number which is not a root o f  unity. I f  the equation 

yx  = R(x,  y) (62) 

has integer solutions (x, y) with arbitrarily large values o f  Ix l, then R is o f  the type 

R(X ,  Y) = ro(Y - u (X))  t, (63) 

where t r O, u (X)  ~ Q(X), and y v ~ Z for  some v E Z\{0}. 

And so, if equation (59) has integer solutions (x, y) with arbitrarily large positive 
v(X,  Y) 

values ofx  we conclude, by Theorem S above, that h2 must be of the form - -  
w ( X )  t 

for some polynomials v 6 Q[X, Y] and w c Q[X]. But we obviously have 

f ( Y ) B g ( c l o Y  + CllX)  A 
hz (X ,  Y) = e g ( y ) n  f ( c l o Y  + c l l x ) a  (64) 

and the expression (64) is already in reduced form because f and g are coprime as 
polynomials. In particular, g must be constant and f (C loY  + cl 1 X)  must not depend 
on Y, therefore f must be constant as well, which is impossible. 

The above arguments take care of Case 1, but are ineffective. 

Case 2. IS(h)l = 1. 

Our proof for this case is effective, in the sense that here we can show that an 
equation like the counterpart of (H) has only finitely many effectively computable 
positive integer solutions m > n > cl. 

Let us notice first that since f and g are coprime, it follows that up to inter- 
changing f with g, and a with b if needed, we may assume that f ( X )  = c l (X)  ~ 
and g(X)  = d, where c, d are nonzero integers and l (X)  := r X  + s is a linear 
polynomial with integer coefficients. Up to simultaneously changing the signs of 
both f and g, we may assume that r > 0. The trick that we employ here is to notice 
that we may assume that I (X)  := X. Indeed to see why this is so, notice that for 
every positive integer n, we have 

! 
Un l un, (65) 
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holds for all positive integers n > - s / r ,  with 

u'(n) = f l  (n)a rn+s + gl (n)b  rn+s, (66) 

where f l ( X )  := b s f ( x )  r = crbS(rX + S) #r, and g l (X)  := - a S g ( X )  r = - a S d  r, 

and in particular, 

gcd(um, Un) [ gcd(u~m, urn) (67) 

holds for all pairs of  positive integers m > n > cl. So that, provided that m > n > 
Cl (notice that Cl is larger than the absolute value ]sl/r of the unique root of  f ) ,  
we may replace the pair of  positive integers m > n by the pair of  positive integers 
m p > n', where m '  :=  rm + s and n'  := rn + s, and therefore we may assume that 
l (X)  = X (notice that this transformation will affect only the degree of f �9 g; i.e., 
will affect only the constant c2 shown in formula (4)). 

And so, from now on we shall assume that f ( X )  = cX  u and g(X)  = d, where 
# and c are positive integers and d is a non-zero integer. In particular, h(X)  = 
f (x)  c . XU" 
g(X) = -d 

We first treat the case m j+2 : 0. In this case Amo = Bml ,  and since A and 
B are coprime we read A = n / d  and B = m / d ,  where d := gcd(m, n). Taking 
absolute values in equation (43) and raising the resulting equation to the power d, 
we read 

[h(m)l n = [h(n)l m (68) 

therefore 
log]h(m)l loglh(n)] 
- -  - - -  ( 6 9 )  

m n 
loglh(x)[ . 

But certainly the function x w-> is decreasing for large x (and tends to 
X 

1 
zero when x tends to infinity), and since for us (m l o g m ) :  _< n < m, we get that 
equation (69) has only finitely many (obviously effectively computable) positive in- 
teger solutions m, n satisfying the above inequality. From now on, we shall assume 
that m j+2 ~ O. We first notice that 

mj+2 << B logm. (70) 

Indeed, this follows immediately by taking first absolute values and then logarithms 
in formula (43) and using the facts that m > n and B > A. 

Since m j+2 = Aj+2mo - Bj+2rnl, we may rewrite the equation ~-j+2 = 0, with 
L j+2 being given by (33), as 

C #'~Aj+2 ( a ] m l  tz~Bj+2 
( ~ . ( b ) m ~  = - t - ( d . k b  ] . m , ]  , (71, 

which implies 
a c O r a l  /z B 

( d ' - b  " m l ~  " m l )  " (72) 

And so, since A and B are coprime, we conclude that a positive rational number p 
exists such that both relations 

d a m 0  d . a m .  �9 b - m ~  = p /~  a n d  b ' m~z  = pA ( 7 3 )  
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hold. We shall now use equations (73) to infer that the inequality 

