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On the Spectrum of a Strictly Pseudoconvex CR Manifold

By E. BARLETTA and S. DRAGOMIR

1 Introduction.

Let M be a compact strictly pseudoconvex (2n+ 1)-dimensional CR manifold
and A, the sublaplacian (a subelliptic operator of order 1/2) corresponding
to a fixed choice of contact 1-form # on M. Let i, be the k-th nonzero
eigenvalue of A,. Using L? methods (i.e. a pseudohermitian analogue of the
Bochner formula in Riemannian geometry) A. GREENLEAF has shown (cf. [2])
that the first nonzero eigenvalue A; of A, satisfies:

A= Co 1)

n_
n+1
provided that:

R5Z°Z’ + 5 (452" 27" — 442°2°) 2 CohZ* 7’ %)

for some Cp > 0 (many notions involved here will be defined through the next
section), cf. [2], Theor. 1, p. 192. Our main result consists of the following

Theorem. Let M be a compact strictly pseudoconvex CR manifold (of CR
dimension n). Assume that the problem

Apv = 4o, T(v) =0,
supv =1, 3)
infr=-C,0<Cx1

admits some C*® solution v. If
Ric(X —iJX, X +iJX) +2(n—-2)AX,JX) =0 (€]
for any X € H(M), then

&)
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Here T is the characteristic direction of (M, 0) and dy is the diameter of
M with respect to the Webster metric gy. In contrast with [2], we employ L®
methods. If for instance M = §2*! (the round sphere carrying the standard
pseudohermitian structure) then both (2) and our assumption (4) hold good.

Let M be a strictly pseudoconvex CR manifold of vanishing pseudohermi-
tian torsion. Then our assumption (4) is weaker than (2). However, it must be
pointed out that while we work under less restrictive geometric conditions, the
proof of (5) requires the existence of a solution of (3) (rather than a solution
of (24) alone). As a result, we may estimate terms of the form u*(L,u,) at a
point (where L, is a Folland-Stein operator, cf. Section 4). General existence
theorems for the solutions of (3) are not known as yet (and this precisely the
limitation of our result). An example where (3) may be solved is indicated in
Section 6.

If v is a solution of (3) then (by (68) in {1] (a simplification of {(6.7) in
{2], p. 211)) Apv = Av (where A is the Laplace-Beltrami operator of (M, gg))
so that actually A € Spec(M, go) and the estimate (5) follows from work by
Z. IaQinG and Y. HONGCANG, [4], provided that the metric (here the Webster
metric gg) has nonnegative Ricci curvature. Nevertheless, this may be seen
(cf. Section 6) to be generically stronger than our assumption (4).

2 A reminder of pseudohermitian geometry.

Let (M, T10(M)) be a strictly pseudoconvex (2n+1)-dimensional CR manifold
of CR dimension n, and H(M) = Re{T5(M)®Ty,(M)} its maximally complex
distribution. Here T (M) = T;o(M). Throughout an overbar indicates
complex conjugation. Let 8 be a contact 1-form on M (ie. Ker(6) = H(M)
and g A (d6)" # 0 everywhere on M) so that the corresponding Levi form

Lo(Z, W) = —i(d0)(Z, W)

is positive definite. Here Z, W € Tio(M) and i = +/—1. Let T be the
characteristic direction of (M, ), i.e. the unique nowhere zero tangent vector
field transverse to H(M) determined by

NT)=1, TJdo=0.

