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Modular Forms of Rational Weights and Modular Varieties 

By T. IBUKIYAMA 

Introduction 

Recently, BANNAI and others [2], partly motivated by the theory of finite unitary re- 
flection groups, systematically investigated rings of modular forms of one variables 
which are polynomial rings. In that work, the authors gave a remark that modular 
forms of rational weights are interesting objects, showing that the ring of modular 
forms of weights k / 5  belonging to the principal congruence subgroup of level 5 is 
generated by two elements of weight 1/5. (This has some connection with KLEIN'S 
work in the 19-th century.) Their work in [2] is a rather "hand-made" case-by-case 
study. This paper is motivated by their work. 

In this paper, for any odd integer N > 3, we give some systematic construction 
of modular forms of one variable of rational weight (N - 3)/2N (with a certain 
multiplier system) belonging to the principal congruence subgroup 

F(N) = {M = (a b) C SL2(Z); a -~ d = 1 mod N, b ~ c -= 0 mod N}.  

Here, we shall get (N - 1)/2 linearly independent forms. Through this, we rewrite 
their theory of level 5 in a more general context, including the connection between 
unitary reflection groups and covering groups. We shall also interpret some works 
of F. KLEIN from the point of view of modular forms of rational weights, determine 
the rings of modular forms of weight 2 k / 7  (k: non-negative integers) for F(7) and 
SL2(Z) exactly, and show their connection with invariant polynomials of unitary 
reflection group No. 24 in the list in SHEPHARD-TODD [18]. The ring of modular 
forms of rational weights is also determined for level 9. A similar study seems 
possible for level 1 l,judging from KLEIN'S work (cf. [5], [6]), but we will give just 
a very likely candidate for level 11 in this paper, and further investigation will be 
reported later. By the way, there is no corresponding unitary reflection group in the 
level 9 or 11 case. 

Now, we explain some more technical points of this paper, and also give historical 
remarks. First, there is no standard automorphy factor for rational weights, so we 
must explain something about this. For any complex numbers v and s, we take 
-re  < ~ = arg(v) < rr and put v s = IvlSe isa. Now, the automorphy factor of 
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weight ( N - 3 ) / 2 N  we consider here for each N is an automorphy factor J ( M ,  r) = 
v (M)(cr  + d) (N-3)/2N (M E I ' (N),  r c C, Im(r)  > 0) such that 
(1) v(M) is an N-th root of unity, that is, v(M) N = 1 for each M ~ F(N),  
(2) v(M) is unramified in the sense of PETERSSON, that is, v(P)  = 1 for every 
unipotent element P 6 F(N).  

Even under the above conditions (1),(2), the multiplier system is not uniquely 
determined at all, but the different choices differ only by characters of F(N).  We 
shall construct (N - 1)/2 linearly independent modular forms for a certain fixed 
multiplier system which satisfies the above conditions. More precisely, first we just 
construct some modular forms on F(N) having the same weight and the same mul- 
tiplier system. These are functions obtained from theta constants of some charac- 
teristcs in (2N)-1Z 2 divided by some rational power of the Dedekind eta function. 
Now, although F(N) is a normal subgroup of SL2(Z), there is no reason to expect 
that there exists a natural extension of this multiplier system to SL2(Z) in general. 
But, in our case, as a result of our construction, we can see that the multiplier system 
is naturally prolonged to a multiplier system of SL2(Z). By virtue of this fact, we 
can define an action of SL2 (Z) on the ring of modular forms generated by modular 
forms on F(N) constructed as above, and we can consider (at least a part of) mod- 
ular forms on SL2(Z) of rational weights as invariants of this action. For level 5, 
we give short simple remarks on the relation between the 5-fold covering of SL2 (Z) 
and the unitary reflection group G600. This had been essentially known by BANNAI 
and others, but our explanation is simple and easy. For level 7, we can show that 
our modular forms generate all the modular forms of weights 2k/7  with k ~ Z_>0 
with our multiplier system, and for level 7, the invariant polynomials of the unitary 
reflection group G336 (No. 24 of SHEPHARD-TODD [18]) give all modular forms of 
SL2(Z) whose weights are in (4/7)Z. Actually, there are three algebraically inde- 
pendent invariant polynomials of G336. One of them is X Y  3 - Y Z  3 - Z X  3, which 
gives zero after substitution of X, Y, Z by our modular forms. By this, we reprove 
the famous results of KLEIN that the model of F(7) is given by the non hyperelliptic 
quartic curve X Y  3 - Y Z  3 - Z X  3 = 0. Also for N = 9, all modular forms of 
weights k /3  with our multiplier systems are generated by our modular forms, and 
the ring structure is described. 

Now, historically, KLEIN treated the theory of modular functions of the principal 
congruence subgroup. He gave models of modular varieties (at least) for N = 5, 
7. His results are very close to ours, and he has shown that the abstract quantities 
which describes the Galois extension of C(J)  are proportional to some theta func- 
tions. Also, he considered the action of SL2 (Z) and the invariant form of the action, 
and his "quantities" can now be regarded as our modular forms of rational weights 
substantially when N = 5 or N = 7. But in his time, naturally it seems that he was 
not conscious at all of modular forms of rational weights, so he did not determine the 
ring of modular forms in our sense, and his theta functions explained above which 
come from the "Jacobi equation" seem different from our theta functions and so on. 
Also, it is far easier to consider the ratio of modular forms or theta functions in- 
stead of modular forms themselves, since the subtle behaviour of multiplier systems 



Modular Forms of Rational Weights and Modular Varieties 317 

disappears in the quotient. So we believe that our results and proofs are new and 
give a new insight to the old work of KLEIN. In a sense, our proof consists of fairly 
technical calculations and is not trivial at all. Finally, we remark that H. PETERS- 
SON also treated modular forms of complex weights systematically. In particular, he 
gave a lower bound of the dimension of modular forms of fixed rational weights (of 
various multiplier systems) by using the Riemann-Roch theorem. The dimension of 
our space of modular forms is sometimes bigger than this general bound. The exact 
values of the dimension of this kind of modular forms is not known in general when 
the weights are small (cf. RANKIN [16] p. 47.) 

1 Modular forms of rational weights 

1.1 Results. In this section, we state the results on construction of modular forms 
of rational weights. We denote by H the upper half plane. We take a discrete 
subgroup F C SL2(R). For each M ~ F, we take a complex number v(M). For a 
fixed rational number r and any r E H and M = (~ ~ ), put j (M, r)  = v(M)(cr + 
d) r, where we take the principal value for the branch of the rational power. We say 
that v(M) is a multiplier system, if j(M1M2, r)  = j(M1, M2r)j(M2, r)  for any 
MI, M2 c F, and that j (M, r) is an automorphy factor of weight r. We say that a 
holomorphic function f ( r )  on H is a holomorphic modular form of weight r with 
multiplier system v(M), if f ( M r )  = f ( r ) v (M) (c r  + d) r for each M ~ F, and 
f is holomorphic at each cusp of F. In some books (e.g. RANKIN [15]), in the 
definition of multiplier systems, the condition that j ( -12,  r)  = 1 (assuming that 
-12  ~ F) is demanded to avoid the case where there exist no non-zero modular 
forms from the first, but we do not assume this condition for certain reasons. This 
notion of multiplier systems depends heavily on F. For example, if r is an integer, 
then (cr + d) r is an automorphy factor of the whole group SL2(~), but for non- 
integral r, this cannot be true, and it can happen that the multiplier system cannot 
be extended to any bigger group. 

For any complex number z, we put e(z) = e 2rriz. For r ~ H,  we put q = e( r /2)  
(which was often used in classical references; and we will not use q = e(r)  in this 
paper.) For m = (m', m") E Q2 and r 6 H,  z c C, we define theta functions of 
characteristic m as usual by 

Om(r, z) = Z e ( l r ( P  + m')2 + (p + m')(z + m")). 
p c Z  

The theta constants are defined to be Om (r) = Om (r, 0). The Dedekind eta function 
r/(r) is by definition 

o~ 

r/(r) = ql/12 I - I (  1 _ q2n). 

n = l  

Since r/(r) is a nowhere vanishing function on H,  we can define log o(r)  as a single 
valued function. We fix a branch of log r/(r) once and for all (for instance, the one 
which is real for pure imaginary r). Then we can define r/(r) r by e rl~ 
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Now we take an odd integer N > 3. For each odd r, we put m = t(2- %, �89 For 
short, we put f r ( r )  = Om(Nr). 

