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On the Spectrum of a Strictly Pseudoconvex CR Manifold 

By E. BARLETTA and S. DRAGOMIR 

1 Introduction. 

Let M be a compact strictly pseudoconvex (2n + 1)-dimensional CR manifold 
and Ab the sublaplacian (a subelliptic operator of order l /2) corresponding 
to a fixed choice of contact 1-form 0 on M. Let 2k be the k-th nonzero 
eigenvalue of Ab. Using L 2 methods (i.e. a pseudohermitian analogue of the 
Bochner formula in Riemannian geometry) A. GREENLEAF has shown (cf. [2]) 
that the first nonzero eigenvalue 21 of Ab satisfies: 

/~1 ~ n-"~l Co (1) 

provided that: 

R~-~ Z~zI~ + Tni (A~-~ -Za-~# - A~# Z~Z#) >- Coh~-~ Z~-Z~ (2) 

for some Co > 0 (many notions involved here will be defined through the next 
section), cf. [2], Theor. 1, p. 192. Our main result consists of the following 

Theorem. Let M be a compact strictly pseudoconvex CR manifold (of CR 
dimension n). Assume that the problem 

AbV : 2kV, T ( v )  = O, 

supv = 1, 

infv = - C ,  0 < C _< 1 

admits some C ~ solution v. I f  

Ric(X - iJX, X + iJX) + 2(n -- 2)A(X, JX) > 0 

for any X E H(M), then 

7C 2 

,~k ~ d-~o. 

(3) 

(4) 

(5) 
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Here T is the characteristic direction of  (M, 0) and do is the diameter of 
M with respect to the Webster metric go. In contrast with [2], we employ L ~176 
methods. If  for instance M = S 2n+I (the round sphere carrying the standard 
pseudohermitian structure) then both (2) and our assumption (4) hold good. 

Let M be a strictly pseudoconvex CR manifold of  vanishing pseudohermi- 
tian torsion. Then our assumption (4) is weaker than (2). However, it must be 
pointed out that while we work under less restrictive geometric conditions, the 
proof of  (5) requires the existence of  a solution of  (3) (rather than a solution 
of  (24) alone). As a result, we may estimate terms of the form u~(L2u~) at a 
point (where L2 is a FoUand-Stein operator, cf. Section 4). General existence 
theorems for the solutions of  (3) are not known as yet (and this precisely the 
limitation of  our result). An example where (3) may be solved is indicated in 
Section 6. 

If v is a solution of  (3) then (by (68) in [1] (a simplification of  (6.7) in 
[2], p. 211)) Abv = At, (where A is the Laplace-Bettrami operator of  (M, go)) 
so that actually 2k ~ Spec(M, go) and the estimate (5) follows from work by 
Z. JIAQING and Y. HONGC~a'~, [4], provided that the metric (here the Webster 
metric go) has nonnegative Ricci curvature. Nevertheless, this may be seen 
(cf. Section 6) to be generically stronger than our assumption (4). 

2 A reminder of pseudohermitian geometry. 

Let (M, TI,o(M)) be a strictly pseudoconvex (2n+ 1)-dimensional CR manifold 
of  CR dimension n, and H(M) = Re{ T~,0(M)~ T0,1 (M) } its maximally complex 
distribution. Here To, I(M) = TI,o(M). Throughout an overbar indicates 
complex conjugation. Let 0 be a contact 1-form on M (i.e. Ker(0) = H(M) 
and 0 A (dO) ~ --fi 0 everywhere on M) so that the corresponding Levi form 

Lo(Z, w )  = - i  (dO)(Z, w )  

is positive definite. Here Z, W E T1,0(M) and i = ~'Z~. Let T be the 
characteristic direction of (M, 0), i.e. the unique nowhere zero tangent vector 
field transverse to H(M) determined by 

O(T)= I, TJdO=O. 