B << log m (74) 

holds. 
Let Pl < P2 < " '"  < Pt be all the prime numbers dividing c d a b  (notice that 

t > 1 because a and b are coprime and a ~ +b) ,  and write 

: =  P I  . . . .  P~' and :-- pf' . . . . .  p,~' 

for some integers ~i,  fli, i = 1 . . . . .  t. We also write 

19 = p ~ l  . . . . .  p ~ t  . )~ (75) 

for some (unknown) integers Yi and some (unknown) positive rational number ~. 
having the property that when written in reduced form both its numerator and de- 
nominator are coprime to Pl . . . . .  Pt. And so, we may rewrite the system of  two 
equations (73) as 

t 

m ~  = ~.B . 1-I p~Oi 
i=1 

where 

btOi :=  B y i - o t i m o - f l i  and 

t 

and m ~  = ~ A  . I - I  p~l i ,  (76) 
i=1 

t,l, l i  :~-- A y i  - o t i m l  - i~i for /  = 1  . . . . .  t. 
(77) 

Since m0 is an integer and )~ is a rational number which when written in reduced 
form has the property that both its numerator and denominator are coprime to pl  . . . . .  
pt,  we read, from equations (76), that ;~ > 1 is a positive integer. In particular, if ~. 
1, then equation (76) implies that inequality (74) holds. Moreover, in this case, it 
follows that ~.A divides both m~ and ml ~, and therefore it will divide gcd(m~, m~) = 

u (it is clear that gcd(m0, ml )  divides m j+2). In particular, we gcd(m0, ml)/z < m j +  2 

also get that 

log)~ << log m j+2. (78) 

When )~ = 1, we simply discard the factors )B and ~A appearing in the equa- 
tions (76). 

From the above remarks, it follows that in order to show that inequality (74) 
holds, it suffices to show that it holds when ~. = 1. To prove this, let us go back to 
formula (76) and using the fact that m0 is an integer, we get that 

0 </z0i  ~- O(logm)  holds for all i = 1 . . . . .  t. (79) 

Using (77), we read that 

IByi - o t i m o l  = O( logm)  holds for all i = 1 . . . . .  t. (80) 

And so, applying (80) for two different indices i and j (assuming that we have two 
different indices i and j ) ,  we get 

I ( y i o t j  - y j o t i )  B I  = I o t j ( y i  B - o t i m o )  - o t i ( y j  B - otjm0)l 
(81) 

< IotjFtyiB - otimol q- Ictil]yjB - o t j m o I  --~ O(logm) .  
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So, if two indices i ~ j exist such that oliy j - -  Olj~; i # 0 then, from (81), we read 
that 

B = O( logm)  

must hold, which is precisely inequality (74). So, we shall assume now that Olifl j = 

Oljt~ i holds for all indices i, j e {1 . . . . .  t} (this is, for example, the case in which 
t = 1). It then follows that the number 

FiB - otimo 
- -  a ( 8 2 )  

O/i 

is independent of  i, and further that 

yiA - otiml A Amo - Bml  -~=~a+ 
oti B 

is independent of  i as well. In particular, we get that both relations 

d m~ b '  c �9 = and ~ - m ~ =  b r (83) 

hold, where 3 and ( are some rational numbers�9 Assuming that tal > Ibl, we get that 
both a and ( are positive. Moreover, if we set w > 1 to be the largest possible integer 
exponent for which la/bl = r~ has a rational solution r l ,  we get that lal = a] ~ and 
Ibl = b~ hold with some positive integers al  and bl,  and now relations (83) show 
that 

c tz ( a l  ~ wa and c ( a l  ~wr (84) jm0 em = blj 
It now follows that both w3 and w~ are integers. I f  bl > 1, we get, from the fact 
that m0 is an integer, that w3 is bounded from above, and therefore m0 is bounded 
from above as well (obviously in a computable way). Thus, we may assume that 
bl = 1, and now relations (84) together with the fact that ml < mo imply that 

w(  < w6. In particular, a~  ~ divides a~  a, which shows that m~ [ m S. Hence, 
ml I m0, but this shows that the Euclidian algorithm finishes at the first step; i.e., 
j = 0 and m j+2 = 0, which is a case already treated. So, this instance cannot occur 
and inequality (74) holds. 

The combination of (70) and (74) shows that 

mj+l << log 2 rn (85) 

holds, and now inequality (78) shows that 

log ~. << log 2 m, (86) 

where we use log 2 to denote the composition of  the natural logarithm function with 
itself. 

We now return to equations (76) and write these equations as 

t t ! ! 

mo ---- )B/tz 1--I pt~Oi and ml ---- )B/~ N pUli, (87) 

i=1  i=1  
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where 

t /Z0i  /Zt  / Z l i  
#0i = and l i = - -  are all non-negative integers for i = 1 . . . . .  t. 

/z /z 
(88) 

Let us notice that since A and B are coprime, it follows, from (87), that ~ = ~.~ for 
some positive integer ~.1. 

