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Abstract 
A Differential Evolution based framework is utilized to design an offiine path planner for 
Unmanned Aerial Vehicles (UAVs) coordinated navigation in known static maritime 
environments. Considering the problem of having a number of UAVs starting from different 
known initial locations, the issue is to produce 2-D trajectories, formed by successive way- 
points, with a desirable velocity distribution along each trajectory, aiming at reaching a 
predetermined target location, while ensuring collision avoidance either with the 
environmental obstacles or with the UAVs and satisfying specific route and coordination 
constraints and objectives. The constraints are imposed in order to maximize the probabilities 
of UAVs survival and mission accomplishment. 
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1. Introduction 

This work has been motivated by the challenge to develop and implement an offiine 
path planner for Unmanned Aerial Vehicles (UAVs) coordinated navigation and 
collision avoidance in known static maritime environments, characterized by the 
existence of  a number of  islands with short distances between them. 

UAVs are increasingly being used in real-world applications, as they provide high 
maneuverability, low risk and weight and cost savings, compared with manned 
aircraft. Planning an UAV's  flight path is one of  the various problems in autonomous 
UAV deployment; the corresponding path planner should provide feasible flight paths 
that satisfy specific time, space, recourse and availability constraints. Path planning is 
actually a multi-objective multi-constraint optimization problem, in most cases very 
complex and computationally demanding [Mettler et. A1. (2003)]. Several methods 
that produce trajectories for such vehicles in known, unknown or partially known 
environments have been proposed [Nikolos et. A1. (2003)], [Nikolos et. At. (2001)], 
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[Sasiadek et. AI. (2000)], [Kuwata et. A1. (2004)]. However, the problem 
complexity increases when multiple UAVs should be used, e.g. in missions with 
requirements beyond the capabilities of a single UAV, or when the probability of 
mission accomplishment increases with the number of involved UAVs. Several 
approaches have been proposed in the literature for UAVs coordinated route 
planning. In [Beard et. A1. (2002)], [McLain et. A1. (2000)], a Voronoi-diagram 
approach is presented, which deals with the problem of simultaneous arrival of 
multiple UAVs at their targets, using threat-avoiding trajectories. In [Schouwenaars 
et. AI. (2004)] a framework is presented for decentralized trajectory planning of 
multiple autonomous aircraft, using a receding horizon strategy based on mixed 
integer linear programming. In [Flint et. A1. (2002)] the problem of generating near- 
optimal trajectories, in order multiple UAVs to cooperatively search for targets, is 
addressed, while a dynamic programming method is presented as a solution to the 
problem. 

During the past few years, it has been shown by many researchers that Evolutionary 
Algorithms (EAs) is a viable candidate to solve path planning problems effectively 
and provide feasible solutions within an affordable time without demanding excessive 
computer power. EAs have been successively used for the solution of the path-finding 
problem in ground based, sea surface, aerial, or underwater vehicles navigation 
[Nikolos et. A1. (2003)], [Nikolos et. A1. (2001)], [Michalewicz (1999)], 
[Smierzchalski (1999)], [Smierzchalski et. A1. (2000)], [Sugihara et. A1. 
(1997a)], [Sugihara et. A1. (1997b)]. In this work, Differential Evolution (DE) is 
used to produce the routes for multiple UAVs in known static maritime environments. 
Considering a number of UAVs at different known initial locations, the issue is to 
produce 2-D trajectories, formed by successive way-points, with a desirable velocity 
distribution along each trajectory, that reach a common target, under specific 
coordination and route constraints. 

The rest of the paper is organized as follows: Section 2 describes the problem 
formulation, including assumptions, objectives, constraints and cost function 
definition. Section 3 summarizes EA fundamentals along with the basic features of 
Differential Evolution. Experimental results are presented in Section 4, followed by 
discussion and conclusions in Section 5. 