By a result of  S. WEBS~R, [10], (cf, also N. TANAKA, [9]) there is a unique 
linear connection V on M (the Webster connection) so that 

i) H(M) is parallel with respect to V, 
ii) VJ = 0, Vgo = O, 

iii) rc+Tv(Z, W) = 0 

for any Z ~ T1,0(M), W E T(M)| Here J is the complex structure of  H(M) 
(given by J (Z  + Z) = i (Z - Z) for any Z ~ TI,o(M)) while go is the Webster 
metric (of. [10], (2.18), p. 349, and our Appendix). Also Tv is the torsion 
tensor field of  V and ~+ : T(M) | �9 -* TI,o(M) is the natural bundle map 
(associated with the decomposition T(M) | (E = Tl,o(M) @ ToA(M) @ (ET). 
As to all local calculations, if {T1 . . . . .  T~} is a (local) frame of  TI,o(M) 
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and  {01 . . . .  ,O n} are the (local) complex 1-forms determined by O~(T#) = 6~, 
O~(T~) = 0 and O~'(T) = 0, then we set h,~ = Lo(T~, T#) and VT# = o9~ | T, 
(with the usual conventions as to barred indices, e.g. T~ = T~). The following 
identities hold (cf. also (1.15) and (1.24) in [10], p. 28-29) as a consequence 
of the axioms i)-iii) 

dO c' = 0 # A r + 0 A C, (6) 

dh~ = o9~ hu- ~ + h~ o9~. (7) 

A-ff A-~ ~t = ~ = ~ T,. The functions A~ Here ~" A~O -~ and are given by Tv(T, 
are the local manifestation of  the pseudohermitian torsion T of  V (given by 
TX = Tv(T,X) for any X e T(M)) and enjoy the symmetry property 

= Ap , (8) 

(cf. also (1.23) in [10], p. 28) where A,/~ = A~h#~ (i.e. r is self adjoint with 
respect to go). Throughout we adopt the usual conventions as to the lowering 
and raising of  indices by means of h~  (respectively its inverse h'~). 

Let R be the curvature tensor field of  V and set 

R(Ts, Tc)Ta = RA ~ 8cTD 

where A, B, C . . . .  e {1, . . . ,n ,1 , . . . ,~ ,0} and To = T. The following identity 
holds 

dC-o : A C = + o 
(9) 

- -  W:~ 0 ~ A 0 + iO ~ A "c~ --  i~ ~ A O~ 

(cf. also (2.2) in[7], p. 161) where W~, Wf~ are certain covariant derivatives 

(with respect to V) of the pseudohermitian torsion ~. Cf. the Appendix, where 
we give a new proof of  (9). Next: 

Rap = R ~  

is the pseudoherrnitian Ricci tensor field of (M,O), cf. e.g. [7], p. 162. If  
Ric(X, Y) = trace{Z ~-~ R(Z,X)Y}  then R~g = Ric(T~, Tg). It should be 
mentioned however that there are other nonzero components of  Ric (besides 
R~z) which may be computed as certain contractions of covariant derivatives 
of  �9 (cf. [1]). 

3 The sublaplacian. 

Let 0 < e < 1. Let N be a Riemannian manifold. A formally self-adjoint 
differential operator .~e : C~176 --, C~(N) of order 2 on N is subelliptic of 
order e at x e N if there is an open neighborhood U of  x and a constant 
C > 0 so that: 

<_ + tlO) 

for any u ~ C~(U). Here [1" ]1 is the L 2 norm and I[" II~ is the Sobolev norm 
of  order e, cf. e.g.L. H6RMANDER, [3]. 
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Let M be a CR manifold (under the assumptions of  Section 2). A complex 
k-form co on M is a (0,k) - f o r m  if Tjco = 0 and T1,0(M)]co = 0. Let A~ 
be the corresponding bundle. The tangential Cauchy-Riemann operator is the 
differential operator ~b : FOO(A~ ~ FOO(A~ defined as follows. 
Let co be a (0, k)-form on M. Then ~bco is the unique (0, k + 1)-form on M 
which coincides with dco when both are restricted to T0,1 (M) | . . .  | T0A (M) 
(k + 1 terms). Let g~ be the inner product naturally induced by go on A~ 

Let ~b be the formal adjoint of ~b with respect to the L 2 inner product: 

(~, 8) = fM g~(~" 8)0 ^ (gO)" 

for any (O,k)-forms ~, // on M (at least one of  compact support). The 
Kohn-Rossi operator r-qb is given by 

= + 

The sublaplacian Ab on M is given by 

AbU = l--lbU -- inT(U)  

for any u e C~176 We recall (cf. e .g .J .J .  KOHN, [6]) that fib is a subeUiptic 
operator of order 1/2 at any point of the Riemannian manifold (M, go). Thus 
(cf. A. MENIKOFF, J. SJOSTRAND, [8]) A b has a discrete spectrum tending to 
+oo. 