By a result of S. WEBSTER, [10], (cf. also N. TanNaka, [9]) there is a unique
linear connection V on M (the Webster connection) so that

i) H(M) is parallel with respect to V,

ii) VJ=0,Vgs =0,

i) n, Ty(Z, W) =0
for any Z € Tyo(M), W € T(M)®C. Here J is the complex structure of H(M)
(given by J(Z +Z) = i(Z — Z) for any Z € T1o(M)) while gg is the Webster
metric (cf. [10], (2,18), p. 349, and our Appendix). Also Ty is the torsion
tensor field of V and n,. : T(M) ® € — T o(M) is the natural bundle map
(associated with the decomposition T(M) @ € = Tp(M) & Ty (M) @ €T).
As to all local calculations, if {Ty,...,T,} is a (local) frame of Tio(M)
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and {6',...,0"} are the (local) complex 1-forms determined by 6*(Tp) = 95,
0°(Tg) = 0 and 6*(T) = 0, then we set h,g = Lg(T., Tp) and VT = wp @ T,
(with the usual conventions as to barred indices, e.g. Ty = T,). The following
identities hold (cf. also (1.15) and (1.24) in [10], p. 28-29) as a consequence
of the axioms 1)—iii)
d6* = 0 Nwj + 0 AT, (6)
dhg = o} bz + hag . (7

Here t* = 426F and A% are given by Ty(T, Tp) = A% T,. The functions A%
are the local manifestation of the pseudohermitian torsion © of V (given by
X = Ty(T, X) for any X € T(M)) and enjoy the symmetry property
Aup = Apa, (8)
(cf. also (1.23) in [10], p. 28) where A,z = AZ hgz (ie. 7 is self adjoint with
respect to gg). Throughout we adopt the usual conventions as to the lowering
and raising of indices by means of h,z (respectively its inverse h*f).
Let R be the curvature tensor field of V and set
R(Ts,Tc)Ta = R4 pcTh
where 4, B, C,... € {1,...,n,1,...,7,0} and To = T. The following identity
holds
dof —cog‘/\wff = R/ 1z0* NOF + WOZB’1

- )
—WEOrNO+i0f A, —itP NG,
al

(cf. also (2.2} in[7], p. 161) where Wz, Wfﬁ are certain covariant derivatives
(with respect to V) of the pseudohermitian torsion 7. Cf. the Appendix, where
we give a new proof of (9). Next:

Rz = R, )3
is the pseudohermitian Ricci tensor field of (M,8), cf. eg. [7], p. 162. If
Ric(X,Y) = trace{Z — R(Z,X)Y} then Ry; = Ric(T;, T). It should be
mentioned however that there are other nonzero components of Ric (besides

R;z) which may be computed as certain contractions of covariant derivatives
of 7 (cf. [1]).

3 The sublaplacian.

Let 0 < e < 1. Let N be a Riemannian manifold. A formally self-adjoint
differential operator .# : C*(N) — C*®(N) of order 2 on N is subelliptic of
order ¢ at x € N if there is an open neighborhood U of x and a constant
C > 0 so that:

Jul? < € (1(Lu )} + ul) (10

for any u € C°(U). Here | - || is the L? norm and | - || is the Sobolev norm
of order e, cf. e.g. L. HGRMANDER, [3].
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Let M be a CR manifold (under the assumptions of Section 2). A complex
k-form w on M is a (0,k) — form if T jow = 0 and Ty o(M)]w = 0. Let A% (M)
be the corresponding bundle. The tangential Cauchy-Riemann operator is the
differential operator 8, : (A% (M)) — T°(A%+!(M)) defined as follows.
Let @ be a (0,k)-form on M. Then d,w is the unique (0,k + 1)-form on M
which coincides with dw when both are restricted to To (M) ® - -+ ® To1(M)
(k+1 terms). Let gy be the inner product naturally induced by gy on A% (M).
Let 5;, be the formal adjoint of 8, with respect to the L? inner product:

@f) = /M £3( B)O A (d6)"

for any (0,k)-forms «, f on M (at least one of compact support). The
Kohn-Rossi operator O, is given by

O, =2(3,0 + 3533 ) -
The sublaplacian A, on M is given by
Apu = Opu — inT (V)

for any u € C*(M). We recall (cf. e.g. J. J. KoHN, [6]) that A is a subelliptic
operator of order 1/2 at any point of the Riemannian manifold (M, gg). Thus
{cf. A. MENIKOFF, J. Si0STRAND, [8]) A, has a discrete spectrum tending to
430,