2. Problem Formulation 

2.1 Assumptions, Objectives, and Constraints 

The aim of this work is to develop a coordinated path planner for navigation and 
collision avoidance of a team of autonomous UAVs in maritime environments. The 
environments considered in this work are known and static, characterized by the 
existence of a number of islands with short distances between them. The flight height 
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is assumed to be almost constant, close to the sea-level, and this is the reason why the 
problem is considered as 2-D. Considering the problem of  having N UAVs starting 
from different known initial locations, the issue is to produce N 2-D trajectories, 
formed by successive way-points, with a desirable velocity distribution along each 
trajectory, aiming at reaching a predetermined target location, while ensuring 
collision avoidance either with the environmental obstacles or with the UAVs and 
satisfying specific route and coordination objectives and constraints. The environment 
has known characteristics and flight restrictions, acquired via 3-D GIS based 
generated maps or otherwise. 

UAVs are assumed to be equipped with a set of  on-board sensors, including GPS 
(Global Positioning System) / DGPS (Differential GPS), INS (Inertial Navigation 
System) and gyroscopes, through which they can sense their positions and flight 
directions. Each vehicle is assumed to be a point; its actual size is taken into account 
by equivalent obstacle - ground growing. 

The general constraint of the problem is the collision avoidance between UAVs and 
the ground obstacles. 

The route constraints are the following: 
�9 Predefined initial and target coordinates for each UAV. 
�9 Predefined initial and final velocity magnitudes for each UAV. 
�9 Predefined minimum and maximum UAV velocity magnitudes, during their 

flights. 
Additionally, a single route objective is imposed: 

�9 Minimum path lengths, in order to maximize the effective range of  each 
vehicle. 

The three route constraints are problem-defined (initial and target coordinates), or 
they depend on the flight envelop of each UAV (velocity magnitudes). All three of 
them are explicitly taken into account by the optimization algorithm. The route 
objective is implicitly handled by the algorithm, through the cost function definition. 

Besides route constraints and objective, coordination-relative constraints and 
objectives exist among UAVs which form a team to accomplish a joint mission. The 
coordination objectives used in this work are listed below: 

�9 Arrival at target with minimum time intervals. Each UAV should arrive to the 
target, using a different path and a different approach vector, but the time of  
arrival for all UAVs should be as close as possible. 

�9 Approach the target from different directions. In addition to the spatial 
separation between different flight corridors, the target approach from 
different flight directions maximizes the probability of mission 
accomplishment. For this reason, all the angles between successive 
approaching directions should be as equal as possible, in order to assure an 
almost uniform distribution of UAVs around the target. 
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The single coordination constraint is defined as: 
�9 Keep a safety distance between UAVs. 

Each UAV has to keep a safety distance from the rest UAVs, during the whole flight. 
The safety distance is addressed primarily in order to ensure collision avoidance 
between UAVs. The second reason is to ensure the maximum spatial separation 
between the corresponding flight corridors, which, for some missions, increases the 
probability of survival. Coordination constraint and objectives are implicitly handled 
by the algorithm, through the cost function definition. 

Each path is constructed by straight line segments, which connect the successive way 
points. In order to construct each segment, its length seg_lengthkj, and its direction 
seg_anglekj are used as design variables (k=l ..... n-i, j=I,..,N, N being the number of 
UAVs, while n+l is the number of way points in each path, the same for all paths). 
Design variables seg anglekj are defined as the difference between the direction (in 
deg.) of the current segment and the previous one. For the first line segment of each 
path seg_angle~ is measured from x-axis. Additionally, the UAV's velocities c~,j at 
each way point are used as design variables, except for the starting and target points. 

Using seg_lengthkj and seg_anglekj the coordinates of each way point xkj and Yk,j can 
be easily calculated. The use of seg_lengthkj and seg_anglekj as design variables 
instead of  xk.j and yk,j was adopted for two reasons. The first reason is the fact that 
abrupt turns between successive flight paths can be easily avoided by explicitly 
imposing short lower and upper bounds for the seg_anglekj design variables. The 
second reason is that using the proposed design variables a better convergence was 
achieved, compared to the case with the way points' coordinates as design variables. 
The latter observation is a consequence of  the shortening of the solutions space, using 
the proposed formulation. 