4 Commutation formulae. 

Let u : M ~ • be a C ~ function. The pseudohermitian Hessian V2u of  u is 
given by 

(V2u)(X, Y) = (Vxau) Y (11) 

for any X,  Y e T (M) .  Here V denotes the Webster connection. Unlike 
the Hessian of  a function on a Riemannian manifold V2u is not symmetric 
(as V has nonzero torsion). Let uAn = (V2u)(TA, TB) for some (local) frame 
{Tz . . . . .  Tn} of Tl,o(M). Then 

Uc#~ = Ufl~ , 

u,-~ = U-& -- i h~,~ uo, (12) 

u~o = uoa + A~ u~. 

Here UA = TA(u). Note that 

Tv = 2 0 A ~ -- f~o @ T 

(cf. also (5) in [1]). Consequently 

(V2u)(X, r )  = (V2u)(r, x) + t~o(x, r )T(u) ,  

(V2u)(X, T )  = (V2u)(T, X )  + (zX)(u) 
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for any X ,  Y E H ( M )  (thus yielding (12)). We define the 3rd order covariant 
derivative V3u by setting 

(V3u)(X, Y, Z) = ( V x V 2 u ) ( Y ,  Z ) .  

Also set uAnc = (V3u)(Tc,  Ta, Tn).  The Folland-Stein operators Lc are given 
by 

Lc = Ab -- ic  T ,  c E R 

(so that L_.  = I--lb on functions). We need to show that 

(Lu)o = -u~o ~ - u~o ~ + u~R~o + i (n - 2) u~ A~ (13) 

where L = L2. Also u~0 ~ = h#u~Oy, etc. For further use, let us introduce the 
Christoffel symbols F~0 determined by 

~ = r~00 A 

where 0 o = 0. The sublaplacian Ab is also given by 

AbU = --u~ ~ -- u~ ~ (14) 

where u~ ~ = u ~  h ~.  We have 

TO(u~ ~) = T o ( u ~ ) h  ~ - u~# To(hu~)h ~ . 

Using (7) and the identity 
/ l  

T 0(u~) = u~  0 + F0~ u~,~ + F ~  u ~ ,  

we obtain 

TO(u~?') = h~'~u~,~O (15) 

(one replaces the ordinary derivatives by covariant derivatives and observes 
the cancellation of Christoffel symbols). Similarly 

T O (u~ ~) = h~u~, f l .  (16) 

Then (14)  - (16)  lead to 

(AbU) 0 = --u% 0 -- u~0 . (17) 

To prove (13) we shall need the following commutation formulae 

u-fiw = u ~  - i h~uor - ua Rv~-fi , (18) 

uoy~ = u~yp + i u-a(h~yA~ -- hoyA~), (19) 

u ~  = ur~ ~, (20) 

u~o = u ~  O - i h~r (21) 

The identities (20), (21) are straightforward consequences of definitions. The 
proof of (18), (19) is a rather lengthy calculation based on (9) and on 

(Vxco~) Y -- (Vrco~)X = 2 (do2~)(X, Y )  -- o)~(Tv(X, Y)). 



38 E. Barletta and S. Dragomir 

We leave the details to the reader. At this point  we m a y  use (18)-(21) to 
rewrite (17) as 

(AbU)# = --u~//~ -- u~# ~ q-- 2 i u/~0 + i (n -- 2) u~ A~ + ua h ~ Ra~#~. (22) 

Finally, to see that  (13) and  (22) are equivalent  we need a few curvature  
considerations.  Let 

then (cf. also (1.36) in [10], p. 30) 

R~p~ + / ~ p ~  = 0 ,  (23) 

R~p~ + R ~ p  = 0. 

Thus  (by (23)) 
h ~ R~#y = h a ~ / ~ .  

5 Gradient estimates. 

Let M be a compac t  strictly pseudoconvex C R  manifold  and  consider the 
p rob lem 

Abt) = /~k  13, /~k ~> 0 ; 

sup v = 1 ; (24) 

i n f v  = - C ,  0 < C < 1. 

Set 

so that  (24) becomes 

a-c  (25) 
a =  , + c  

AbU ~--- ,~k(U "+" a), 0 < a < 1; 

sup u = 1 ; 

inf  u = - -1 .  