4 Commutation fermulae.

Let u : M — R be a C® function. The pseudohermitian Hessian VZu of u is
given by

(V2u)(X,Y) = (Vxdu)Y (11)

for any X,Y € T(M). Here V denotes the Webster connection. Unlike
the Hessian of a function on a Riemannian manifold V?u is not symmetric
(as V has nonzero torsion). Let usp = (V2u)(T4, Tp) for some (local) frame
{Ty,..., Ty} of Tig(M). Then

Uap = Uy,
U5 = uz, — ihg o, (12)
Ugp = Ugy + AL ug.
Here u4 = T4(u). Note that
Ty =20At—-Q QT
(cf. also (5) in [1]). Consequently
(V2u)(X,Y) = (Vi) (Y, X) + Qp(X, Y) T (1),
(V2)(X, T) = (V2u)(T, X) + (X) ()
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for any X, Y € H(M) (thus yielding (12)). We define the 3rd order covariant
derivative V3u by setting

(Vu)(X,Y,Z) = (VxV’u)(Y,Z).
Also set usgec = (V3u)(T¢, T4, Tg). The Folland-Stein operators L. are given
by
L.=A,—icT, c€eR
(so that L_, = [J, on functions). We need to show that
(Lu)g = —ttup” — ugg” + u"Rap + i (n — 2) ug A} (13)

where L = L. Also u,p* = h°‘7uap7, etc. For further use, let us introduce the
Christoffel symbols 'y determined by

wj = Fﬁﬁ()"

where 8° = . The sublaplacian A, is also given by

Apu = —u,* —ug”® (14
where u," = u,z W, We have

Tp(u™) = Tp(oz)h”™ — us" Tp(huz)h”*.
Using (7) and the identity
Tp () = Uazp + gy thz + Ul thaz»

we obtain

Tp(us") = huszp (15)

(one replaces the ordinary derivatives by covariant derivatives and observes
the cancellation of Christoffel symbols). Similarly

Tp(uz") = h™uzyp . (16)
Then (14) — (16) lead to

(Apw)p = —u*yp — u¥sp. (17

To prove (13) we shall need the following commutation formulae
Ug,, = Uyp — ihygliey —us R, 3, (18)
Upse = Uagp + iup(hag Af — hgs AD), (19)
Uayg = Uyaf > (20)
Uszp = Ugap — i hoyligo . (21)

The identities (20), (21) are straightforward consequences of definitions. The
proof of (18), (19) is a rather lengthy calculation based on (9) and on

(Vxof)Y — (Vyoh)X =2(dof)(X,Y) — 03(Ty(X, Y)).
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We leave the details to the reader. At this point we may use (18)—(21) to
rewrite (17) as
(Abu)g = —tiop™ — uzg” +2iugo+i(n—2ug A+ u, B Rty (22)
Finally, to see that (13) and (22) are equivalent we need a few curvature
considerations. Let
Rﬁ&p’& = hy& Rﬂy;ﬁs
then {cf. also (1.36) in [10], p. 30)
Rgaps = Ryaps»
RﬂEpE + R&‘ﬂp’ﬁ = O’ (23)
Rgags + Rﬂﬁ&p =0.
Thus (by (23))
h* Ry* g5 = W™ Ryp .
5 Gradient estimates.

Let M be a compact strictly pseudoconvex CR manifold and consider the
problem
Abv = .&kv, /1;( > 0;
supv=1; (24)
info=—C,0<C<1.
Set
u=re(v—13%), a=1% @5)
so that (24) becomes
Apu=AQu+a), 0<a<l,;
supu=1;
infu=—1.
Let f : M — IR be given by
INIALE
f= 1—u?

