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Parallel Surfaces in Affine 4-Space 

By C. SCHARLACH and L. VRANCKEN 

Abstract. We study affine immersions as introduced by NOMIZU and PINKALL. 
We classify those affine immersions of a surface in IR 4 which are degenerate and 
have vanishing cubic form (i.e. parallel second fundamental form). This completes 
the classification of parallel surfaces of which the first results were obtained in the 
beginning of this century by BLASCHKE and his collaborators. 

1 Introduction 

We consider the standard affine space ~m equipped with its standard connection 
D. Let M n be a manifold equipped with a torsion free affine connection V and let 
x : (M n, V) --+ (I~ m, D), m > n be an immersion. Following [9], we call x an 

affine immersion if there exists a transversal (m - n)-dimensional  bundle cr such 

that 
D x x , ( Y )  - x , ( V x Y )  ~ cr, (1) 

for all vector fields X and Y which are tangent to M n. It is immediately clear that if 
we equip ll~ m with a semi-Riemannian metric and take for a the normal bundle, then 

isometric immersions provide examples of  affine immersions. Also the equiaffine 
immersions, in the sense of  BLASCHKE for hypersurfaces, and in the sense of [16], 
[ 18] or [ l 0] for higher codimensions provide examples of affine immersions. 

For an affine immersion it is possible to introduce a bilinear form h, called the 
second fundamental form, which takes values in the tranversal bundle t~ by 

h(X,  Y) = D x x , ( Y )  - x , ( V x Y )  ~ or. (2) 

Since V is a torsion free affine connection, h is symmetric in X and Y. Let 
be a vector field which takes values in or. Similarly, as for isometric immersions, 
we can now introduce a normal connection V • and Weingarten operators A~ by 
decomposing Dx~ into a tangential part and a part in the direction of  ~r, i.e. we 
have the Weingarten formula which states that 

Dx~ = - x , ( a ~ x )  + Vx~.  (3) 
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Using the Weingarten formula, it is now possible to define the covariant deriva- 
tive Vh of the second fundamental form h by 

(Vxh)(Y, Z) = V~xh(Y, Z) - h(VxY, Z) - h(Y, VxZ).  (4) 

Affine immersions for which Vh vanishes identically are called parallel immersions. 
In Riemannian geometry, these immersions and their generalisations have been stud- 
ied by many people, an overview can be found in [7]. A general classification of the 
Euclidean parallel submanifolds was obtained in [3]. As far as we know it is still an 
open problem to classify the semi-Euclidean parallel submanifolds. 

In this paper we will focus on surfaces, i. e. the dimension of M n equals two. 
All results will be local and valid on a suitable open dense subset of  M 2. We say 
that an affine immersion is linearly full provided that for every point p of  M 2 and 
for every neighborhood U of p, x(U) is not contained in a lower dimensional affine 
subspace of ~n. Using Lemma 2 of [15] which says that r = imh  if a parallel 
affine immersion is linearly full, it follows easily that a parallel surface immersion 
which is linearly full has to be in R 2, ~3, ]~4 or ~5. The first case (m = 2) clearly 
implies that M 2 is an affine plane. In the other cases, a nondegeneracy condition 
can be introduced as follows. Let u = {X1, X2} be a local basis in a neighborhood 
of a point p. Then we define for m = 3: 

hu(X, Y) = det(X1, X2, DxY), (5) 

and for m = 4: 

hu(X, Y) = �89 (det(Xl,  X2, Ox~ X, Dx2 Y) + det(Xl,  S2, Ox, Y, Ox2X)).  (6) 

It is well known that in both cases the rank of hu is independent of  the choice of  
the local basis u. We call M 2 nondegenerate if the rank equals 2, 1-degenerate if 
it equals 1 and 0-degenerate if it equals 0. A surface in R 5 is called nondegenerate 
if det(Xi,  X2, Dxj X1, Dx~ X2, Dx2X2) ~ O, which again is independent of  the 
choice of  basis u. Using Lemma 2 of [15] again, we see that a linearly full affine 
immersion of M 2 in 1~5 is always nondegenerate. 