Let  f : M --* R be given by  

Hrr+Vul[ 2 
f = 1 - u 2 (26) 

Strictly speaking,  one should work  with (1 + e)-lu instead o f  u, for some 
e > 0 (and let e -+ 0 in the end). A word on the nota t ion  in (26). There  Vu 
is the gradient  o f  u with respect  to the Webster  metric  go ( thought  of  as an 
element of  T(M) | (E) and n+Vu is its (1, 0) component .  Given a (local) f rame 
{T~ . . . . .  T,} of  TI,o(M) one may  write (26) as 

y = (1 - u2) - lu~  u ~ 

where u ~ = hC'-~u~. Let  Y : M --* (-Tr/2,rc/2)  be a C ~~ function so that  

u = sin y. Then  f = y~y ~. Next,  consider F : ( - r r / 2 ,  n /2 )  --* R given by 

F(t) = sup{f  ( x ) l x  E y- l ( t ) ,  [tl < ~} 2 " 
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Clearly, we may (with F ( - n / 2 + 0 )  = 0, F ( n / 2 - 0 )  = 0) regard F as continuous 
on [ -n /2 ,  n/2]. Assume that F attains its maximum at to. As M is compact, 
there is xo ~ y-~(to) so that f(xo) = F(to). Thus 

= (f  -- F(to)) COS 2 y 

attains its maximum at Xo. Consequently 

(V~)(xo) = 0, (27) 

(V2O)x0 (X, X) < 0 (28) 

for any X ~ T~o(M ). Note that V2O in (28) is the pseudohermitian Hessian 
of ~. Yet, it is an elementary matter that the Hessian of �9 (defined by (11)) 
with respect to any linear connection V on M is negative semi-definite at a 
maximum point of ~. The sublaplacian Ab is also given by 

AbU = -- trace{nnV2u}. 

Here (nHB)(X, Y)  = B ( z n X ,  n n Y )  for any X,  Y ~ T ( M )  and any bilinear 
form B. Also n/~ : T ( M )  ~ H(M)  is the natural bundle map (associated with 
(A.1)). Thus (28) yields 

(AbO)(x0) > 0. (29) 

We wish to prove the following estimate 

2F(t0) < 2k(1 + a). (30) 

Let us apply T~ to �9 = u~u ~ -- F(to) cos 2 ~ so that to yield 

~ = u~u~ + u~u~ + F(t0)Tt~ sin(2y). (31) 

Next: 

�9 ~ = u~u-~ + u~u-~ + u u-~a ~ + uau-~ (32) 
+ F(to)y,~ sin(2y) + 2 F(to)),~y~cos(2y) 

where from (by taking into account (17)) 

Ab~ = F(to)Ab7 " sin(2y) - 4  F(to)~y ~ cos(2~) 

- + 

Let Rico be the Ricci tensor field of (M, go) and set R ~ = Rico(T,, T~). Then 
(by (A.3)) 

R ~ = R ~  -- �89 h ~  ctfl 

so that ga~ = RB~. Then (by (13)) we may rewrite (33) as 

Ab~ = F(to)Ab7 �9 sin(27) - 4 F(to)7~ ~ cos(2),) 

2(u~# u~# + u ~  uaB) + ua(Lu)~ + ua(Lu)e (34) 

- 2 R~-~u~u ~ + i (n -- 2) (A~-~u~u -g -- A~#uau~). 
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Assume from now on that 

Ric(X - i JX,  X + i JX) + 2 (n - 2) A(X, JX)  > 0 (35) 

for any X E H(M). Here A(X, Y) = go(zX, Y). Clearly, if M is five dimen- 
sional it sut~ces to assume R~  to be positive semi-definite. Using (29), (34) 
and (35) we obtain 

u:(-Lu): > 2 ( u ~ u  ~ + u~-~u ~-~) + 4 F ( t o ) ~  ~ cos(2~) u~(Zu), + 
(36) 

-- F(to)Aby �9 sin(2y) 

at x0. Let V c tL - ~  be the (real) subspace given by 

We endow V with the inner product 

. = + 

where Y~# = h~(xo) h#Z(xo) Y~, etc. The Cauchy-Schwarz inequality on V for 
the vectors 

leads to 

-_ (uo  = 
kU:# u:-~]' \u:up u~u-L/ 

(u~u~u ~ + u~-~u~u -~) 
u~Bu ~t~ + u~'~u ~ > 

2 (u~u~) 2 
at xo. By (27) and (31) we have 

(37) 

ul~ u~# + u-~u~-~ + F(to)y~ sin(2 y) = 0 (38) 

at x0. Let us contract with u ~ in (38) and use the resulting identity to rewrite 
(37) as 

u~u ~ + u~-~u ~ > 2 F(t0) 2 sin 2 ~ (39) 

at xo. Let v be a solution of  (3) and u given by (25). The estimates (36) and 
(39) lead to 