T h e o r e m  1.1. Notation being as above, we have the following results. 
(1) For each oddr with 1 < r < N - 2, the functions fr(r)/rl(r) 3/N are holomor- 
phic modular forms ofF ( N) of rational weight ( N - 3  ) /2 N with the same multiplier 
system vu (M). 
(2) These (N - 1)~2forms are linearly independent, and any two of them are alge- 
braically independent. 
(3) U N ( M )  N = 1 for all M �9 F(N),  and fr(r)U/tl(r)  3 are usual holomorphic 
modular forms ofF(N)  of integral weight (N - 3)/2. 

Remark. Our multiplier system is unramified in the sense of PETERSSON, that is, 
VN (U) = I for all unipotent elements of  F(N) .  

We denote by B(N-3)/2N (F(N))  the vector space spanned by the above ( N -  I ) /2  
modular forms. For the sake of simplicity, we put 

Fr ( r )  = e((N-14)~(N r 1))fr(r)/ll(r)3/N. 

For each M �9 SL2(Z),  we denote by vo(M) the multiplier system of t/(r) 3/N, 
i.e. vo(M) is the constant such that ~(Mr) 3/N = O(r)3/Nvo(M)(cr + d) 3/N. 

T h e o r e m  1.2. (1) The multiplier system vN(M) is given by VN(M) = vo(M) N2-1 
for any M �9 F(N).  
(2) If we put j (M, r )  = vo(M) N2 - I  (cr  + d) (N-3)/2N for each M �9 SL2 (Z), then 
this is an automorphy factor of S L 2 (Z) which is a prolongation of the automorphy 
factor of F (N) considered above. In particular, j ( -  12, r )  = ( -  1 ) (N+ 1)/2. 
(3) An action p of SL2(Z) on B(N-3)/2N(F(N)) 

p ( M ) f ( r )  = f ( M r ) j ( M ,  r )  - I  

is given on generators of SL2(Z) by 

, (  r, p((~ ol))Fr = F .  + rV + 
l<t<N-2, t odd 

+ ( _ l ) ( N + l ) / 2 e (  r - t  rt 3Nff-1 )) 
4 4N Ft '  

p ( ( l l ) ) f r = e ( r 2 - N 2 ) F r ,  

p(-12)Fr = (--1)(N+l)/2/~r. 

Remark. By virtue of  Theorem 1.2 (1), the multiplier system 11 N(M) can be ex- 
pressed in terms of Dedekind sum (cf. e.g. [13]). Namely, for M c SL2 (Z), put 

{ ~ i f c  = 0 
qS(M) = d 

a+ct 12(sgnc)s(d, Icl) i f c  7~ 0 7 -  -- 
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where s(d, ]c[) is the Dedekind sum, which is defined by 

k 

s h,k> = 

tt=l 

for integers h, k (k 7~ 0). Here we put 

((x)) / o i fx  6 Z .  

This qt)(M) is known to be integer valued. For M E F(N),  we get the following 
formula 

1 i f c  = 0 ,  
V N ( M )  = (sgnc)'3(NZ-1)'l~,[U2-1 d')(M~] 

e( g-y j,~---g-~-T,... ,j  i f c  7~ 0 .  

We will prove the above theorems in the following section. 

1.2 Transformat ion  formulas.  In this section, we first show that the multiplier 
systems for fr (r)/r l  (r) 3/N are all the same, and then we shall show that VN (M) N = 
1 by giving more precise transformation formulas of  the functions under F(N).  For 
these purposes, we review the classical theta transformation formulas. For M = 
(a b) 6 SL2(Z)andm = '(m' ,m") c (~ ,wedef ine  

Mm ( d - c  m' l[cd~ 
= o 

We also put 

dDm ( M )  = - 1 (m'bdm' + m"acm" - 2m'bcm" - ab(dm' - cm")). 

Then we get 

OMm(M (r, Z)) = tc(M)e(C~m(M) )(cT: + d)l/Z e(t z(cz 4- d ) - l  cz/2)Om(r, z), 

where K(M) is a constant depending only on M and not on T, z, or m. We can give 
a more precise formula for u:(M). We use the following notation by PETERSSON. 
We assume c, d c Z, (c, d) = 1 , c # 0, and d is odd. We put 

= 

Here the parenthesis ( , / , )  of  the right hand side is the usual Jacobi symbol. When 
both c and d are odd, we get 

( ~ )  = (~),(--1)("-t)(d-l>/4.  

Also, we put 

We get 

(~ 
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Proposi t ion 1.3. For each M ~ SL2(Z),  x ( M )  is given as fo l lows.  

[ e ( a ~ d  acd 2 c a 
K ( M )  = - -  + 8 ~ ) ( ~ )  i f  c is odd, 

(s  e l l ( d  - 1)) = ( ~ ) , e d  I i f c i s e v e n .  d l *  \8  

Here, we  pu t  ed = 1 or  i / f d  = 1 mod 4 or  d = 3 mod 4, respectively. 

Although most references give the above formula only for M in some smaller 
(e.g. theta) group, the above proposition should be more or less known classically, 
and the proof  is omitted here. The proof  is obtained by using the usual Gaussian 
sum expression of K(M) and so on. 

L e m m a  1.4. We assume N is odd, For any 

M ~ = ( a Nbo 
Nc d I ~ F(N) ,  

and f o r  each odd integer r, the number  

v l (M ' )  := f r ( M ' r ) / f r ( r ) ( c g v  + d) 1/2 

is a constant  depending only on M ~ and not  on v and r. 

P r o o f  We put b -- N2bo. For this b and the same integers a, c, d as above, we put 

M = ( ~ b )  E SL2(Z).  

We get 

M . m = 2 a + aO " =- m o d l .  
",--2-N- q- 2 2 

Indeed, if we put d = 1 + N k ,  then 2udr 2c q_ } c d  = ~r "k rk2 2c q- �89 But 
since N is odd, i f d  = 0 m o d 2 ,  t h e n k  -= l m o d 2 a n d h e n c e k r  --- l m o d 2 ,  
and vice versa. If  d is odd, then c(1 - d) is even. But since ad  - bc = 1, we 
get that c is even, so c(1 - d) is odd. By the above consideration, we always get 
r k  - c + cd  =- 0 mod 2. In the same way, if we write b = N b l ,  we can show 
that - b l r  + a + ab is odd. These imply the above congruence. Hence, we get 
OMm(.C) _l r , br a = e ( ~ - ~ t - - ~  + ~ + ~ -- 1))Om(r) .  Hence, by the theta transformation 
formula, we get 

f r ( M ' r )  = O m ( M ( N v ) )  

br ~-~ + ~ + ~- - } ) ) O M m ( M ( N r ) )  

I r [ br a = e ( - - ~ ( - - ~ W  -+- ~ + ~- -- } ) ) x ( M ) e ( d p m ( M ) ) ( c U v  + d ) l / 2 f r ( v )  

i t  _ .bdr  2 + ac  bcr  abclr + a b c )  
era(M) 

- 2 ~ 4 N 2  4 2N 2N - 2 - J "  

Hence, if we put 

v l (M ' )  = f r ( M ' r ) / f r ( r ) ( c N r  + d) 1/2, 
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then, writing a = 1 + k N ,  we get 

Vl (M')  ---- 

bod ~ r ac  a b c ,  \ 
x ( M )  x e ( ( - - - - i f - - + . ,  ) r 2 + - ~ ( b o N ( c + a d - a ) - k ) - ( - - ~ + ~ - ) ) .  

We can show that v l (M/)  does not depend on r. Indeed, since r 2 = 1 mod 8, we 
can replace r 2 in the above by 1. The linear terms in r depend only on r mod 4, so 

we may assume that r = 1 or r = - 1. Now in order to show that both r = 1 and 
r = - 1 give the same value in the above, we must show that b o N ( c  + ad  - a) - k =- 

0 mod 2. This can be shown as follows. If  b0 is even, then a is odd, so k is even, 

and we get the result. If  b0 is odd, then since we assumed that N is odd, we get 
b o N  ( c + ad  - a) + k - c + ad  - a - k mod 2. If  moreover a is odd, then k is even. 

Since a and b are odd in this case, we get c § d - 1 - 0 mod 2 by a d  - bc = 1. If  a 
is even, then k and c are odd. This implies the claim and hence also the lemma. []  

We obtain a more precise formula for Vl (M')  for M ~ c F ( N )  as follows. 