Nondegenerate parallel immersions of  a surface in I~ 3, ]I~ 4 and ll~ 5 are considered 
in respectively [9], [10] and [8]. Therefore, restricting to an open and dense subset 
if necessary, only the degenerate cases still need considering. If  M 2 is contained in 
R 3, a solution was found in [2]. This leaves only the case that M 2 is linearly full 
in ]~4 and degenerate. If  M 2 is 0-degenerate and parallel, the immersion can not 
be linearly full. Thus we are left with the 1-degenerate parallel surfaces which are 
linearly full in 1~4. We prove the following: 

Theorem.  Every 1-degenerate parallel affine surface immersion (x, or) in ]~4 is a 
ruled surface and can be locally parametrized either by 

1.1. x(u, v) = y' (u) + vy(u), and 
cr = span(~l, ~2) is given by (45) and (46), or 

1.2. x(u, v) = (ey(u) + y ' (u))  + vy'(u), e = d:l, and 
cr = span(~l, ~2) is given by (47) and (48), 

lI. x(u, v) = ~(u) + v~(u), ~" = -fl,  and 
tr = span(~l, ~2) is given by (49) and (50). 
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The paper is organized in two parts. In Section 2 we apply the method of moving 
frames due to E. CARTAN tO an affine immersion of M 2 in II~ 4. We introduce the 
affine semiconformal structure (cp. (6)), which was known already to [1]. We end 
up with a classification of affine surfaces in ~4 with respect to the (non)degeneracy- 
type of the affine semiconformal structure and normal forms of the second funda- 
mental form h for each type. This part is closely related to [12] and [13]. 

In Section 3 we restrict to 1-degenerate parallel affine immersions of M 2 in R 4. It 
turns out that they are ruled surfaces (Lemma 2) and therefore can be parametrized 
as x(u ,  1)) = or(u) + 1)~(u). We find special frames which simplify the structure 
equations significantly. A reparametrization finally leads to our main result. 

We will use the Euler summation convention. 

2 Classification of surfaces in R 4 with respect to their affine semiconformal 
structure 

2.1 The affine frame bundle on R 4. We define a f rame on ]~4 to be an ordered set 

Sb {1)1, I)2, 1)3, 1)4; b}, wi th  1)2 = 6 GI(4, ~) ,  b 6 1~4. 
V3 
1)4 

Let F denote the set of all frames on IR 4 and Jr : F ~ II~ 4 the projection map, 
defined by: zr(Sb) = b. Let Aff(R 4) be the Lie group of affine transformations on 
R 4 , 

Aff(R4)-----{( A ~ - ~ I  ) A E G I ( 4 ,  R ) , b E R 4 }  �9 

Obviously we can identify F with Aff(~4). The local structure of Aff(]~ 4) is en- 
coded in the Lie algebra-valued Maurer-Cartan form ~rls = d S S  -1 ~ aff(~4), we 
use the notation: 

1)2 M 0 1)2 
d 1)3 = v3 , M 6 M ( 4 x 4 ,  R ) , n ~ R  4. (7) 

If we let  Aff(~ 4) act both on F and {(b, 1) 6 R 5 I b 6 ~4} ~ ]~4 by right 

multiplication Rs,  R s ( C )  = CS, then n o Rs = Rs o rr. To obtain the fibers of 
the bundle 5 ~ := rr : F --+ II~ 4, note that rr (S~,) = (0, 0, 0, 0, 1)Sb, and the isotropy 
group of (0, 0, 0, 0, 1) is 