4 F(t0) 2 cos 2 y - F(to)Aby "sin(2y) < 2 2ku~u ~ . (40) 

Finally, taking into account the identities 

u~u ~ = F(to) cos 2 ~,, 

Abu = Aby" cos y + 2 F(to) sin 

(at x0) we may write (40) as 

2 F(t0) 2 cos 2 y -- F(to) sin y (2k(U + a) -- 2 F(to) sin ~) < 2kF(to) cos 2 

which (after some simplifications) gives 

2F(to) < 2k(1 + asiny) < ;tk(1 + a) 

and (30) is proved. 
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6 Proof of the main result. 

We define a function cp(t) by setting F(t) -- 2k(1 + a~o(t))/2 for any It[ --< re/2. 
Then (by (30)) ~o(t) < 1. We shall need the following 

Lemma.  1. Assume ~O(to) > - 1  for some It01 < ~/2.  Let y : ( - -n /2 ,~ /2)  ~ R 
be a C z function so that 

i) y(t) > ~o(t) for  any It[ < rr/2; 
ii) y(to) = q~(to); 

iii) y'(to) > O. 

Then 

~o(to) < sin to -- ),'(to) sin to cos to + �89 cos z to. 

Proof Let xo ~ M so that  y(xo) = to and f(xo) = F(to). The function 
: M ~ R given by 

= ( f  - �89 + ay o 7)) cosa Y 

attains its maximum at xo so that  

V~(xo) = 0, Ab~(xo) > 0. (41) 

Let us apply T# to ~ = u~u ~ - -  , ~ k  COS2 7( 1 + ay(y))/2 SO that to yield 

�9 ~ = u~u[~ + u~u#~ + �89 ((1 + ay(7)) sin(2y) -- ay'(7) cos: 7)" 7/~. (42) 

Next: 

�9 ~-~ = u~u-~ + u j u - ~  + u'~u~,~. + u~u-~. 

-+- 1• k ((1 + ay) sin(2y) -- ay' cos 2 Y)7C (43) 

+ 2k ((1 + ay) cos(2y) + ay'  sin(2y) -- �89 cos 2 7)Y~Y~- 

Consequently (by (14)): 

Ab @ = --u~# u~# -- u~-~ u.~ -- u~# u~# -- u~'~u~-~ 

- -  u ~ u f l ~  - -  u ~ u ~ f l  - -  u ~ u ~ f l  - -  u ~ u - ~  (44) 
+ 2k ((1 + ay) sin 7 -- kaY ' cos 7) cos 7" Ab7 

-- 2 2k ((1 + ay) cos(2y) + ay' sin(27) -- �89 ay" cos 2 7)7.Y ~- 

Using (13) we may rewrite (44) as 

Ab@ = 2k((1 + ay)s iny  -- ~ayX ' cosy )  cosy-Aby 

-- 2 2k ((1 + ay) COS(2y) + ay' sin(27) -- kaY " COS 2 7)))'.Y~ 

- 2 (ua~u ~ + u~u ~ )  + u~(Lu)~ + u~(-iu)~ (45) 

- -  2R~-~u~u ~ + i ( n -  2)(A~-~u~u ~ -  A~#u~uB) . 
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Using (41) and (45) we may write (by the assumption (35) on the geometry 
of (M, 0)) 

2(u~t3u ~ + u~u ~)  < u~(Lu)~ + ug~u)~ 

+ 2k((l + ay)sin~ -- ~ayl ' cos ~) cos~" Ab~(Xo) (46) 

-- 2 2k ((1 + ay) cos(27) + a j  sin(27) -- kaY" cos 2 7) F(to) 

at x0. By (41) and (42) we have 

u~u~ + u-~u~ + 2k ((1 + ay) sin ~ -- kaY ' cos ~) cos y" ~'~ = 0 (47) 

at x0. Let  us contract  with u ~ in (47) so that  to rewrite (37) as 

2 kay'cos~,) 2 (48) 2(u~u ~ + u,~u ~)  > 2 k ((1 + ay) sin y -- 

at  x0. Let  v be a solut ion o f  (3) and u given by (25). The  estimates (40) and  
(48) lead to 

22((I + ay) sin 7 -- kay ' cos~) 2 < 221u=u" 

+ ,~k ((1 + ay) sin y -- kay ' cosy )cos~ ; .  Abe' 

- 2 2k ((1 + ay) cos(2~) + ay' sin(2~) -- kay " cos 2 y)F(to). 