Lemma 1.5. 

I ( ~ ) e ( l ( c ( a  § d - 3)) i f c  is odd, 

v l ( M ' ) =  [ ( ~ ) , e ( ( 1 _ 2 ~ ( d _ l )  § cl(~c_____2) ) i f c i s e v e n .  

P r o o f  Even though x (M) is explicit ly known, the proof  of  this lemma is not trivial. 
When c = 0, the result is easily obtained by direct calculation, so we assume that 
c # 0. First we assume that c is odd. We see 

v l ( M ' )  = e( - --if- + -~- -I- b o N ( c §  

1 - a ac  aboc a b c d  a c d  2 c 

+ 4 T  8 ~ + ~ ' §  8)" 

Gathering the parts where the denominator is 8, and noting the relations N -1  

N m o d 8 ,  b = b 0 N  2 = - b o m o d 8 , a d = b c §  2-= l m o d 8 ,  w e g e t  

l ( - b d  - ac  § a c d  2 -  c) - l c (d  § a - 3) § l c ( l  - a)  mod 1. 

So, we see that v l ( M ' )  x ( ~ ) e ( - c ( a  § d - 3) /8)  is equal to the exponential of  the 

following number 

l (b + b N ( c  + ad  - a) + N(1 - a)  - abc  + a b c d  + c(1 - a))  

- l ( b (1  § b)(1 § N c )  § (1 - a) (b  + l ) (c  § N)) mod 1. 

But, since b(b  § 1) - 1 § N c  - c § N - 0 rood 2, and a and b cannot be odd at 

the same time, we get (1 - a) (b  § 1) - 0 rood 4. So, the exponential of  this number 
is one, and we have proved the result. Next, we assume that c is even. Noting that 
n 2 =  l m o d 8 ,  w e g e t  

Vl (M ' )  = ( - ~ ) , e ( - ~ - )  

_ a c  

8 
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Since ad = bc + l ,  

Nb(c  + ad - a) = Nb(c  + bc + 1 - a) -- Ncb(b+l)4 § Nb(1 -- a) 

-- Nb(1 -- a) mod 1. 

Also by abc + a = a2d - d mod 8, we get 

@ ( l - a ) + ~ b ( 1 - a ) = N ( l + b ) ( l - a ) = N ( l + b ) ( 1 - d + a b c )  

N(l+b)(1-d) Nabc(l+b) 
- -  4 + 4 ' 

ac abc 2 cd 

8 8 8 

Besides, since c is even and hence b is odd, we get easily that c (2bN+c)  = 0 mod 8, 
so 

Nabc( l  § b) abc 2 abc 
+ 

4 8 4 
abc (N  - 1) abc(2bN + c) 

- + -= 0 m o d  1. 
4 8 

Hence we get 

Finally we obtain 

tq (M') = ( ~ ) , e ( L ~ )  
~r ~) .  • e ( - 0 ( +  ~- + , 

d-18 bd8 + b + N(l+b)(1-d)4 cd8 

(1--2N)(d--l) d(b-c) 
8 8 

= �88 - l ) ( d -  1) =-- 0 mod 1. 

Hence we get the desired result and the lemma is proved. [] 

If we denote the multiplier system of r/(r) 3/u by vo(M), then we have shown that 
Fr(r)  are modular forms of F(N) of weight (N -- 3)/2N with the same multiplier 
sys tem oN(M) = v l (M) / vo (M) .  The holomorphy at cusps will be shown later. 
Here, we show the following lemma. 

Lemma 1.6. For any M ~ F(N), we have VN(M) u = 1. 

To prove this lemma, we need the well known formula of the multiplier system 
of,7(r) (cf. e.g. [12], [14] p.163, [9] p.51). For any M = (c a 5) c SL2(g) ,we have 

rl(Mr) = v (M)(cr  + d)U2r/(r), 

where 

d * e x  7ri a [ ( c )  p(]~ ( ( + d - b d c - 3 ) c + b d ) )  i fc  is odd, 
v( M) c rri = | ( ~ ) ,  e x p ( ~ ( ( a  + ,t - bdc  - 3d~c + bd + 3d - 3~) 

c 7ri 1 =  (3) ,  exp(]2((a - 2 d - b d c ) c + b d + 3 d - 3 ) )  if c is even. 
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By definition, both vo(M) N and v(M) 3 are the multiplier system of r/(r) 3, so we 
have vo(M) N -- v(M) 3. By the formula for v(M)  given above, we can calculate 
vo(M) N. As before, we put 

= N c  �9 F(N). 

In case where c is odd, we get c 2 = 1 mod 8 and 

vo (M, )N  d * 1 = + d - N2bod  - 3)N  + N b o d )  

I d a * e l i Z a  3)Nc) vo (M)  N = kNc] k8 ~" + d -  = 

by Lemma 1.5. In case c is even, we note 

a - 2 d -  bcd = a - 2 d -  ( a d -  l )d = a - 2 d -  ad 2 + d =- - d  mod 8, 

and b = boN 2 -- bo mod 8. Since d - 1 mod N, we get 

(~d[) ( ]~)  ( - l ) (N-1) ([d[ -1) /4  sgn(d) = = ( ~ )  (_  I)(N-l)(sgn(d)d-l)/4 

--_ (_ l ) (N-1 ) (d -1 ) /4 .  

Hence we get 

v o ( m t ) N  Nc 3 I Nbod l (a 2d bcd)Nc)  = ( -d - ) , e (g (d  - 1) + + - - 

= (~),e(�89 - l ) ( d -  I ) +  3(d - I ) +  l(b - c ) d N )  

Hence by Lemma 1.5, we get Vl (M ' )  N = vo(M~) N. [] 

When 1 < r < N - 2, the functions Fr ( r )  are linearly independent. Indeed, 
f o r a  f ixedr  with 1 < r _< N -  2, the minimum in ( p + r / 2 N )  2 for p E Z 
is ( r /2N)  2. So, for each r, the q-expansion starts from non-zero constant times 

q (r2-1)/SN. In particular, Fr(v) is not identically zero. If  there exists a linear relation 

Z l < r < U - 2 ,  r:odd crFr = O, then the first term of  the q-expansion of  the left hand 

side must vanish. The first possible term of the q-expansion is q (r2-1)/8N for r = 1 
and this term appears only in FI( 'r).  Hence we get cl ---- 0. Successively, we get 
c3 = 0, c5 = 0, and so on. So, the functions Fr ( r )  are linearly independent. Now 
we take odd numbers rl ,  r2 with 1 < rl < r2 < N - 2. Since it is well known 
that a ring of  modular forms is a graded ring (see e.g. [8] p.112 Lemma 12), any 
algebraic relation between Fr~ and Fr2 reduces to a homogeneous relation. But a 
homogeneous relation implies that Fr,/Fr2 should be a fixed complex number (a 
root of  a polynomial equation of  one variable). This is obviously false, so Fr, and 
Fr2 a r e  algebraically independent. In order to complete the proof of Theorem 1.1, 
we must show the holomorphy of Fr ( r )  at each cusp of  F(N).  This is a corollary of  
Theorem 1.2 as explained below. The holomorphy at cusps means that Fr ( M r ) ( c r  + 
d) - (N 3)/2N has a q-expansion only with positive exponents. But Theorem 1.2 
implies that the above function is a linear combination of Fr, (r) which has of  course 
a positive q-expansion. 
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We shall now prove Theorem 1.2. For M ~ F(N),  the multiplier Vl(M) is 
an 8-th root of  unity, as we can see from the explicit formula we gave. We have 

shown that vl(M) N = vo(M) N. Hence vo(M) N2 = Vl(M) N2 = vl(M),  and 

vN(M) = vl(M)/vo(M) = vo(M) N2-1. Since vo(M) is the multiplier system 

attached to ~/(r) 3/N, vu(M) is the multiplier system attached to ~l(r) 3(N2-1)/N. So, 

for any M = (a ab), we see that vo(M)N2-1(cr + d) 3(Nz-1)/2N is an automorphy 

factor of  SL2(Z),  which takes value 1 for M = -12 .  But (cr  + d) 3(N2-1)/2N = 
(cr  + d)(N-3)/2N (Cr + d)(3N-1)/2 and (cr + d)(3N-1)/2 is of  course an automorphy 

factor, so we see that j (M, r)  = vo(M)N2-1(cr + d) (N-3)/2N is also a factor of  