We now multiply the first relation (87) with A and the second relation with B, 
substract them and use the fact that -4-m j+2 = Amo - Bml # O, to get 

t t 

m j+2 = a~.~ H pT~Oi B ~ A  H pt~il # O. (89) 

i = 1  i = 1  

We are now all set to apply lower bounds for linear forms in logarithms fi la BAKER 
(see [1]) to equation (89). That is, for every index i �9 {1 . . . . .  t} we set 

t l �9 ! I 
Xi  :~-- max(N0/,/Zli), Yi : =  mm(#0i,/Zli), Zi  := X i  - Yi,  (90) 

and if X > 2 we also set 

X0 :=  B, Y0 :=  A, Z o : = B - A .  

If  ~ = X l = 1, we simply set X0 = Y0 = 1 and Z0 = 0. 
We notice that equation (89) can be written as 

t t t 
�9 Z ! t t t 

mj+2 = )~fo H p[~ (A~'I ~ H P/Z~ -- B k z ' H  PzI') ' (91) 

i = 1  i = 1  i = 1  

where 

Z~o= B - A ,  
when X _> 2, and for i >_ 1 

! 

Ztoi = Id, oi -- Yi,  

Z r l = A - A = O ,  

Ztli = ISli - Yi.  

It is clear that both numbers Ztoi and Z'li are non-negative, and one of  them is always 
zero. Since m j+2 ~k O, it follows that 

Yi << logmj+2 << log2m (92) 

holds for all i = 0, 1 . . . . .  t. To get a lower bound on the expression apearing in 
parenthesis on the right hand side, we write equation (91) both as 

t t 

m j + 2  = az  x~ H pl~'oi 1 - B A - I ~ . I  ZO H Pl~'li--tZtOi (93) 

i = 1  i = 1  

as well as 
t t 

mj+2 = B~.f ~ H p~qi 1-- AB-I~.f ~ H PS ~ " 
i = 1  i = 1  

(94) 

, t = + Z i  for all i �9 {1 . . . .  t} and X0 - Y0 = Z0. We Notice that /~0 i  - -  / s  

now multiply the two relations (93) and (94) above and use the obvious fact that 
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! ! 
IZOi -1- # l i  >- Zi for all i = 1 . . . . .  t and B + A = X0 + Y0 > Z0 holds when )~ > 2, 
to get that there exist choices of  signs e - l ,  s0 . . . . .  st ~ {+l}, so that 

t t t 

2 Zt (B/A)S_I~,lO ~ 8iZi ~ -$iZi . m j+2 >)~1 I " I P / i  1 -  _ l l P i  �9 1 ( B / a ) - ~ - l X l ~ ~  
i = 1  i = 1  i = 1  

(95) 
We now set 

Z := max(e, Zi I i = 0 . . . . .  t), (96) 

and use a lower bound for a linear form in logarithms (see [1]) to conclude that an 
effectively computable constant c16 exists such that 

t t 

min(l l  (B/A)e-l)~l~ ~ 8iZi' - l l P i  1,11 - ( B / a ) - s - ' ~ ' l S ~  Pi - 'sizi" ) 
i = 1  i = 1  (97) 

> e x p ( - c l 6  log B log Z log)~tl), 

where U 1 --- max(~l ,  e). The effectively computable constant C16 appearing above 
depends on t and on the prime numbers Pl . . . . .  Pt. Thus, by taking logarithms in 
(95) and using (97), we get that 

t 

Z01og~.l + Z Z i l o g p i  < C l 6 1 o g B l o g Z l o g ) J  1 + 21ogmj+2.  (98) 
i = 1  

So, either Zi < e holds for all i = 0 . . . . .  t, or Zi = Z for some i = 0 . . . . .  t and if 
this is so, then 

Z < 0 7  log Z log B log )~!1 + c18 log m j+2 (99) 

holds, where c17 :----- c16/log 2 and c18 := 2 / l o g  2. We now use inequalities (74), 
(85) and (86) to conclude that inequality (99) implies that 

Z ~ c19 log Z log~ m. (100) 

But inequality (100) implies that 

Z < c20 log22 m log 3 m 

holds for large enough values of  m, where we use log 3 m for the composition of the 
natural logarithm with itself three times evaluated in m provided that m is large. So, 
at any rate, we get that 

Zi <_ C20 log22 m log 3 m (101) 

holds for all i = 0, 1 . . . . .  t provided that m is large. With inequality (92), we get 
that 

Xi <_ C21 log22 m log 3 m (102) 

holds for all i = O, 1 . . . . .  t. We now return to (87) and take logarithms and notice 
that we get 

l 

log m _< X0 log)~l + Z Xi log Pi, (103) 
i : 1  
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and now inequalitites (86), (102) and (103) lead to the inequality 

log m < c22 log 3 m log 3 m (104) 

for sufficiently large m. But (104) clearly implies that m < c23. 

This disposes of  Case 2 and ends the proof  of  our Theorem. [] 
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