A 0 

We can identify the homogeneous space Aff(IR4)/H ~ R 4 and obtain that ~ is a 
principal (right) H-bundle, the aff ineframe bundle on R 4. 
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2.2 Adaption of the affine frame bundle to an affine surface immersion. Let U 
be a connected open subset of  a two-dimensional oriented manifold M 2 equipped 
with a torsion free affine connection V and let x : (U, V) --~ (1~4, D) be a smooth 
affine immersion with transversal bundle ~ (cp. Sec. 1). We want to adapt the affine 
frame bundle to the surface by restricting the base manifold to x (U). We define the 
principal (right) H-bundle .~0 = Jru : F ~ --~ U as the bundle over U induced by x 
and the affine frame bundle (cp. [14], vol. V, p. 391f. for the notion of an induced 
bundle), i. e. . ,~0 = x * ~ .  For the further adaption we take into account the given 
transversal bundle cr and we use the first order information given by the tangent 
bundle o fx .  We call a frame Su ~ F 0 a first order frame if span(vl,  v2) = x , (TuM) 
and span(v3, v4) = ~. We denote the set of  all first order frames on U by F 1 C F ~ 
and use the notation Su = {vl, v2, ~1, ~2, x(u)} e F 1. The subgroup 

o l  = 0 det P ~ 0 C H, (8) 

0 1 

acts transitively and effectively on F 1. Thus we get a subbundle ~1  of ~ 0 ,  ~ l  = 
rru : F 1 --~ U, where we use the same notation for the restriction of 7rg to F I. 
Obviously  .1~1 is a principal (right) /41-bundle, the reduced bundle obtained by 
reduction of the structure group H of ~ o  to/_/1 (cp. [6], vol. I, pg. 53). Since the 
first two legs vl and v2 of a frame S. ~ F 1 span the tangent space x . ( T . M ) ,  we get 
two zero's in the last row of the Maurer-Cartan form ~ls ,  on F 1 (~:o -3 = 0, ~o -4 = 0) 

and the forms ~1  and ~ 2  drop down to U (cp. 7). We use the notation: 

/vi/   (vl) 1)2 q9 lp 0 I)2 
d ~1 = o- r sel . (9) 

O91 O9 2 0 0 0 

For a fixed first order frame field (a smooth cross section of .,r 1) S = {Vl, 1)2, ~1, 
~2, x}, 1)i =- dx(Xi ) ,  Xi c F ( T M ) ,  the entries of  the Maurer-Cartan form de- 
fine (resp. correspond to) the following quantities (1 < i, j ,  k < 2, 3 _< a < 4) 
(cp. (1), (2) and (3)): 

VX, X j  = r induced connection (10) 

h~ X j)  =- lp~(Xj) second fundamental forms (11) 

-dx (A~ i  (Xi)) = ty~(Xi)dx(Xk) Weingarten operators (12) 

V)~ i ~j : "~j (Xi)~(ot-2) normal connection (13) 

It is straightforward to show that V -L is a torsion-free affine connection, h 3 and h 4 
are symmetric bilinear forms and A~I and A$2 are 1-1 tensor fields. 

2.3 The affine semiconformal structure, To find the invariants (quantities inde- 
pendent of  the choice of  frame) we can compute the (infinitesimal) group action 
(change of frames) either on the Lie group level or on the Lie algebra level (cp. [4]) 
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for the general theory, [ 12] for the centroaffine case). Since the group of centroaffine 
transformations is a subgroup of the affine group, the affine invariants are part of  the 
centroaffine ones. A description in detail can be found in [13]. We only will need 
the action on ~p resp. the second fundamental forms h 3 and h 4. Let Su, Su ~ F 1, 
then there exists B 6 H 1 such that Su = BSu (cp. (8)). For the Maurer Cartan form 
we get: 

OYlsB = dSS- l  B = d(BS)(BS)- l  B = d B +  BdSS -1 = d B  + BnrI3. 