Since y ' :  cos 2 ,, > 0 we obtain (after some simplifications) 

1 , 1 . , ~  ky,, cos2 7 (49) y +  i y  s inycos~  < sin~ - ~y l+ay "~" 

AS IYl < 1 at xo we have a + s i n v  >_ a y s i n v  + sin~, = (1 + ay)sin~, so that  
(49) becomes 

y - sin y _< ky" c~ - yr sin-; �9 cos 

and L e m m a  1 is completely proved. [ ]  

We shall need 

Lemma.  2. The function W : (-zc/2,rc/2)  ~ R given by 

W(t) = 2(2t  + sin(3t))/ lr  - 2sin t 
COS 2 t 

possesses the following properties: 
i) W(--Tr/2 + 0 )  = - 1 ,  q~(=/2 - -0 )  = 1; 

ii) W ~ C~ ~ C2((-rc/2,rc/2)); 
iii) W satisfies the O D E  

y + sin t cos t y '  - �89 cos 2 t y" = sin t .  (50) 

Proof Indeed (50) may  be written (y'/2 - y t a n t  - 1 /cos t ) '  = 0 so that  
y = (A(2t + sin(2t))/2 + 2 sin t + B ) / ( c o s  2 t), with A, B ~ 1~, etc. [ ]  

Let  h(t) = ~o(t) - ~ ( t )  and set b = sup h. We need to show that  

~(t) _< ~(t) (51) 

for any Itl < re/2. The p roof  is by contradict ion.  I f  (51) is false then b > 0. 
No te  that  h(Tr/2 - O) = -1  - 1/a < 0 and h(-~r/2 + O) = 1 - 1/a < 0 so 
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that b is attained at some to ~ (-n/2,n/2).  Next ~O(to) > - 1  (otherwise 
~o(t0) < - 1  yields b < - 1 -  ~P(t0) < 0, a contradiction). Set y = ~P + b. 
Then y satisfies the hypothesis of Lemma 1 so that (by Lemmae 1 and 2) 
~O(to) < sin to-s in  to cos to W'(to)+COS 2 to ~pn(to)/2 = ~(to), a contradiction. At 
this point we may prove (5). To this end, let xl, x2 ~ M so that 7(xl) = --n/2 
and 7(x2) = n/2. Let C : [0, 1] ~ M be a minimizing geodesic of  (M, go) so 
that C(0) = Xl and C(1) = x2 and denote by f(C) its (Riemannian) length. 
By (51) we have 

2 F(t) < 2k(1 + aW(t)) (52) 

for any it[ < n/2. Thus (as 7o = 0) 

IIV]2l[ 2 ~ ~k(1 q-- a~I / o ]y) 

everywhere on M. Then we may perform the following estimates 

V/-~kdo > X/c-~k:(C) = IldC/dtll dt 

fo fo ~ dc g(-aT, V~Oc(O dt 1 []df/dti] tlVyll at >>_ i aW(7(C(t)) ) 

= f , i 2  d, ' + L 
a-,/2 q'l +aV(t) .so --,,,/1 --a~P(t) ~ t  ~P(t)/dt ) 

= f'/2 ~ (2k-1'''74~, ~ (a~)k ( l + (--1)*) dt 
Jo , ~  

where (2k - 1)!! = 1 �9 3 . 5 . . .  (2k - 1) and (2k)!! = 2kk!. Finally 

~ ( 2 k -  1)l! f~12 v G d 0 > _ ~ +  (1 +(-1)k)a k 'I'(t)kdt-> ~ 
k=0 (2k) !! J0 

and (5) is proved. 