For starting (k=0) and target points (k=n) the user predefines their coordinates, along 
with the corresponding velocity magnitudes. Additionally, the velocity of each UAV 
is assumed to vary linearly between successive way points. The lower and upper 
boundaries of  each independent design variable are predefined by the user. Velocity 
boundaries depend on the flight envelope of each UAV. For the first segment of each 
path seg anglelj upper and lower boundaries can be selected such as to define an 
initial flight direction. Additionally, by selecting lower and upper boundaries for the 
rest ofseg_anglekj variables close to 0 degrees (for example -30 ~ to 30~ abrupt turns 
can be avoided. 

2.2 Cost Function Formulation 

The problem of computing the optimum path for each UAV is formulated as a 
minimization one, and the corresponding cost function is formulated such as to take 
into account the general constraint of  collision avoidance between UAVs and the 



A. N. Brintaki, I. K. Nikolos / Coordinated UAV Path Planning Using Differential Evolution 491 

ground, the single route objective (minimum path lengths), the two coordination 
objectives and the single coordination constraint. 

The cost function to be minimized is formulated as the weighted sum of five different 
terms 

5 

f = Z wif~ (1) 
i=l 

where w~ are the weights andf  are the corresponding terms described below. 

Term J) is the sum of the non-dimensional lengths of all N flight paths and 
corresponds to the single route objective: 

N 

fl = Z lj (2 )  
j=l 

where/s is the non-dimensional length of the jth path, given as 

Lj 
= 1 (3) 

lj ~(Xtarg et-xO'j)2 +(ytarget-yO'j)2 

and 

n 

= --Xk_l,j)2 +(Yk,j--Yk-l,j)2 
k=l 

In (3) and (4) Lj is the length of the jth path, Xtorge,, Ytarget are the coordinates of the 
target point, xoj, yo~ are the coordinates of the jth starting point, x~j, Ykj are the 
coordinates of the g way point o f t h e j  th path, and n+! is the number of way points in 
each path, including the starting (k=0) and target (k=n) points. In (3), for the 
calculation of the non-dimensional length l:, the distance between the starting and 
target points is subtracted, in order to obtain zero J) value for straight line paths. For 
all N paths the number of way points is the same, determined by the user. TermJ~ is 
used in order to minimize the flight path lengths. 

Term j~ is a penalty term, which was designed in order to materialize the general 
constraint of collision avoidance between UAVs and the ground. All n path segments 
of all N flight paths are checked whether or not pass through each one of the M 
ground obstacles. Discrete points are taken along each path line (using the simulation 
procedure described later) and they are checked whether or not they lie inside an 
obstacle. If this is true for a discrete point of the path line, a constant penalty is added 
to terrain. Consequently, termJ~ is proportional to the number of discrete points that 
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lie inside obstacles. Additionally, for each path line, a high penalty is added in case 
that even one discrete point of  the corresponding path lies inside an obstacle. 

TermJ~ was designed in order to take into account the second coordination objective, 
i.e. the target approach from different directions. For each flight path the opposite to 
the flight direction azimuth angle of  the last path segment is calculated as (Figurel): 

Figure  1. Definition o f  azimuth angles, calculated f o r  the last path segment o f  each 
f l ight  path  

anglej = arctan(Ay/Ax), i f  Ay >_ 0 and Ax >_ 0 

angle j = 2~r - arctan(,~y / Ax ), i f  Ay < 0 and Ax >_ 0 

anglej = 7r + arctan(Ay/Ax), if Ax < 0 (5) 

Ay = Y n - l , j  - Y n , j ,  Ax = Xn_l ,  j - -  Xn,  j 

All calculated azimuth angles angleg, (/=1, N) are sorted in a descending order and 
stored as variables sort anglej. An additional variable sort_angleN+l is calculated as: 

sort _ angle N + 1 = sort _ angle 1 - 2~r (6) 

Subsequently, the deference between two successive sort_anglej is calculated as 
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Asort _ angle j = sort _ angle j - sort _ angle j +l , 
(7) 

j = l  ..... N 

where Asort_anglej is the angle between two successive flight path segments, 
connected to target point (Figure2). 