Strictly speaking, one should work with (1 + €)~'u instead of u, for some
€ > 0 (and let € — 0 in the end). A word on the notation in (26). There Vu
is the gradient of u with respect to the Webster metric go (thought of as an
element of T(M) ® €) and = Vu is its (1,0) component. Given a (local) frame
{T1,..., Tn} of T1o(M) one may write (26) as

f=(-u)) " uu

where u* = h“ﬁug. Lety : M — (—n/2,n/2) be a C* function so that
u = siny. Then f = y,y% Next, consider F : (—n/2,7n/2) — R given by

F() = sup{f(x)|x € y7'(®), lt| < &}.

(26)
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Clearly, we may (with F(—=n/24+0) = 0, F(z/2—0) = 0) regard F as continuous
on [—7/2,n/2]. Assume that F attains its maximum at to. As M is compact,
there is xo € y71(¢o) so that f(xo) = F(to). Thus

® = (f — F(to)) cos® y
attains its maximum at x,. Consequently
(V®)(xo) =0, 27
(VD) (X, X) <0 (28)
for any X € T,,(M). Note that V?® in (28) is the pseudohermitian Hessian
of ®. Yet, it is an elementary matter that the Hessian of @ (defined by (11))

with respect to any linear connection V on M is negative semi-definite at a
maximum point of ®. The sublaplacian A, is also given by

Apu = — trace{nyV?u} .

Here (ayB)(X,Y) = B(ngX,nyY) for any X,Y € T(M) and any bilinear
form B. Also ny : T(M) — H(M) is the natural bundle map (associated with
(A.1)). Thus (28) yields

(Ap®)(xp) = 0. (29)
We wish to prove the following estimate
2F(to) < k(1 +a). (30)
Let us apply Tp to ® = u,u* — F(to) cos?y so that to yield
@y = u'ug, + Wugz + F(to)ys sin(2y). (31)
Next:
®,5 = ugug, + ugugs + wug,, +uug;, 32)
+ F(to)y,5 sin(2y) + 2 F(to)yayg cos(2y)
where from (by taking into account (17))
Ap® = F(to)Apy - sin(2y) — 4 F(t0)7.y* cos(2y) -

— Z(uaﬁu“ﬁ + ugg) — wug — uFugs? — u°‘uﬁml7 - uau,—,aﬁ.

Let Ricy be the Ricci tensor field of (M, gg) and set Rgﬁ = Ricy(T,, TF)‘ Then
(by (A.3))

0 _p_ 13 _

RﬂF - Ra/i - i haﬂ s
so that R,z = Rg,. Then (by (13)) we may rewrite (33) as
Ap® = F(to)Apy - sin(2y) — 4 F(to)y«y* cos(2y)

-2 (ua,gu"‘ﬂ + uagu“‘g) + u*(Lu)y + u™(Lu)z (34)

— 2R guuP +1(n — 2) (Agu™uP — Aguti?).
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Assume from now on that
Ric(X ~iJX, X +iJX)+2(n—2) AX,JX) =0 (35)

for any X € H(M). Here A(X,Y) = go(tX, Y). Clearly, if M is five dimen-
sional it suffices to assume Rz to be positive semi-definite. Using (29), (34)
and (35) we obtain

W (Luyy + u*(Lu)z = 2 (uaﬂu“ﬂ + uaﬁu“ﬁ) + 4 F(to)y.y* cos(2y)
— F(to)Apy - sin(2y)

(36)

at xg. Let V = € be the (real) subspace given by
v={(43) | 4B e 4.©}.
We endow ¥ with the inner prdduct

Xaﬁ Xa_) (Yaﬂ Yaﬁ) B ]
- =X YP + XY
(Xaﬁ Xig5) \Yu Yi5) °% “

where Y% = h(x;) hfP(xo) Y3, etc. The Cauchy-Schwarz inequality on V' for
the vectors
X = (uaﬁ “aﬁ) Cy= (uaug uau§>
Usp uaB- Uglig uauﬁ