For B = 0 E n 1 an evaluation of this equation and ~ = h~j wJ 
0 1 

gives: 

0 = p~pQ-1, (14) 

(h 3, h 4) = (p[(Q-~)ll~3 + (Q-1) I~4]  Tp, p[(Q-~)~/~3 + (Q-1)22~4 ] Tp). (15) 

For a frame Su = {vl, v2, ~l, ~2, u} 6 F 1 we define a symmetric I bilinear form 
on F 1 by: 

~b = det~p = ~ (3 aP 4 - ~p3 (3 ~4, (16) 

e. ~ b ( X , Y ) =  l([Vl,Ve,Dxdx(Xl),Drdx(X2)l+[v,,v2,Dxdx(Y,,,Dxdx(X2)l) i. for some [Vl ,O2,~l ,~21 
determinant form [ ] on ~4  (cp. (6)). We can use (14) to determine how ~ varies 
along the fibers of  3 ~ l : 

det P ~ 
q~ = d e t ~  = (det P)(det  ~) (de t  Q - l )  = det Q~b. 

Now a semiconformal structure compatible with a quadratic form q is defined as the 
set {rq I r E ~ \ {0}} and it makes sense to talk about a semiconformal structure 
being nondegenerate, definite, etc. (cp. [ 17], p. 4). The quadratic form associated to 
~b induces a semiconformal structure on the tangent space at each point of  U. This 
structure on U is called the affine semiconformal structure induced by x and was 
known already to [1], p. 375. Depending on the affine semiconformal structure we 
will call a surface x (U) a nondegenerate, definite, indefinite or 1-degenerate surface 
if the induced affine semiconformal structure is nondegenerate, definite, indefinite 
or l-degenerate. A O-degenerate surface is a surface x(U) for which the affine 
semiconformal structure contains only the zero form. 

2.4 Normalization of ~ and classification. We saw that a change of frames in- 
duces an action of H 1 on Sym(2) x Sym(2) (cp. (15)), where Sym(2) denotes the 
algebra of  all symmetric 2 • 2-matrices: 

p(B)(h 3, h 4) = ( P[(Q-I)Ih3 .-I.- (Q- l )~h4]  Tp, p[(Q-1)2h3 -t- (Q-1)2h4] Tp). 

lWe denote by | the symmetric product of l-forms: w E) r/(X, Y) = �89 + w(Y)rl(X)). 
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Note that the action can be written as the composition of two actions of  the form: 

pl(P)(h 3, h 4) = (ph 3 Tp, ph 4 Tp), (17) 

p2(Q)(h 3, h 4) = ( ( Q - l ) l h 3  + (Q-1)21h4, (Q-1)~h3 + (a -1 )~h4) ,  (18) 

namely: 

p(  0 ) = P I (P )  o p z ( Q ) .  (19) 
0 1 

We want to choose normal forms (representatives of  the orbits) in Sym(2) x 
Sym(2) under the action of H I given by (19). Since the centroaffine situation is 
very close to the affine one, we will omit some details. A more comprehensive 
description can be found in [l 3] (Section 4.1, 4.2). As we just saw the action splits 
in two parts where span(h 3, h 4) is an invariant of  the second part (18). Therefore we 
want to investigate the orbits of  two-pencils 2 under the first part (17) of  the action. 
A first step is to understand the action on a single element h ~ Sym(2). 

If  we restrict pj to S1(2, IR), we can define an invariant quadratic form q in 
Sym(2) by 

q (h) = - det h. (20) 

Then Sym(2) with the associated scalar product is isometric to the Minkowski 3- 
space R~ (see Figure 1, for notations cp. [11]). This is easy to see if we choose 

10 ), E2 (0 ~ 1 ) (21) E 0 =  ( 0 1 ) ,  E, = (0'_ ~ = 

as a basis of  Sym(2). Then we get for every h = aEo + bE1 + cE2 = (a+b aCb) 
E Sym(2): q(h) = - d e t h  = - ( a  2 - b 2 - c 2) = - a  2 + b 2 + c 2. 