Figure 2. Definition o f  Asort_anglej, calculated for  the last path segment o f  each 
f l ight  path, according to (7) 

We define opt_angle as: 

opt _ angle = 2reiN (8) 

The variable opt_angle denotes the optimum angle between successive flight paths as 
UAVs are approaching the target in order to have uniform distribution of  UAVs 
around the target. Termfi  is then calculated as: 

N 

E [opt_angle - Asort_angle j 

f 3 -  j=l (9) 
ref_angle 

In (9), ref_angle is a small reference angle which is used to provide a non- 
dimensional form of  J3 and takes a value equal to 1r/20. 
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Term fi  is relevant to the single coordination constraint (keep a safety distance 
between UAVs), while termfi is relevant to the first coordination objective (arrival at 
target with minimum time intervals). For their calculation, a flight simulation is 
needed. Each candidate solution is defined by the corresponding design variables. 
Then the coordinates of all way points are computed, while the coordinates and the 
velocities at the starting and target points are predefined by the user. Assuming a 
simultaneous launching of all UAVs from their corresponding starting points at t=O, a 
simulation of their flights is performed, using a constant time step ~t, the same for all 
UAVs. Assuming a linear variation of velocity between two successive way points k 
and k+l of the same path j ,  the flight path of each UAV can be reconstructed, and the 
actual position of each UAV can be computed, in each time step. When a UAV 
arrives at a way point its flight direction changes to the direction of the next path 
segment. When a UAV arrives to the target, the simulation stops for this UAV and its 
time of arrival is stored in variable t_currj. 

During each time step, the distances between all UAVs current positions are 
calculated. If a distance is less than a predefined safety distance dsafe, a penalty is 
added to termfi. 

Term3'j is calculated as 

N 

f5 = Z ( t  max-t-currj)/t- max 
j=~ (10) 

where t_max is the time of arrival of the last UAV (the maximum flight duration). 
Weights wi in (1) were experimentally determined. As the main objective is to obtain 
feasible flight paths, weights were determined in a way that term weJ3 dominates the 
rest. 

3. The Optimization Method 

3.1 Fundamentals of Evolutionary Algorithms 

The path planning problem described above is formulated as a minimization problem 
of the cost function f An Evolutionary Algorithm (EA) was adopted for solving the 
problem; the main reason was the fact that EAs are more robust than other search 
methods in global optimization problems. EAs [Michalewicz (1999)], [Holland 
(1992)], [Goldberg (1989)], are characterized by a remarkable balance between 
exploitation of the best solutions and exploration of the search space. Additionally, 
they may be easily tailored to the specific application of interest, taking into account 
the special characteristics of the problem under consideration, and they are easily 
parallelized. Despite their advantages, all the population-based search algorithms, 
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such as EAs, require excessive CPU time, due to the large number of evaluations of 
candidate solutions. 

The natural selection process is simulated in EAs, using a number (population) of 
individuals (solutions to the problem) to evolve through certain procedures. Each 
individual is represented through a string of numbers (bit strings, integers or floating 
point numbers), in a similar way with chromosomes in nature. Each individual's 
quality is represented by a fitness function tailored to the problem to be optimized. 

Classical EAs use binary coding for the representation of the genotype. However, 
floating point coding moves EAs closer to the problem space, allowing the operators 
to be more problem specific [Michalewicz (1999)]. Additionally, two points that are 
close in the physical space are also close in the representation space and vice versa. 
With this type of encoding directed search techniques gain physical representation 
and they are easily applicable. 

In this work, Differential Evolution (DE), a recently proposed EA, is used [Stom et. 
A1. (1995)], [Storn (1995)]. DE is an extremely simple to implement EA, which has 
demonstrated better convergence performance than other EAs. It can handle 
continuous, discrete and integer variables, and multiple constraints. DE has been 
demonstrated to be one of the most promising novel EAs, in terms of efficiency, 
effectiveness and robustness. Its main characteristics are described below. 