automorphy of  SL2(Z),  which is a natural prolongation of  the automorphy factor 
of  Fr ( r )  of  F(N).  Also, we get j ( - 1 2 ,  r)  = ( - 1 )  (3N-1)/2 = ( - 1 )  (N+1)/2. So 

we have proved (2) of  the theorem. In particular, if N = 1 mod 4, there exists no 
non-zero modular form of SL2 (Z) attached to j (M, r).  Anyway, the above result 
implies that p(M)f(r)  = f (Mr ) j (M,  r)  -1 is an action of  SL2(Z).  For the basis 
Fr(r ) ,  we can calculate p ( (1  ~)) directly from the definition. Now we calculate 

p(Mo) for M0 = ( 10 01 ). By the theta transformation formula, we get 

/" r "~1/2 1 pr f r ( - r - 1 ) =  ,~7/  Z e ( ~ ( P  1 2  
pCZ 

If  we p u t p = N p 0 + s , ( p 0 E Z ,  s =  1,2 . . . . .  N) ,weget  

N 
/' r ~1/2 f r ( - - r - 1 ) = ' N - [ !  Z Z e(N(p0 + ~ )  2z'+ (Npo+s)r] 2N l" 

s=l po~Z 
2s-1 For s = (N + 1)/2, we get P0 + ~ = P0 + �89 = - ( - P 0  - 1 + 1), and since 

e((-po - 1)/2) = -e(po/2), the summation over P0 6 Z vanishes in this case. For 
the other s, comparing s with N - s + 1, we see 

2N-2s+l 
PO + 2N -- --(--PO -- 1 + ~ )  and 

(Npo + N - s + l)r/2N -- (N(-po - l) + s)r/2N + r/2N - sr/N rood 1, 

so we get 

N 
N 2s - 1 ~2 (Npo + s)r 

Z Z e(-~(po+ - - ~ - )  r + 2N / 
s=(N+3)/2 po~Z 

(N-1)/2 N 2N - 2s + 1 (Npo + N - s + 1)r 
= ~ Z e ( ~  (p~ 2N- ) 2 r +  2N ) 

s=l poCZ 

(N-l)/2 r 2S -- 1 ~2 (Npo + s)r 
= Z e(2N N )  Z e ( N ( P ~  ) r +  2N )" 

s=l po~Z 

Now if we put t = 2s - 1, we have 

(r-1)(t+l) 1 
(Upo + s)r/2U = �89 (Po + ~u) + 4N + Tff" 
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By these calculations, we get 

f r (_-r  -1) -- e ( - 1 / 8 ) q  r~ 

• Z [~,/(t+l)(r-1) e((t+l)(r+l) r 4@)) ~ ,  4N -I- 4@) -t- 4N q- ~-~ -t- ft (r).  
l<t<N-2 

todd 

On the other hand, we get 

t / ( - r - 1 ) 3 / N  = e(--8@ )(r)3/N rl(r) 3IN. 

Hence vo(Mo) = e ( - 3 / 8 N )  and vo(Mo) N2-1 = e ( - 3 / 8 N ) e ( 3 N / 8 ) .  Noting that 
e((r - t ) /4)  = e((t - r ) /4) ,  and adjusting constants for Ft (r) ,  we get an explicit 
form of p(Mo) as in the theorem. Thus we have proved Theorem 1.2 and also 
Theorem 1.1. [] 

1.3 Multiplier sytems and dimensions. As is well known, the multiplier system 
of log(r/(r))  is described by the Dedekind sum s(d,  c). By using this, we get the 
v u ( M )  is an unramified multiplier system in the sense of PETERSSON. That is, 
we get vu (U)  = 1 for any unipotent elements of  F(N) .  By this fact and the 
Riemann-Roch Theorem, we get the dimension formula for Ak(N-3)/2N (F(N))  for 
sufficiently big k. Namely we get 

L e m m a  1.7. For any odd integer N > 3 and any integer k > 4 (N - 6 ) / ( N  - 3), 
we have 

dim Ak(N-3)/2N(F(N)) -- k N 2 ( N  - 3) 1 N2(N  - 6) 1 
48 E ( I - p - ~ )  24 E ( 1 -  p-Z)" 

piN pIN 

The proof is standard and will be omitted here. 

Examples. 

dim A~/5(F(5)) = k + 1 k > 0, 

dim A2k/7(F(7)) = 4k - 2 k > 2, 

dim Ak/3(F(9)) = 9k - 9 k > 3, 

dim A4k/u(F( I  1)) = 20k - 25 k > 3, 

dim Ask/13(P(13)) = 3 5 k -  49 k > 3. 

As we will see later, for small values of  k, we get 

dimA2/7(F(7))  = 3, d i m A u 3 ( F ( 9 ) )  = 4, dim Az/3(F(9)) = 10. 

2 Examples  for levels N -- 5, 7, 9, 11. 

2.1 The case N = 5: the covering group and G6oo. When N = 5, if we put 
~" = e(1) ,  we get 
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By these, we get 

So, if we put 

1 { ~-4 _ ~- 
p((~ =  td_ d 

(~0 2 0) ' ( ( l l ) )  = d ' 

P ((01-01)) = ( 0  1 ? 1 ) "  

~-2 -- ff3"~ 
__if4)' 

, 

p((~ 

s, = p ( (0  o ' ) ) ,  T, = p ( ( 0  --I)), 

then $1 and/'1, together with k 12 (k is a 10-th primitive root of unity.) generate the 
unitary reflection group G6oo, which is No. 16 in SHEPHARD and TODD (cf. [18] 
p. 282). 

We shall see the relation between G600 and the (unique non-trivial topological) 
5-th covering group (~ of SLz(R). The group G is a central extension of SL2(I~). 

As a realization of (~, we take the following one (cf. YOSHIDA [19]). For M = 
(a ~) C SLz(N) and a natural number I with 1 < l < 5, we choose x by cv -t- d = 
]cr +die  ixl, 2rr ( / -  I)/5 < Xl < 2tel~5, and put #t(g,  r) = Icr +d]l/5e ixdS. Then 

( ~ = { ( g ,  tz/(g,r)); geSL2(Ii~), 1 < l < 5 } .  

Here the group structure is defined by 

(gl, #11 (gl, r))(g2,/z/2 (g2, r)) = (glg2,/Zl, (gl, g2r)#12(g2, r)). 

The projection pr : G ~ (g, fb(g, z)) --+ g c SL2(IR) gives the covering map. We 
take the factor of automorphy j (M, r) = v5 (M)(cr + d)1/5 of F(5) as in Theorem 
1.1. Then F(5) 9 M --+ (M, j ( M ,  r)) 6 (3 gives an injective isomorphism. This 
isomorphism is prolonged to SL2(Z) by virtue of Theorem 1.2. We use the same 
notation F(5) and SL2(Z) for these images in G. We denote by I ~ the pull back of 
SL2(Z) in (~ by the covering map pr : (~ ~ SL2(R). It is obvious that this is 
the trivial 5-th covering of SL2(Z) and 1 ~ ~ SL2(Z) x Z/5Z. It is quite obvious 
from the definition of the group multiplication that the group G acts on the functions 
f ( r )  on H by f ( r )  ~ f(gr)c])(g, z) 1 ((g, 49(g, z)) ~ (; .) By virtue of Theorem 
1.2, the linear space V over C spanned by F1 (r) and F3 (r) is an invariant subspace 
of the action of f'. The group F(5), regarded as a (normal) subgroup of F, acts 
trivially on V. Hence f ' /F(5)  acts on V. The action is obtained as the action of 
SL2(Z) in Theorem 1.2 and the scalar action of 5-th root of unity. By comparing 
the explicit action with generators of G600 given in SHEPHARD-TODD [18] p. 282, 
we see easily that 
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Proposition 2.1. 

G6oo ~ pr-I (SL2(Z)) /F(5) .  

This proposition was known in [2], but our explanation seems clearer. They 
also observed that modular forms of SL2(Z)  of  integral weights are obtained as 
an invariant polynomial of Gr00 as an obvious application of the theory of unitary 
reflection group. 

By the way, for N = 5, BANNAI et al. determined the ring of modular forms of 
1"(5) of  weights k/5. Their result is essentially as follows. 