(uapu*e + ugun?)
2 (aa)?

leads to

ugpu™ + u(x;guGCE = 37
at xo. By (27) and (31) we have
Wuyg + vPug + F(to)yasin(2y) = 0 (38)

at xg. Let us contract with u* in (38) and use the resulting identity to rewrite
{37) as

uppu® + uuﬁu“ﬁ > 2 F(to)? sin®y (39)

at xg. Let v be a solution of (3) and u given by (25). The estimates (36) and
(39) lead to

4 F(to)? cos? y — F(to)Apy - sin(2y) < 2 Agtipu®. 40
~ Finally, taking into account the identities

uu” = F(tg) cos®y,

Apu = Apy - cosy + 2 F(tp) siny
(at xp) we may write (40) as

2 F(to)* cos? y — Fto) siny (A(u + a) — 2 F(to) siny) < 4 F(to) cos®y
which (after some simplifications) gives
2F(ty) < 4 (1 +asiny) < 4(1+a)

and (30) is proved.
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6 Proof of the main result.

We define a function ¢(t) by setting F(t) = A4(1 + ae(t))/2 for any |t] < n/2.
Then (by (30)) ¢(t) < 1. We shall need the following

Lemma. 1. Assume ¢(tg) > —1 for some |to] < n/2. Let y : (—n/2,n/2) - R
be a C? function so that

i) y(t) = (1) for any |t| <n/2;
i) y(to) = o(to);
iii) y'(to) = 0.
Then

@(to) < sinto — y'(to) sin to cos to + 13" (to) cos® to.

Proof. Let x¢ € M so that y(x¢) = t, and f(xo) = F({ty). The function
® : M — R given by

® = (f — 14(1 +ay o)) cos?y
attains its maximum at xp so that
VO(x0) =0, AyD(xo) = 0. @1)
Let us apply Tp to @ = u,u* — Ay cos® y(1 + ay(y))/2 so that to yield
®p = utupy + uugz + (1 + ay(y) sin2y) — ay' ) cos®y) -y5.  (42)
Next:
D5 = ta"ug, + o ug; + u’ug,, +uug;,
+ 54 ((1 + ay) sin(2y) — ay’ cos® y) y,5 (43)
+ i ((1 + ay) cos(2y) + ay'sin(2y) — 3ay” cos® ) yayz.
Consequently (by (14)):
Ap® = —uPu,p — u“BuaF — uPuzp — uaﬁuaﬁ

— utup,’ — Pug — u"‘uB—f - uEuﬁF

+ X ((1 + ay) siny — Jay' cosy) cosy - Apy 44
— 22 ((1 + ay) cos(2y) + ay’ sin(2y) — Lay” cos? y) pay*.
Using (13) we may rewrite (44) as
Ap® = 4, ((1 + ay) siny — 1ay’ cosy) cosy - Apy
— 24 ((1 + ay) cos(2y) + ay’ sin(2y) — Lay” cos® 7)) y.¥* as)

— 2(uapi®® + ) + u (L) + u* (T
— 2R guu + i (n—2) (Agguuf — Auguu) .
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Using (41) and (45) we may write (by the assumption (35) on the geometry
of (M,8))
Z(uagu“ﬁ +t,g “E) < u*(Lu), + 1> (Lu)z
+ A ((1 + ay)siny — 1ay cosy) cosy - Apy(xo) (46)
— 24 ((1 + ay) cos(2y) + ay’ sin(2y) — Lay” cos® y) F(to)
at xo. By (41) and (42) we have
wPuyg + uﬁua{—, + 2 ((1 + ay)siny — Lay’cosy) cosy -y, =0 @7
at xp. Let us contract with #* in (47) so that to rewrite (37) as
2 (uggu™ + uaguaﬁ) > A2((1 + ay) siny — }ay’ cos y)2 (48)

at xo. Let v be a solution of (3} and u given by (25). The estimates {40) and
(48) lead to

A2 {(t + ay)siny — 2ay’ cos y)z < 2A u,u*
+ A ((1 + ay)siny — Jay’ cosy) cosy - Apy
— 24 ((1 + ay) cos(2y) + ay' sin(2y) — day” cos? y) F(to) .