3. 2 Differential Evolution 

Let us consider an optimization problem formulated as 

min = f (X)  (11) 
x 

where X is a vector of nxl parameters which forms a chromosome and f the cost 
function to be minimized. In each generation G a population of Np candidate solutions 
undergoes specific operations, so a candidate solution can be designated as 

Xi, c, i=1 . . . . .  Np, G=I ..... mgens (12) 

where mgens is the maximum number of generations, and Np does not change during 
the optimization process. Parameter vector X in our case contains floating point 
parameters. 

The DE algorithm starts by generating randomly, with uniform probability, the initial 
chromosome population, with their genes taking values inside the predefined 
constrained space. The crucial idea behind DE is a new mutation scheme for 
generating trial parameter vectors, by adding the weighted difference vector between 
two population members to a third member, which is called the donor. The mutation 
operation is applied for all population members. For each individual, the mutation 
process begins by randomly selecting three individuals among the current population, 
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which form a triplet. In this triplet one member is randomly taken to be the donor, 
while the other two members are taken to produce a perturbation to the donor. In this 
way, the i th perturbed individual is generated as 

Vi,G+ 1 -'- Y r 3 , G  + F(Xrl,C - Xrz,G ) (13) 

where 

rl, r2, r3 ~{1 .. . . .  N p } , r l ~ r Z ~ r 3 ~ i  (14) 

are randomly selected, among the candidate solutions of  the current population. The 
scaling parameter F, introduced in [Stom et. A1. (1995)], is a control parameter of  DE 
algorithm set by the user, taking values in the interval: 

F~[0,  1+] (15) 

F is constant along the evolution procedure and controls the amplification of  the 
perturbation added to the donor. By giving larger values to F, a higher exploration 
capability is obtained. The perturbed individual Vi,c+ 1 and the initial population 

member Xi,aare then subjected to the crossover operation, which generates the 

intermediate population of  trial vectors Ui,c+ 1 . If, 

: . . . . .  )T 

Vi,G+l :(VI,i,G+I . . . . .  Vn,i,G+I)T (16) 

U i,G+l -: (bll,i,G+l . . . . .  Un,i,G+l )T 

then 

f v j,i,G+ l i f  randy < C r v j = k 
Id j'i'a+l = ~ ( X j,i, G otherwise (17) 

where j = 1 .... ,n and k s {1 ..... n} is a random index, chosen once for all Np members 

of  the population. The crossover parameter C~ s [0,1] is the second control parameter, 

set by the user. The individuals that will form the next generation are selected 
between the current population and the corresponding trial vectors, according to the 
following rule: 

Ui, G+l i f  f (Oi ,  G+l ) <- f ( Y i ,  G ) 
Xi'G+l = Xi, G otherwise (18) 
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A recently proposed scheme [Hui-Yuan et. A1. (2003)] to determine the donor for 
mutation operation was introduced, for accelerating the convergence rate. In this 
scheme, donor is randomly selected (with uniform distribution) from the region 
within the "hyper-triangle", formed by the three members of the triplet 

donor: Z 2 Z 2 j  ri, G '  2j:randj[O,1] (19) 
i=1 k [ j = l  

where ran~[O,1] denotes a uniformly distributed value within the range [0,1]. With 
this scheme the donor comprises the local information of all members of the triplet, 
providing a better starting-point for the mutation operation that result in a better 
distribution of the trial-vectors. As it is reported in [Hui-Yuan et. A1. (2003)], the 
modified donor scheme accelerated the DE convergence rate, without sacrificing the 
solution precision or robustness of the DE algorithm. 

The random number generation (with uniform probability) is based on the algorithm 
developed by [Marse et. A1. (1983)], which computes the remainder of divisions 
involving integers that are longer than 32 bits, using 32-bit (including the sign bit) 
words. The corresponding algorithm, using an initial seed, produces a new seed and a 
random number. In each different operation inside the DE algorithm that requires a 
random number generation, a different sequence of random numbers is produced, by 
using a different initial seed for each operation and a separate storage of the 
corresponding produced seeds. By using specific initial seeds for each operation, it is 
ensured that the different sequences differ by 100,000 numbers. 