Proposition 2.2. ([2]) Let v5 ( M) the multiplier system o f f  (5) given in Theorem 1.1 
and A (1/5) (F ( 5) ) be the ring of holomorphic modular forms of  1`(5) of automorphy 
factor v5 (M) k (cr  + d) ~/5 (k non-negative integers). Then 

AI/5(F(5))  = C[F1, F3], 

and Fb F3 are algebraically independent. 

For the details, see [2]. 

2.2 The case of level N = 7; the graded ring. Here we treat the case of N = 7. 
We put 

x = e ( - l /28) f l ( r ) t l ( r )  -3/7 = r / ( r ) -3 /7e(- -1/28)0(~, �89 

= f o  3/7 Z(--I)pq7p2+p, 

peg 

y = e(--3/28)f3(r)q(r) -3/7 = r / ( r ) -3 /7e ( - -3 /28 )0 (3  �89 

= f o  3/7 Z(--1)pq7p2+3P, 

pEN 

Z = e(--5/28)fs(r)~(r) -3/7 = ~( r ) -3 /Te( - -5 /28)0(~ ,  �89 

= f o  3/7 ~-~(--1)pq7p2+5p 

pcZ 

Here, we set q = e Jrir (and not e27rir). I f  we write 
O0 

f o ( r )  = 1 - I ( l  - q2~), 
n=l 

we get 

x f  3/7 = 1 -- q6 _ q8 + q26 -k- q30 _ q60 _ q66 -k- . . .  , 

yfo~/7 = q2/7(1 _ q4 _ ql0 + q22 + q34 _ q54 _ q72 + . . .  ), 

zf3/7 = q6/7(1 _ q2 _ q12 + q18 + q38 _ q48 _ q78 q_. . .  ). 
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For any non-negative integer k, we denote by A2k/7(F(7)) the vector space of 
holomorphic modular forms of F (7) of automorphy factor v7 (M) ~ (cr + d)2k/7. We 
define a graded ring A(2/7)(I'(7)) by 

OO 

A(2/7)(I'(7)) = ~ a2k/V(F(7)). 
k=0 

P r o p o s i t i o n  2.3. Any two among x, y, z are algebraically independent. They satisfy 
the following algebraic relation 

zx 3 + yz 3 = xy 3, 

and we have 

A(2/7)(F(7)) = C[x, y, z] 

= C[x, Z] ~ yC[x, z] G y2C[x, z] ~ y3C[y, z] 

-~ C[X, Y, Z] / (X3Z + YZ 3 - Xy3),  

where ~ means the direct sum as modules and X, Y, Z are independent variables. 
In particular, the subring generated by monomials xayb zC with a + b + c =- 0 mod 7 
is equal to the space of usual modular forms of F(7) of even integral weights. The 
generating function of dimensions is given by 

Remark. 
by 

OO 

Z dimA2k/7(F(7))t2k/7 = 1 + t 2/7 + t 4/7 + t 6/7 
k=o (1 - t2/7) 2 

The generating function for even integral weights is well known and given 

The proof consists of several steps. 
First we prove the relation. We can prove this by well known theta relation 

of WEIERSTRASS as suggested by KLEIN [6], but here we prefer to give a direct 
elementary proof. We denote by al(l), a2(l), a3(l) the coefficient at qt of the q- 
expansion of each function 

q-6/7(xf3/7)3(zf3/7), _-6/7t_ ~3/7,, ,3/7,3 q tYJo )tZJo ) '  or q-6/7(xf3/7)(yf3/7)3, 

respectively. We write 

SI(I) = {(a ,b ,c ,d)  c Z4; 

2 + 7a 2 + 3a + 7 b  2 + 5 b  + 7 c  2 + 5c + 7 d  2 + 5 d  = l} 

= {(a, b, c, d) c Z4; 

(14a + 3) 2 + (14b+ 5) 2 + (14c + 5) 2 + (14d + 5) 2 = 28(l + 1)}, 

k=0 

ZdimA2k(F(7)) t2k  = 1 + 24t 2 + 3t 4 
(1 - t2) 2 
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$2(/) = {(x, y, z, 

= { ( x , y , z ,  

(14x + 

$3(1) = {(p, q, r, 

w) EZ4; 7x 2 + x + 7 y  2 + y + 7 z  2 + z W 7 w  2 + 5 w = l }  

w) E Z4; 

1) 2 + (14y + 1) 2 + (14Z + 1) 2 + (14w + 5) 2 = 28(l + 1)} 

s) EZ4; 7p 2 + p + 7 q  2 + 3 q + 7 r  2 + 3 r + 7 s  2 + 3 s = l }  

= {(p, q, r, s) 6 Z4; 

(14p + 1) 2 + (14q + 3) 2 -k- (14r + 3) 2 + (14s + 3) 2 = 2 8 ( / +  1)}. 

By definition, we get ai(1) v" ~_l~a+b+c+d = Z.~(a,b,c,d)ESi(l)~ ~ . and we must show 
al(/) + a2(/) = a3(/) for each I . We can show this by comparing elements of Si 
directly. (The underlying reason for the equality can be understood by considering 
the quaternion algebra with discriminant 2oo and a multiplication by units in the 
maximal order, but we do not explain the background here.) 

Put 

S~(l) = {(p, q, r , s )  E $3(/); p + q + r + s = 0 mod 2}, 

S~(l) = {(x,y ,z ,  w) E S2(/);x § y + z  + w = 0 mod2}. 

Then it is easy to show that the mapping 
p+q+r+s  - p + q - r + s  

X =  2 Y - -  2 

- p + q + r - s  - p - q + r + s  
Z - -  2 113-- 2 

gives a bijection of S~ (l) onto S~ (1). In the same way, put 

S~*(l) = {(p, q, r, s) E $3(/); p + q + r + s = 1 rood 2}, 

S~*(1) = { (a ,b , c , d )  6 $1(I); a + b  + c  + d  = 1 mod 2}. 

Then the mapping 

p - q - r - s - 1  b ~ - p - q - r + s - 1  
a - -  2 2 

- p + q - r - s - 1  d ~ - p - q + r - s - 1  
c - -  2 2 

gives a bijection of S~* (1) onto S~* (l). Finally, we put 

S~*(1) = {(x,y ,z ,  w) E S2(/);x + y + z  + w = 1 mod 2}, 

S~(1) = {(a, b, c, d) E SI(/); a + b + c + d = 0 mod 2}. 

Then the mapping 

- x - y - z - w - 1  b - x + y - z + w - 1  
a - -  2 - -  2 

- x + y + z - w - 1  d - x - y + z + w - 1  
c -  2 - 2 

gives a bijection of S~*(l) onto S~(1). Taking the sign into account, we have proved 
the relation. 

Now, we can show that essentially there are no other relations. Indeed, since 
X Y  3 - Y Z  3 - Z X  3 is irreducible, this generates a prime ideal p in C[X, Y, Z]. 
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Since the height of !0 is at least one, any prime ideal which properly contains p has 
height greater than 1. Since C[x, y, z] has transcendental degree two, the ideal of  
relations of  x, y, z must coincide with p. The module structure is almost a direct 
consequence of  this fact. (These results can be proved also in more elementary 
direct way, but it is omitted here.) Finally we prove that all modular forms of  I '(7) 
of  automorphy factor v7 (M) k (cr  + d) 2k/7 belong to C[x, y, z]. We put 

at2k/7(l~(7) ) = a2k/V(F(7) ) (3 C[X, y, Z]. 

We would like to show A~u7(F(7)) = A2u7(F(7)).  From our expression of  
C[x, y, z] for a direct sum, we easily get 

1 + t 2/7 + t 4/7 -[- t 6/7 
Z dim a;k/v(l~(7))t 2k/7 = (1 -- t2/7) 2 
k=0 

Hence we get the dimensions of  modular forms of even integral weights in C[x, y, z] 
as follows: 

OO 

Z d i m A ~ k ( F ( 7 ) ) t 2 k  = 1 + 24t 2 + 3t 4 
k=0 (1 -- t2) 2 

This coincides with the well-known formula of  dim AZk(F) and we get A~k(F(7)) = 
Azk(1-'(7)). So, we assume that I A2k/7(F(7)) = A2k/7(F(7)) for any k and show 

that A'zk 2 7 (I '(7)) = A(zk-2)/7(I~(7))" Take g c A(2k 2)/7(F(7)). Then yg, ( - )/ 
zg E AZk/V(F(7)) = A~2k/7(F(7)), so for some polynomials Ai, Bi (1 < i < 4 ) of  
two variables, we get 

yg = At(x ,  z) -t- y Ae(x, z) + y2 A 3(x, z) + y3 A4(y, z), 

zg = Bl(X, z) + yB2(x, z) + yZB3(x, z) + y3B4(y, z). 