Since y'? cos?y > 0 we obtain (after some simplifications)

y+%y’sinycosyssinyn%y’%f‘}yl—}-%y”coszy. (49)

As Jy] €1 at xo we have a+siny > aysiny +siny = (1 + ay)siny so that
{49) becomes

y—siny < 1y" cos?y — y'siny - cosy

and Lemma 1 is completely proved. O
We shall need
Lemma. 2. The function ¥ : (—n/2,7/2) = R given by

2(2t +sin(3)) /m — 2sint

¥ = cos2t

possesses the following properties:
i) YW(—=n/24+0) =1, Y(r/2-0})=1;
i) ¥ e CY[—n/2,z/2) N CH(~=/2,7/2));
iti} ¥ satisfies the ODE

y+sint costy’ — Lcos’ty” =sint. (50

Proof. Indeed (50) may be written (y'/2 — y tant — 1/cost) = 0 so that

y = (A(2t +sin(2£))/2 + 2 sint + B) /(cos’ 1), with 4, B € R, etc. O
Let h(t) = o(t) — ¥(t) and set b = suph. We need to show that

ot) <Y (51

for any |t] < n/2. The proof is by contradiction. If (51) is false then b > 0.
Note that A{n/2 —0) = —1 —1/a < 0 and h{~n/2+0) =1—-1/a <0 so
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that b is attained at some fy € (~n/2,n/2). Next @(to) = —1 (otherwise
o(ty)) < —1 yields b < —1 —¥(tp) < 0, a contradiction). Set y = ¥ 4 b.
Then y satisfies the hypothesis of Lemma 1 so that (by Lemmae 1 and 2)
@(to) < sinto—sinto cos to P'(tg) +cos? to W (to) /2 = P(ty), a contradiction. At
this point we may prove (5). To this end, let xy, x; € M so that y(x;) = —n/2
and y(x;) = n/2. Let C : [0,1] — M be a minimizing geodesic of (M, gg) s0
that C{0) = x; and C(1) = x; and denote by £(C) its (Riemannian) length.
By (51) we have

2F(t) < 4l +a¥ () (52
for any |t| < n/2. Thus (as yo = 0)

IVPI? < k(1 +a¥ oy)

everywhere on M. Then we may perform the following estimates

1
Virds = Z4(C) = Vi /0 ldC/dt| de

> /1 IdC/de]l |Vyll g4, Vy)co

i
dt >
\/1 +a‘l’(y(C(t)} /0 \/ 1 +a‘P(v(C(t)))

x/2

dt

\/1 — a‘P(t) \/1 + a‘P(t))d
"/2‘”(2k ntt o k
= ———(a¥)"*(1 He)d
| > S @1+ d
where 2k — )!!'=1-3-5---(2k — 1) and (2k)!! = 2*k!. Finally
/2
\/;deg>n+2(2(2k)” 1+(——-1)")ak/0 ¥Y()kdi>n

and (5) is proved.

/_;,fg V1 +a‘Pit

Remarks. 1) Let M be a strictly pseudoconvex CR manifold of vanishing
pseudohermitian torsion. Suitable contraction of indices in (A.3) furnishes
Ricy(X, Y) = Ric(X, Y) — 1go(X, Y) + 2L 0(X)0(Y) (53)
for any X, Y € T(M). Thus Ric{X — iJX,X + iJX) = Ricsg(X,X) +
Ricg(JX,JX) + | X||? for any X € H(M). Consequently, if Ricg(X, X) = 0 for
any X € T(M) then Rz is positive semi-definite (while the converse does not
follow from (53)).
2) The problem of the existence of a solution of (3) is open. If for instance
M = §?*! then (3) has no solution for k = 1 (i.e. there is no first degree
harmonic polynomial H on R?"V satisfying T(H) = 0). Next, all solutions