4. Experimental Results 

4.1 The Solid Boundary Representation 

The terrain where UAVs fly is most generally represented by a meshed 3-D surface 
produced using mathematical functions of the form: 

z(x, y)= sin(y +a)+b.  sin(x)+c, cos(d, y2~~x21 + 
\ / (20) 

e-cos(y)+ f . sin( f . y2~+-J]+ g . cos(y) 

where a, b, c, d, e, f, g are constants experimentally defined, in order to produce a 
surface simulating a maritime environment with islands close to each other (as shown 
in Figure3). 

A graphical interface has been developed for the visualization of the terrain surface, 
along with the path line [Nikolos et. A1. (2003)]. The corresponding interface deals 
with different terrains produced either artificially or based on real geographical data, 
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providing an easy verification of the feasibility and the quality of each solution. The 
path-planning algorithm considers the boundary surface as a group of quadratic mesh 
nodes with known coordinates. 

Figure 3. The first Test Case 

Figure 4. The second Test Case 
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Figure 5. The third Test Case 

Figure 6. The fourth Test Case 

4.2 Simulation Results 

The same environment was used for all the test cases considered, with different 
starting and target points. The (experimentally optimized) settings of  the Differential 
Evolution algorithm are as follows: population size = 50, F = 1.05, Cr = 0.85. The 
algorithm was defined to terminate after 200 generations, although feasible solutions 
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can be reached in less than 30 iterations. With 200 generations and a population size 
equal to 50, 10,000 evaluations of  the cost function are performed before the 
algorithm stops. In the test cases presented here, the free-to-move way points for each 
path were taking values equal to 3, resulting in a total number of way points equal to 
5 for each path (along with the fixed starting and target points). For 3 different paths 
(corresponding to 3 UAVs) and 3 free-to-move way points for each path, a total 
number of 27 design variables are needed (seg_length~j, seg_anglekj and ckj, for each 
pathj  and each way point k). 

Figures 3 to 6 present simulation results for four different test cases. In all test cases 
considered, target points were positioned relatively close to solid boundaries, in order 
to test the ability of the algorithm to provide feasible path-lines with uniform 
distribution of UAVs around the target. For all test cases safety distance ds~fe was set 
equal to 12.5% of the length of each side of the rectangular terrain. For all test cases, 
term J~ of the cost function converged to zero, corresponding to no violation of  the 
safety distance constraint. For the first three cases the final path segments are 
uniformly distributed around the target. The less uniform distribution of the final 
flight path segments, presented in Fig. 6, is due to the fact that the target was placed 
very close to the adjacent island. 

Figure 7. Convergence history for the fourth Test Case 
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Concerning the time intervals between the first and the last arrival to the target, for all 
the test cases considered, this time interval was kept less than 1% of  the flight 
duration (0.84% for the 1st case, 0.64% for the 2nd case, 0.55% for the 3rd case and 
0.43% for the 4th case). 

The convergence history of the Differential Evolution algorithm is presented in figure 
7, for the fourth test case. The cost functions of  the best and the worst individual of  
each generation are plotted against the generation number. The individuals with a cost 
function value below 10 correspond to feasible solutions; less than 30 generations are 
needed in order to produce feasible solutions. 

5. Conclusions 
In this work an offline path planner for Unmanned Aerial Vehicles (UAVs) 
coordinated navigation and collision avoidance in known static maritime 
environments was presented. The problem is actually a multi-objective, multi- 
constraint optimization one, but it was formulated as a single-objective optimization 
problem, by defining a single cost function as the weighted sum of five different 
terms. Those terms correspond to different route and coordination objectives and 
constraints. The path planner was tested in a simulated environment, and the 
simulation results demonstrated the ability of the algorithm to produce near optimal 
paths without violating the imposed constraints. 

The DE algorithm proved to be effective in finding feasible path lines under the 
forced constraints within an acceptable time period. The easy implementation of the 
various constraints and objectives of the problem was a valuable characteristic of DE 
algorithm. Moreover, a feasible solution could be reached within a small number of 
generations, while the rest of the generations were used in order to optimize the 
solution, according to the rest of the criteria. 
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