Under this identification Pl defines a representation of S1(2, R) on R 3. The in- 

variance of q means that Pl (P)  is a linear isometry of ~ ,  i. e. Pl : S1(2, I~) --+ 
O1(3). This map is neither 1:1 (Pl (P)  = Pl ( - P ) )  nor onto (S1(2, ~ )  is connected, 
O1(3) has four components). However, pl : PGI+(2, ~ )  --+ ~ +  0++(3 )  is an iso- 
morphism: 

Theorem.  ([13], Thm. 3) Let 0++(3 )  be the group of all time- and space- 
orientation preserving isometrics of 1~ and PGI+(2, ~ )  = Gl+(2, ~)/{-4- Id}, 

Gl+(2, 1~) = {P c Gl(2, ~ )  I d e t P  > 0}. Identify]~ andSym(2) by T(a, b, c) ~-+ 
( a+cb aCb ). Then pl : PGI+(2, R) --+ I~+ O++(3)  = {rQ I r E ]~+, Q ~ O1++(3)}, 

defined by Pl ( P)A = P A Tp, is a (Lie group) isomorphism. 

Hence we know that PGI+(2, R) acts on an element (a+b c c a-b) ~ Sym(2) in the 

same way as ~ +  0 + + ( 3 )  acts on an element T(a, b, c) ~ R~. The later action is well 

understood. O ++ (3) acts transitively on (ordered) orthonormal bases which have the 
same time- and space-orientation. Thus it acts also transitively on two-dimensional 
space-, time- or lightlike subspaces. 

Two-pencils are either space-, time- or lightlike subspaces, either two-dimensio- 
nal or one-dimensional or just the origin, where dimension and type are invariant 

2The span of two symmetric bilinear forms is called a two-pencil. 
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a 

"b 

h spacelike ,', ',, deth < 0 ,~ > hindefinite, 
htimelike ,', ',, deth > 0 ,~ ~, hdefinite, 
h lightlike ,~ ',, det h = 0 ,', ,~ h degenerate. 

Figure 1. (Sym(2), q) ~ II~ 

under Pl. Normal forms for the lower dimensional cases are obvious [5], p. 251. In 
the two-dimensional case we can choose the following normal forms (cp. (21)): 

I. span(h 3, h a) spacelike: span(El, E2), 

II. span(h 3, h a) lightlike: span(E2, I(Eo + El)), 

III. span(h 3, h 4) timelike: span(Eo, El). 

Finally we can still use the second part P2 (18) of the action p (19) to map h 3 
and h 4 to the suitable basis vectors. 

Summarized we obtain the following classes of surfaces in R4: 

span(h 3, h 4) 4~ 

I. spacelike plane definite 

II. lightlike plane 1-degenerate 

III. timelike plane indefinite 

IV. (a) spacelike line 

(b) lightlike line 

(c) timelike line 

0-degenerate 

normal form 

(El, E2) 

(E2, l(E0 + El)) 

(E0, El) 

(El, 0) 

(�89 + E~), o) 

(Eo, o) 

(o, o) (d) (0, 0) 
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3 1-degenerate parallel surfaces in ~4 

In the following only 1-degenerate surfaces in ~4 will be considered since only for 
this class the parallel surfaces are yet not classified (cp. Sec. 1). 

3.1 Second order frames. As we have seen before for a 1-degenerate surface 
(Type II) in  ]I~ 4 there exists a frame S ~ F 1 such that h 3 = E2 = (0 1) and 

(~~ ~ We call such a frame a second h4  = I ( E 0 +  E l  ) = ( 1 0 ) r e s p .  ~t = . w l  0 
/ 

order frame and denote the set of all second order frames on U by F e C F 1. We 
can determine the subgroup H e C H l, which acts transitively and effectively on 
F 2, by calculating which changes of frames leave the special form of ~ invariant, 
and we obtain: 

H 2 =  

a b 
0 c 

0 

a c  
0 

2ab 

~176 / 
a 2 

l 

ac # 0 ] .  (22) 