We cancel the left hand side by z(yg) - y(zg) = 0. We put B3(x, z) = Bs(z) + 
xB6(x, z). Then we get 

y3B3(x, z) = y3B5(z) + (xy3)B6(x, z) = y3B5(z) + yz3B6(x, z) + x3zB6(x, z). 

So we get 

zAI(X, z) + yzA2(x, z) + y2zA3(x, z) + y3zA4(y, Z), 

= yBl(x ,  z) § y2B2(x, z) + y3B3(x, z) + y4Bn(y, z) 

= x3zB6(x, z) + y(Bl(x ,  Z) q- z3B6(x, z)) q- y2B2(x, z) 

d- y3(B5(z) q- yB4(y, z)). 

This relation implies 

Al(x,  z) = x3B6(x, z), 

zA2(x, z) = Bl (X, z) + z3 B6(x, z), 

zA3(x, z) = B2(x, z), 

zAa(y, z) = B5(z) -k- yB4(y, z). 
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Since yzg is of positive weight, Bs(z) is a positive power of z. So from the last 
equality above, we get B4(y, z) = zBT(y, z) for some polynomial B7. In the same 
way, we can show that B2(x, z) and Bl(X, z) are divisible by z. We still do not 
know whether B3(x, z) is divisible by z. Here we put xg = Cl (x, z) + yC2(x, z) + 
y2C3 (x, z) q-y3 C4(y, z). We have x zg = x Bl (X, z) + yx B2(x, z) + y2x B3 (x, z) + 
xy3B4(y, z). The term xy3B4(y, z) might be complicated if we want to express it 
in the direct sum expression in the theorem. But anyway, B4(y, z) is divisible by z, 
so we get 

xy3 B4(y, z) = ZDl (X, z) + yzD2(x, z) + y2zD3(x, z) + y3 zD4(y, z) 

for some polynomials D i (1 < i < 4). Hence, by z(xg) = x(zg), we get 

xB3(x, z) + zD3(x, z) = zC3(x, z). 

Since x and z are algebraically independent, B3(x, z) is divisible by z. Hence we 
get zg ~ zC[x, y ,z]  and g c C[x ,y , z ]  and g c A}2k_2)/7(F(7)). So we get 

A~k/7(l'(7)) = A2~/7(F(7)) for all k c Z (k > 0 ). 
Thus we have proved all the assertions of Proposition 2.3. 

2.3 The case of N = 7; modular  forms of SL2(Z) and G336. We consider the 
relation between the unitary reflection group G336, the group No. 24 in SHEPHARD- 
TODD [18] and the action of SL2(Z)/F(7)  on A2/7(F(7)). We write a = e(~8). Of 

course we have a 14 = - 1 .  By virtue of Theorem 1.2, the action ; of SL2(Z) on 
A2/7(F(7)) with respect to the basis/71, F3, F5 is given by 

//013 - a 03 - a 11 a 9 - a 5'~ 
1 [a 3 - -  a ll a 5 - -  09 a 13 - -  a / 

P ( ( 0 0 1 ) ) =  ~ \ a 9 _ a  5 a l3 - -a  a l l - - a 3 ]  

;((11))= a8 00 
0 a 16 

; ( (o  1 71))= 13 
Hence, this defines an action of PSL2(F7). The simple group PSL2(F7) has two 
irreducible representation of degree 3 which are complex conjugate to one another, 
and the above p gives one of these two. The group generated by the image of 
p and -13  is isomorphic to G336. The algebraically independent generators of 
invariant polynomials of G336 are known to be of degree 4, 6 and 14. This means 
that there should exist holomorphic modular forms of SL2(Z) of weight 8/7, 12/7 
and 4, where the weight 2k/7 means the automorphy factor vo (M) 48k (c'r q- d) 2k/7. 
Although XY 3 - Y Z 3 - ZX 3 is an invariant polynomial of G336, we proved xy 3 - 
yz 3 - zx 3 = 0, so A8/7(SL2(Z)) = 0. Hence, A(2/7)(SL2(Z)) is a polynomial ring 
generated by holomorphic modular forms of weight 12/7 and 4. More explicitly, by 
noting F1 = ax, ~ = alSy = -ay ,  F5 = az, a modular form g c AI2/7(SL2(Z)) 
is given by 

g := -F~F3 + F~F5 - F1F 5 - 5F2F2F~ =a6(xSy - y 5 z -  xz 5 -  5x2y2z2). 
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This comes from the Hessian of X Y  3 - Y Z  3 - Z X  3 (cf. KLEIN [4]). Since the 
q-expansion of g starts from q2/7, this is a cusp form. Since the dimension of 
cusp forms of weight 12 on SL2(Z) is one, we see g7 = A(r) ,  where A(r)  = 
q2 17oo q _ q2n)24 l ln=l t is the Ramanujan Delta function. We denote by E4 and E6 the 
Eisenstein series of SL2(Z) of weight 4 and 6: 

oo 

E4(r) = 1 + 2 4 0 Z ( Y 3 ( n ) q 2 n  , 
n=l  
oo 

E6(r) = 1 - 5 0 4 Z ( r 5 ( n ) q 2 n .  
n=l  

Then the invariant of degree 14 is E4. More explicitly, we get 

E4 = x 14 q- y14 + Z 1 4  nt - 18(xVy7 _ yVz7 _ zYx 7) 

-- 34(--xy2z 11 + yZ2X 11 -- zx2y 11) -- 126(x5y3z6 -- y5Z3X6 -- zSx3y 6) 

-- 250(xy9z 4 -- yZ9X 4 -- zx9y 4) -k- 375(x4y8z2 -Jr- y4Z8X2 -I- Z4x8y2). 

If  we put f = x3y -- y3z -- Z3X, the above function is obtained by the following 
covariant 

(cf. KLEIN [41). 

1 
9a 12 

O2f O2f 02 f Og 
~ x  2 Oxay axOz ax 

O2f O2f a2f Og 
OyOx ~ y  8yOz Oy 

O2f a2f O2f Og 
azax azOy az 2 az 

o__~g Og ag 0 
Ox Oy Oz 

Up to now, we considered invariants of G 3 3 6 ,  s o  we demanded that they are 
invariant by -13  and hence treated the case of weight 2k/7  with k even. If  we do 
not demand the invariance by -13,  we can consider also modular forms of weight 
2k/7  with odd k. 

Proposition 2.4. The graded ring A (2/7) ( S L 2 (Z)) of  modular forms of  weight 2k/7  
(k non-negative integers) is given by 

A(2/7)(SL2(~)) = C[g, E4, E6]. 

We have a relation 1728g 7 = E 3 - E 2 and 

C[g, E4, E6] ~ C[A, B, C] / (A  3 - B 2 - 1728C7). 

Proof The modular forms of weight 2k/7 with even k are given by C[g, E4] by 
virtue of the theory of unitary reflection group. So take an odd k and assume that 
h c A z u 7 ( S L z ( Z ) ) .  Then h 2 c C[g, E4], so h 2 = ~3a+Tb=k Ca,bgaE~ for some 
Ca,b ~ C. Denote by a0 the minimum of a in the above such that Ca,b ~ O. If 
a0 is odd, then the q-expansion of the right hand side starts from q2ao/7. But by 
Proposition 2.3, h 6 C[x, y, z], so the q-expansion ofh  must start from some power 
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of q2/7, and that of  h 2 starts from a power of  q4/7. This is a contradiction. So ao 
must be even. Since g is a nowhere vanishing function on H ,  the function (h/ga~ 2 
is holomorphic on H ,  but the above result means that it is holomorphic also at 
the cusp of SL2(Z).  So this is a holomorphic modular form of SL2(Z)  of  even 
weight. Hence h /g  ao/2 is also a modular form of SL2(Z)  of  integral weight, so 
h /g  a~ E C[E4, E6] and we get h ~ ga~ E4]. [] 

Remark. E6 is given as - 7 5 6  -1 times the functional determinant of  f = X Y  3 - 
Y Z  3 - Z X  3, the Hessian of f ,  and E4 with respect to x, y, z. That is, 

E6 = x 2 1  q- y21 _ Z 2 1  _ 7(xyZz18 -k- yZ2X 18 -- Zx2y 18) 

-- 57(x7y 14 -k- y7Z14 -- Z7x 14) q- 217(xayz 16 -- y4zxl6 q- Z4xy 16) 

-- 289(xVz 14 q- yVx14 _ Z7y 14) -- 308(x4y15z2 -- y4z15x2 -}- z4xl5y 2) 

+ 637(x12y3z6 -- y12Z3X6 -k- zl2x3y 6) -- 1638(x9ylIz -4- y9z l lx  + z9x l ly )  

-- 4018(x3y13z5 + y3z13x5 q- z3xl3y 5) 

-- 6279(xlly8z2 + yl lz8x2 _ Z11x8y 2) 

q- 7007(x6y5zlO -- y6z5xlO q- Z6x5y 10) 

-- lO010(x8y9z4--y8z9x4 + Z8x9y 4) -- 10296x7y7z7" 

Remark. The four "invariants" of  SL2(Z)  above, that is, g, E4, E6, and xy  3 - 
yz  3 - zx 3, also appear in KLEIN [4]. But his concern was with modular functions 
or formal variables, and he did not treat modular forms of rational weight or graded 
ring of these. In a sense, we have given an easy interpretation of KLEIN's old work 
from the point of  view of the notion of rational weights. 