of
Abv == );z v,
T{w)=0
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are given as v = Higai where H(xX,y) = X1 it @i (Xix; + yiy)), aij € R
(and 1, = 4(n+1)). Also, for each (i, j) € {1,...,n+1}% i < j, the eigenfunction
vij = Hyjsmn, where Hjj = 2(xix; + yiy;), has supv;; = 1 and inf v;; = —1 (ie.
v;; is a solution of (3) with k=2 and C =1).

3) The estimate (1) may be thought of as an estimate on Ay, k > 2. As
such, (5) is sharper than (1) provided that

n+1

dg < .
o 4 nC()

(54)

However, among the odd dimensional spheres only S* and S° satisfy (54) (as
M = §2*1 yields Cy = n+ 1, cf. [10]).

Appendix

Let (M, T o(M)) be a nondegenerate CR manifold and 6 a fixed contact
1-form on M. Let T be the characteristic direction of (M,#). Define Gy by
setting

Gy(X,Y)=(dO)(X,JY)
for any X,Y € H(M). Since
T(M)=HM)®RT (A.1)
one may extend Gy to a semi-Riemannian metric gg on M by setting
go(X,Y) =Go(X,Y), go(X,T)=0, go(T,T)=1

for any X,Y € H(M). The Levi-Civita connection V? of (M,g) and the
Webster connection V of (M, 6) are related by

V=V+(lQ-AHT+100+00J (A2)

where Qp(X,Y) = go(X,JY). Also © denotes the symmetric product. Let
R?, R be the curvature tensor fields of V?, V, respectively. A straightforward
calculation based on (A.2) shows that

RY(X,Y)Z =R(X,Y)Z — (KX AKY)Z +6(Z)S(X,Y)
—g(S(X,Y),Z)T +20(Z)(0 N O)(X,Y) (A3)
—2go((0 A O)X,Y),Z)T — $Q9(X, Y)JIZ .

A word on the notation in (A.3). There S(X,Y) = (Vx7)Y — (Vy1)X. Also
K=1+ %J and 0 = 24+ J1— %I , where I denotes the identical transformation.
Finally (X A Y)Z = go(Y,Z)X — go(X,Z)Y is the usual wedge product of
two tangent vector fields on (M, gg). Using (A.3) and the known symmetries
(cf. (d) in [5], vol I, p, 198) of the Riemann-Christoffel tensor field of (M, gg)
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we obtain
g8o(R(X,Y)Z, W) = go(R(W,Z)Y, X)
+go(KX AKY)Z, W) —go((KW ANKZ)Y, X)
+0(Y)go(S(W,Z), X) — 6(Z)go(S(X, Y), W)
+0(W)go(S(X,Y),Z) — 6(X)ge(S(W,Z),Y)
+26(Y)ge((0 N OY)W,Z),X) —20(Z)ge((0 N O)(X, Y), W)
+20(W)ge((6 N O)X,Y),Z) —20(X)go((0 N OYW,Z),Y)
for any tangent vector fields X, Y,Z, W on M. Next (A.4) furnishes
R 1 = i(Au6] — Aui8h),
Rf3; = (Af’ hy — AL o), (A.5)
Raﬁlo = aw Raﬂ/lo = —W

(A4)

where
Wi =Wdg;, Wh=n4,
and
mﬁy (VT A)(Tota Tﬂ)
is the covariant derivative of the pseudohermitian torsion (with respect to the
Webster connection). The first two identities in (A.5) lead to

RS, NOF=2i0° A1y,
Rz AP =2i0, A7
where ©, = h,z #, ect. Finally (9) follows from (A.5) and the identity
RX,Y)T, = 2(dwf — ol Nl)(X,Y)T;.
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