We have constructed a subbundle .~2  of 5 vl,  3 ~2 = zrv" F 2 - ~  U ,  which is a 
principal (right) H2-bundle, the reduced bundle obtained by reduction of the struc- 
ture group H l of 5 vl to H 2. We use the notation S E y 2  for a second order frame 
field. The structure equations have the form (cp. (9)): 

V2 ~0 
d ~! = a 

o) l 0) 2 

w 1 0 0 v2 
- 'C - ~1 �9 

0 0 0 

(23) 

3.2 Parallel surfaces. An affine surface with transversal bundle a is called parallel 
if the second fundamental form h = h3~l + h4~2 is parallel (cp. Sec. 1), i. e. 

Vh = 0. (24) 

By definition (Vh ----- C3~1 q- C4~2,  cp.  [10]) this is equivalent to the vanishing of 
k the cubic forms C 3 and C 4. In the following we will use the abbreviation: qgj i  = 

~(x~). 
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Proof 
hl l  = ~2 (hij : :  h(Xi, Xj)).  

Lemma 1. I f  (x, cr) is a 1-degenerate parallel surface in R 4, then we get for a 
second order frame feld: 

q)l 1 = O, q)122 = 0, (25) 

VX~I~I : (g)~l + q)21)~l, (26) 

Vx~2~l = (~o~2 + q922)~1, (27) 

Vx x, ~2 = 2q)~lsel + 2~o~1~2, (28) 

Vx~2r = 2922~1 + 2~0~2~2. (29) 

This is a direct consequence of (24), using (4) and h22 : 0, hi2 = ~l and 
[] 

Lemma 2. A 1-degenerate parallel surface in ~I~ 4 is a ruled surface. 

Proof Dx2dx(X2) = dx(Vx2X2) + h(X2, X2) = ~022X2. [] 

Remark. Every ruled surface x(u, v) = e~(u) + v~(u) in lI~ 4 is k-degenerate (k 
{o, 1}). 

3.3 Further adaption of the frame and the parametrization. We know by now 
that a l-degenerate parallel surface in ~4 is a ruled surface where X2 gives the 
direction of the ruling. To simplify the computations we would like to find a second 
order frame field such that Vx2X2 = 0 and such that {Xl, X2} is a Gauss-basis (i. e. 
0 : [X l ,  X2]) .  

Lemma 3. For a 1-degenerate parallel surface (x, ~r ) in ~ 4  there exist a frame field 
S = {Vl, v2, ~l, ~2, x} 6 ~ 2  and local coordinates (u, v) such that Vl = d x ( ~ ) ,  

v2 = d x ( ~  ) and D "o_ d x ( ~  ) = O. Furthermore we can parametrize the surface by 
Ov 

x(u, v) = or(u) + v~(u). 

Proof If S, S c .~2 and vi = d x ( X i )  resp. vi = dx()(i),  then there exists A ~ H 2 
with X1 = aXl + bX2, X2 = cX2 and ac ~: 0 (cp. (22)). Thus 

O =  V)~2X 2 r ,~ X z ( l n c ) = - ~ 0 2 2 2  

~ - [X2( lna)  = --q)~2' 
0 : [XI ,  X2] -{ ~" [ X l ( l n c )  + b X z ( l n c )  _ al_X2(b) ~022 q92 

= - 21" 

[] 

We call a frame field S = {dx t ~ ~ dx t ~ ~1, ~2, x} ~ .~2 with D • d x ( ~  ) = 
~OuJ' ~Ov]' av 

0, where (u, v) are local coordinates, an adapted frame field. Let x(u, v) = or(u) + 
vfl(u) be a local parametrization of a l-degenerate parallel surface in 11~ 4 and S = 
{at' + vfl', r ,  ~l, ~2, x} an adapted frame field. (For a function f ( u )  we write 
f r  = ~ f . )  By Lemma 1 and Lemma 3 the structure equations have the following 
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form:  