2.4 The  ease of  level 9. When N = 9, put 

o o  

X = f o  1/3 ~"~(--l)Pq 9p2+p, 

p=0 
OQ 

y = fo1/3q2/9 Z ( - -  1)Pq 9pz+3p, 

p=0 
o ~  

Z = fo1 /3q  2/3 y~( - -1)Pq  9p2+Sp, 

p=0 
o o  

w = fo1/3q  4/3 Z ( - -  1)Pq 9p2+vp. 

p=0 

The multiplier system v9(M) for these modular forms of weight 1/3 satisfies v9(M) 9 
= 1, as shown before, but more strongly we have v9(M) 3 = 1 for any M c F(9). 
Indeed, we have already shown that v9(M) 3 is equal to the multiplier system of rl 8~ 
and its explicit formula implies v9(M) 3 = 1. We denote by Ak/3(I '(9)) the space 



334 T. Ibukiyama 

of modular forms of F(9) of  weight v9(M)~(cr + d) k/3 and put A(1/3~(F(9)) = 

O~_oAk/3 (F(9)).  We put 

F(X, Z, W) = X Z  2 - Z W  2 - W X  2, 

G(X, Y, Z, W) = y3 + x w  2 _ W Z  2 _ Z X  2. 

L e m m a  2.5. We have 

F(x, z, w) = 0, G(x, y, z, w) = O. 

Proof There are 20 monomials H(X,  Y, Z, W) of degree 3 of  four variables X, Y, 
Z, W. The q-expansion of each H(x,  y, z, w) can be written as 

O~ 

H(x,  y, z, w) = V~ ,~ ,,l(H)+2n 

n = 0  

where l (H) depends on H and 9 l (H) E {0, 2, 4, 6 . . . . .  18, 20, 24, 26, 30, 36}. To 
obtain all the linear relations between H(x,  y, z, w), it is sufficient to check the 
relations between monomials H which have the same l (H) rood 2, that is, between 
those such that all l (H) belong to one of the following sets {0, 2, 4}, {2/9, 20/9}, 
{4/9}, {8/9, 26/9}, {10/9}, {14/9}, {16/9}, {2/3, 8/3}, {4/3, 10/3}. Except for the 
last two sets, it is easily shown that there is no non trivial relation. For example, for 
{0, 2, 4}, four modular forms x 3, z 3, xzw, w 3 might have a linear relation, but by 
comparing the q-expansion of a relation 

ax 3 + bz 3 + cxzw + dw 3 = 0  

using 

x 3 = 1 - - q 8 - - q 1 0 + q 3 4 + . . .  , 

z 3 = q 2 ( l _ q 4 _ q 1 4 + . . . ) ,  

xzw = q2(l -- q2 _ q4 q_ q6 + . . .  ), 

w 3 = q 4 ( l _ 3 q  2 + 3 q  4 + . . . ) ,  

we get a = b = c = d = 0 and so on. As for the last two sets, comparing the 
q-expansion, the only possible relations (up to constants) would be F(x, z, w) = 0 
and G(x, y, z, w) = 0. But by Lemma 1.7, we have AI(F(9))  = 18, so these really 
are relations. [] 

It is also possible to prove these relations by elementary combinatorial argument 
as in the case N = 7. We omit the details. 

T h e o r e m  2.6. (1) The ideal a of C[X, Y, Z, W] generated by F and G is a prime 
ideal and we have the following isomorphism. 

C[X, Y, Z, W]/a -~ C[x, y, z, w]. 

(2) Put B = C[x, y, z]. Then 

B = C[x, w] ~ zC[x, w] ~ z2C[z, w], 

C [ x , y , z ,  w] = B ~ yB @y2B. 
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(3) We have 

A(1/3)(1-'(9)) = C[x, y, z, w]. 

Incidentally the genus of  the modular curve is 10. 

Proof (1) Since C[x, y, z, w] is an integral domain, there is a prime ideal p of  
C[X, Y, Z, W] such that C[X, Y, Z, W]/p ~- C[x, y, z, w]. By Lemma 2.5, we 
get a C p. First we show that if a is a prime ideal, then p = a. Indeed, since F 
is an irreducible polynomial, F(X,  Z, W)C[X, Y, Z, W] is a prime ideal properly 
contained in a. Hence, if n # p and n is a prime ideal, then the height of  p is at 
least 3, and the transcendental degree of  C[X, Y, Z, W]/p is at most one, which is a 
contradiction. Next, we show that n is a prime ideal. Put no = n M C[Y, Z, W] and 
Po = P 71C[Y, Z, W]. Put also H = W2y  6 - Z2(Z 3 - W3)y 3 4- Z W ( Z  3 - W3) 2. 
By the relation 

H = ( - X 2 Z 2 W  - (Z 4 - 2 Z W 3 ) X  - W5)F 

+ ( X 2 Z W  2 _ X W  4 + W 2 y  3 + 2Z2W 3 _ Z5)G, 

we get H ~ n. Since H is irreducible, (H) :=  HC[Y, Z, W] is a prime ideal of  
C[Y, Z, W]. Since (H)  C no C Po and y and z are algebraically independent, we 
get Po = (H),  and hence no = (H).  To show that a is prime, we take polyno- 
mials P,  Q 6 C[X, Y, Z, W] such that P Q  c n. Since x ( z  3 - w 3) - y 3 w  = 
Z F ( X ,  Z, W) - WG(X,  Y, Z, W) c n, we get x m ( z  3 - y3)m E ymzm "4- n for 

any natural number m. Hence we can show that there exist some natural numbers 
m, n and some polynomials P ' ,  Q' E C[Y, Z, W] such that 

( Z  3 - w 3 ) m p  - P '  E n ,  (Z 3 -- w3)nQ - Q' E n. 

Obviously we get P '  Q'  6 no, and since no is a prime ideal, we can assume P '  6 no, 
exchanging P '  and Q'  if necessary. Therefore we get (Z 3 - w3)mp  E n. Next we 
show that, for any polynomial P(X,  Y, Z, W), if (Z 3 - W3)p  c n then P 6 n. That 
is, if 

(Z 3 - W 3 ) P  = F Q  + G R  

for polynomials Q, R c C[X, Y, Z, W], then there exist polynomials Q1 and Rt 
which are divisible by (Z 3 - W 3) and satisfy F Q  + GR = FQ1 + GR1. Indeed, 
if we denote by ~" one of  the third roots of  unity, then by assumption, we get 

F(X,  Z, ~Z)Q(X ,  Y, Z, ~Z) + G(X,  Y, Z, ~Z)R(X ,  Y, Z, ~Z) = O. 