Or'+ V/3 't = D a d x ( o )  = qg~l(Ott q - v/3') + qg~l/3q-~2 , (30) 
Ou 

/3' D A d x ( ~ )  2 = = q921/3 +~1 ,  (31) Ov 

D ~ d x ( ~ )  = 0 ,  (32) 

D~$I = dx ( -A f ,  (~u)) +(9~1 + 9211~1, (33) 

D a ~, = dx(-A~,  (o~ ) ), (34) 
3v 

D ~ 2  = d x ( - a f 2 ( ~ ) )  +2~o21~1 + 2gO~lse2, (35) 

DA~2 = d x ( - A # 2 ( ~ ) )  +2~021sel. (36) 
3v 

From (31) we get that ~I = / 3 '  - q921/3. Inserted in (33) this gives that/3" - (r + 

2921)/3 ' must be tangential. Since d x ( ~  d x ( ~ )  and ~1 are linear independent, 
/3", ~ ' , /3 '  and/3 must be linear dependent. We get two cases: 

I. u'(u) = kl(u)/3(u) + k2(u)/3'(u) + k3(u)/3"(u), (37) 

II. /3" r span(/3,/3'). (38) 

I. We assume that (37) is true. We will investigate if it is possible to reparametrize 
the surface such that a~ = f l ' .  If we have coordinates (fi, ~) ~/.]  and a parametriza- 
tion s ~) = ~(~) + ~fl(fi), then we can reparametrize the surface by a local dif- 
feomorphism ~b: U ~ /d, ~b(u, v) = ( f (u ) ,  g(u) + vh(u)). We ge t s  o ~b(u, v) =:  
x(u, v) =: a(u)  + v/3(u) with 

or(u) = 6t(f (u) ) + g(u)f i( f  (u) ), 

/3(u) = h(u)f l( f  (u) ), 

h(u)f '(u) # 0 Yu 6 U. 

(39) 

(40) 

(41) 

Obviously the frame S = (a '  + vff, /3,  ~1, ~2) is an adapted frame iff S = (~' + 
tiff', fi, ~1,32) is an adapted frame. (If J r  is the Jacobi matrix of q~, then S = BS 

with B = 0 . . .  E H2.) 

0 1 
aR 

Using (37) resp. (39), (40) and (37) for ~'  ( := ~ ) ,  we obtain for the difference 
15" - u / the following expression: 

/3" -- or' = -k l /3  - k2/3' + (1 - k3)/3" 

= (h" - g'  - f ' /c l)f i  + (2h'f '  + hf"  - g f '  - f'/c2)fi '  + (h(f ')  2 - f ' /c3)fi '-  
(42) 

Thus k3 -=- 1 iff/r o f = hfq Hence we can find a reparametrization such that 
k3 - 1 (e. g. f = id, h = ~:3) and it stays constant equal one if we restrict to 
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reparametrizations with h = ~ ,  therefore 

h ' - -  f "  
(f , )2" (43) 

f ,  Now k2 = 0 iff~:2 o f = - (j~i2 - g. Still we can find such a reparametrization (e. g. 

f = id, -~:2 = g) and k2 stays constant equal zero if we restrict to reparametriza- 
tions with 

f" - -  h'. (44) 
g - -  ( f , )2  

Finally kl --- 0 iffkl o f = ~, (h" - g') -- 0 (by (44)). 
Since our investigations are of local nature, we have to consider two subcases: 

either/71 ~ 0 or ~:l (fi) g= 0 for all t7 e U. By (42) this is equivalent to either/3" = a '  
or/8" = or' - (f ')2(kL o f)/3. In the second subcase we still can choose f such that 
( f ' )2( / :  t o f )  ~ •  thus we have either 

o d = , 8 "  or c ~ ' = f f ' : k f l .  

Since x(u,  v) = or(u) + vfl(u), we obtain by integration (and if necessary by an 
affine transformation applied to x) the following two subcases: 

1.1. x ( u , v )  = }/'(u) + v}/(u) or 

1.2. x(u,  v) = (q-y(u) + y"(u) )  + vy ' (u) .  

1I. We assume that fl"(u) ~ span(r ,  f f ) (u)  Vu. Therefore fl is a plane curve, 
contained in the plane spanned by ,8(u) and i f (u )  for some u. We can reparametrize 
the surface by a local diffeomorphism ~b: U --+ U, ~b(u, v) = ( f ( u ) ,  v h ( f ( u ) ) )  
(cp. the discussion in the first case) such that/~ is part of an ellipse in span(r ,  i f )  
and, by applying an affine transformation, such that fl(u) = (cos u, sin u, 0, 0), i. e. 
r "  = - f t .  We obtain 

II. x(u,  v) = a(u) + v~(u), ,8" = -,8,  

To complete our investigations we need to compute for the three types of ruled 
surfaces the corresponding transversal bundle or. This can be done using the struc- 
ture equations (30) - (36). The computations are lengthy but straightforward. We 
give only a short outline. 
I. Let g be a smooth function on an open subset of IR such that G := det(F, g ' ,  
F",  F'") r 0. We set 

L := In G and }/(4) =:  L'}/'" + a}/" + by '  + c}/. 

1. (x(u, v) = }/'(u) + v}/(u)): If we compute the Gauss equations (30) and (31) we 
obtain 

~l = }/, _ c,0221}/, (45) 

~2 y,t, q_ (1) I , . . ,  1 ' = -- ~Oll)r -- vg011g - ~0}lY. (46) 
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If we differentiate ~2 in direction of u and evaluate the Weingarten equation (35), 
we get: 

~ 1  1 I = = ~(L + v ) ,  goal l ( b - v a + v 2 ( U + v ) ) .  

The Weingarten equation (33) for ~ 1  finally gives: 

~0 2 1 t 21 "~- - ~ ( L  -~ 4v). 

2. (x(u, v) = (ey(u) + y1'(u)) + vy1(u), e = -4-1): We obtain by (30) and (31) that 

~1 )/1 ~02 ]!I, = - -  21 (47) 

~2 = (L I + v - ~pl])y I" + (a + e - wp~l)y II + (b - e~0~] - ~p~l)y I + cy.  (48) 

If we differentiate ~2 in direction of u and evaluate the Weingarten equation (35), 
we get: 

~0~1 = l ( ( l n c  + L) I + v), 

~P~l = �89 + a  1 -  eL I -  (a +e)( lnc) '  + v ( - L  f' + L1(lnc) ' -  a - 2e) + 

+ v2(lnc + L) I +  v3}. 

The Weingarten equation (33) for ~ finally gives: 

qo21 = -61-((lnc + L) I + 4v). 

II. Let or, 13 be smooth functions on an open subset of ~ such that D := det(~ It, cd, 
13 I, fl) # 0. We set 

L : = l n D  and m = : L 1  11+aoll+bf11+cfl. 

If we compute the Gauss equations (30) and (31) we obtain 

= 1 - 

~2 = Oltl _ _  ~OllOtl / - -  U~Ol,fll - -  (V -}- ~021)fl. 

(49) 

(50) 

If we differentiate ~2 in direction of u and evaluate the Weingarten equation (35), 
we get: 

~pll 1 ' = ~ L ,  ~o~1 = l ( b - v a -  v). 

The Weingarten equation (33) for 0-~1 finally gives: 

~02 - ~ L  1. 21 = 

Theorem.  Every 1-degenerate parallel affine surface immersion (x, c~) in ]~4 is a 
ruled surface and can be locally parametrized either by 

1.1. x(u, v) = y1(u) + vy(u), and 
= span(~], ~2) is given by (45) and (46), or 

1.2. x(u, v) = (ey(u) + y1(u)) + vy1(u), e = 4-1, and 
= span(~l, ~2) is given by (47) and (48), 

II. x(u, v) = or(u) + vfl(u), flll = _fl, and 
= span(~l, ~2) is given by (49) and (50). 
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