But the two polynomials 

F(X,  Z, ( Z )  = X Z  2 - ( 2 Z 3  - ( X 2 Z ,  

G( X, Y, Z, ~ Z) = y3 + (2 X Z2 _ ( Z 3 _ ( xZ z 

have no non-trivial common divisors, so there exists a polynomial Po(X, Y, Z) such 
that 

Q(X, Y, Z, ~'Z) = Po(X, Y, Z)G(X,  Y, Z, ~Z), 

R(X, Y, Z, ( Z )  = - P o ( X ,  Y, Z )F( X ,  Y, Z, (Z ) .  
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If we define Ol,  R1 by 

QI(X, Y, Z, W) = Q(X, Y, z ,  w )  - Po(X, Y, Z)G(X,  Y, Z, W), 

RI(X,  Y, Z, W) = R(X,  Y, Z, W) + Po(X, Y, Z )F (X ,  Z, W), 

then we get QI(X, Y, Z, ( Z )  = RI(X,  Y, Z, ( Z )  = 0. Hence Ql,  R1 are divisible 
by W - ( Z  for any ( and hence also by Z 3 - W 3. We therefore get 

P = (Z 3 - W 3 ) - I ( F Q  + GR) = F (Z  3 - W3)-I  Q1 + G(Z 3 - W3)-IR1 E a. 

Hence if (Z 3 - W3) m P 6 a, then we get P E n by induction. We have thus proved 
that a is a prime ideal. Hence we get a = p and (1) is proved. 
(2) Using the relation F(x, z, w) = 0 and replacing xz 2 by zw 2 + wx 2 as of- 
ten as possible, we get B = C[x, w] + zC[x, w] + z2C[z, w]. Also by using 
G(x, y, z, w) = 0 and replacing ya with a > 3 by lower terms of  y, we get 
C[x, y, z, w] = B + yB + y2B. We show that these sums are direct sums as 
modules. Since F and G are coprime with each other, if FQ + GR = 0 then G I Q 
and F I R. Hence if we put 

A~/3(F(9)) = Ak/3(F(9)) A C[x, y, z, w], 

then we get 

(1 - t) 2 (1 + t 1/3 + t2/3) 2 
dim A~/3(F(9))t k/3 -- (1 - tl/3) 4 -- (1 - tl/3) 2 

k=0 

This can happen only if the above expressions of  B and C[x, y, z, w] are direct 
sums. q.e.d. 
(3) We show that Ak/3 (F(9)) = A~k/3 (F (9)). First, for integral weights, we get 

O~ 

Z A ~ ( F ( 9 )  ) = 1 + 16t + 10t 2 

k=0 (1 - t) 2 ' 

and we get dimA~(l"(9)) = dimAk(F(9))  for all k 6 Z, k >_ 0 by the well 
known dimension formula (cf. Lemma 1.7.) Now we show that if f a k / 3 ( r ( 9 ) )  = 
ak/3(F(9)),  then a~k_a)/3(F(9)) = a(k-1)/3(F(9)). We take g 6 A(k-1)/3(F(9)). 

Then of  course we get xg, yg, wg ~ Ak/3(F(9)) = Ak/3I (F(9)). We show that this 

implies g E A~/3(F(9)). By our assumption, we have 

wg = Pl(x, z, w) q- yP2(x, z, w) q- yZP3(x, z, w), 

zg = Ql(X, z, w) + yQ2(x ,z ,  w) + y2Q3(x,z ,  w), 

xg = Rl(x,  z, w) + yR2(x, z, w) + y2R3(x, z, w), 

for some polynomials Pi, Qi, Ri (1 < i < 3). By the relation x(wg) = w(xg), we 
get xPi(x,  z, w) = wRi(x,  z, w) for i = 1, 2, 3. Also by z(wg) = w(zg), we get 
zPi(x, z, w) = wQi(x,  z, w) (1 < i < 3). We show in general that if we assume 
xP(x ,  z, w) = wQ(x,  z, w) and zP(x ,  z, w) = wR(x,  z, w) for some polynomials 
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Q, R c wC[X, Z, W] then P(x, z, w) E wC[x, z, w]. We can take polynomials 

Ps, P6 such that 

P(x, z, w) = P4(x, w) q- zP5(x, w) .-[- z2 p6(z, w). 

Since xz 2 = w(zw + x 2) c wC[x, z, w], we can write 

xP(x,  z, w) 

= xPa(x, w) + zxPs(x, w) + wPT(X, w) + zwes(x,  w) + z2wP9(z, w) 

for some polynomials P / ( i  = 7 .8 ,  9). We also have 

xP = wQ = wQ4(x, w) + wzQ5(x, w) + z2wQ6(z, w) 

for some polynomials Qi (i = 4, 5, 6). Hence we get xP4(x, w) + wPT(X, w) = 
wQ4(x, w), xP5(x, w) .-1- wP8(x, w) = wO5(x, w), and wP9(z, w) = wQ6(z, w). 
Here, since x, w are algebraically independent and z, w are also, we get P4(x, w), 
Ps(x, w) ~ wC[x, w]. Now we consider on P6(z, w). Since 

zP(x, z, w) = zPa(x, w) + z2 ps(x, w) + z3 p6(z, w) = wR(x, z, w), 

and since P4(x, w), Ps(x, w) E wC[x, w], we get z3 p6(z, w) ~ wC[x, z, w]. 
Hence we have 

z3 p6(z, w) = wR4(x, w) q-zwR5(x, w) + z2wR6(z, w) 

for some polynomials Ri (i = 4, 5, 6). Since the right hand side is a direct sum, 
we get R4 = R5 = 0. Hence, taking the algebraic independence of z, w into 
account, we get P6(z, w) ~ wC[z, w]. Hence, x(wg), z(wg) c wC[x, z, w] implies 

l F wg ~ wC[x, z, w]. and we get g 6 C[x, z, w]. Thus we get A(k_l)/3((9)) = 

A(k-1)/3(I"(9) ). [] 

2.5 The case of  level 11. When N = 11, put 

x = e ( - 1 / 4 4 ) F 1 ,  

v=e( -1 /44)FT,  

y = -e ( - l /44 )F3 ,  

w=e( -1 /44 )F9 .  

z = e ( - 1 / 4 4 ) F s ,  

Then we have 

x f  3/11 = 1 - qtO _ q12 .q_ q42 q_ q46 _ q96 _ q102. . .  

yf3/ll  = q2/ll(1 _ q8 _ q14 q_ q38 + q 5 0 . . . )  

zf3/ll  = q6/ll(1 _ q6 _ q16 q._ q34 q_ q54 . . .  ) 

vf30/ll = q12/ll(1 _ q4 _ q18 + q30 + q 5 8 . . . )  

wf30/ll = q20/ll(1 _ q2 _ q20 + q26 + q 6 2 . . . ) .  
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As KLEIN [6] has already pointed out, we get the following 15 relations. 

x3v -[- v3w - y3z = 0, 

xz  3 - vy 3 - w3 y = O, 

v3z - z3y + x3w = 0, 

- y 3 x  + x3z + vw 3 = O, 

z3w q- w3x - v3y = 0, 

z2vto + x 2 y w  - y2zv = O, 

- x 2 y v  - z v w  2 q- x y z  2 = O, 

- w 2 y z  + v2yx - x2wz  = 0, 

x zv  2 - y2zw - x v w  2 = O, 

xy2w - z2xv q- v2yw = O, 

- x y v w  q- z2wy + z2x 2 - y3z = O, 

- w v y z  - x2zv -I- x2to 2 -b xz  3 = O, 

- v y z x  + w2yx  q- w2v 2 -k x3w = 0, 

- y z x w  - v2zw q- v2y 2 q- w3v = O, 

x z v w  - y2xv q- y2z2 - yv  3 = O. 

It is plausible that there are essentially no other relations. If this is true, then by 
using Gr6bner bases, we get the following expression. 

C[x, y, z, v, w] 

C[x, w] @ C[x, wly  @ C[x, w]z ~3 C[x, wlyz  ~ C[x, wlxv  

C[x, w]zv ~ C[x, w]xy 2 G C[x, wJy2 z @ C[x, w]y2 v ~ C[x, w]xyv 

~) C[1;, to]l) ~ C[I),//J]Xl) 2 (~) C[v,//A]x2v 2 (t~ C[y, w]y 2 @ C[z, w]z 2 

C[Z, W]ZV 2 ~ C[z,//J]zv 3 ~ C[z, to]zu 4 ~ C[z, w]gv 5 ~ C[z,//3]z2 v 

C[w]yv ~ C[w]yvz ~ C[w]yvz 2 ~ C[w]yv 2 @ C[w]yv2 z 

@ C[w]yv2z 2 @ C[w]xz 2 @ C[w]yz 2, 

and then the generating function of dimensions of homogeneous part of C[x, y, z, 
v, w] is given by 

Oo 

ZdimA4k/llt 
4k/ll = 1 + 3 t  4/11+6t  8/11+10t 12/11 

k=0 (1 -- t4/ll) 2 
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