Remarks. 1) Let M be a strictly pseudoconvex CR manifold of  vanishing 
pseudohermitian torsion. Suitable contraction of  indices in (A.3) furnishes 

Ric0(X, Y) = Ric(X, Y) - �89 Y) + ~-~O(X)O(Y) (53) 

for any X, Y E T(M). Thus R i c ( X -  iJX, X + iYX) = Rico(X,X) + 
Rico(YX, J X ) +  IIXII 2 for any X E H(M). Consequently, if Rico (X, X) > 0 for 
any X E T(M) then R~  is positive semi-definite (while the converse does not 
follow from (53)). 

2) The problem of the existence of a solution of (3) is open. If  for instance 
M = S 2n+1 then (3) has no solution for k = 1 (i.e. there is no first degree 
harmonic polynomial H on R2(,+l) satisfying T(H) = 0). Next, all solutions 
of  

Abv = 22 V, 

T (v) = 0 
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are given as v = His2,+l where H(x,y)  = Zl<i<j<_n+l aij(xixj + YiYj), aij E ~,~ 
(and 22 = 4(n+l)). Also, for each (i,j) E {1 . . . . .  n+l}  2, i < j, the eigenfunction 
vii = nijls2,+~, where Hij = 2(xixj + YiYj), has supvij = 1 and inf vij = - 1  (i.e. 
vii is a solution of (3) with k = 2 and C = 1). 

3) The estimate (1) may be thought of as an estimate on 2k, k > 2. As 
such, (5) is sharper than (1) provided that 

n ~ l  (54) 
do < u Y nCo " 

However, among the odd dimensional spheres only S 3 and S 5 satisfy (54) (as 
M = S 2n+1 yields Co = n + 1, cf. [10]). 

Appendix 

Let (M, T1,0(M)) be a nondegenerate CR manifold and 0 a fixed contact 
1-form on M. Let T be the characteristic direction of (M, 0). Define Go by 
setting 

Go(X, Y) = (dO)(X, J Y )  

for any X, Y E H(M). Since 

T(M) = H(M) ~9 P,T (i .1) 

one may extend Go to a semi-Riemannian metric go on M by setting 

g o ( X , Y ) = G o ( X , Y ) ,  go (X ,T)=O,  g o ( T , T ) =  1 

for any X, Y E H(M). The Levi-Civita connection V ~ of (M, g0) and the 
Webster connection V of (M, 0) are related by 

V ~ = V +  ( l ~ o - - A )  | T + z |  (A.2) 

where ~o(X, Y) = go(X, JY) .  Also | denotes the symmetric product. Let 
R ~ R be the curvature tensor fields of V ~ V, respectively. A straightforward 
calculation based on (A.2) shows that 

R~ Y)Z  = R(X, Y )Z  - (KX  A K Y ) Z  + O(Z)S(X, Y) 

- go(S(X, Y), Z ) T  + 20(Z)(O A (9)(X, Y) (A.3) 

- 2g0((0 A (9)(X, Y ) , Z ) T  - l ~ o ( X ,  Y ) J Z .  

A word on the notation in (A.3). There S(X, Y) = (Vxz)Y - (Vyz)X. Also 
K = z+  1j  and (9 = z 2 + j z _  11, where I denotes the identical transformation. 
Finally (X A Y)Z  = g o ( Y , Z ) X -  go(X ,Z)Y  is the usual wedge product of 
two tangent vector fields on (M, go). Using (A.3) and the known symmetries 
(cf. (d) in [5], vol I, p, 198) of the Riemann-Christoffel tensor field of (M, g0) 
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we obtain 
go(R(X, Y)Z,  W) = go(R(W, Z) Y, X) 

+go((KX A K Y)Z,  W) - go((KW A KZ)  Y ,X)  

+O(Y)go(S(W, Z), X) - O(Z)go(S(X, Y), W) 
(A.4) 

+O(W)go(S(X, Y), Z) - O(X)go(S(W, Z), Y) 

+20(Y)go((O A (9)(W,Z),X) - 20(Z)go((O A (9)(X, Y), W) 

+20(W)go((O A O)(X, Y) ,Z)  - 20(X)go((O A (9)(W,Z), Y) 

for any tangent vector fields X, Y, Z ,  W on M. Next  (A.4) furnishes 

I R~# ~ = i(A~r -- A~,~cS~), 

R a / ~  = i ~ - ~ (A.5) (A~ h~x - A~ h~),/~ 

[eJ 0 = = 

where 

and 

W~ = h#~ A~,~ , W~ = hl~ A2y,~ 

= Ta)  

is the covariant  derivative o f  the pseudohermit ian torsion (with respect to the 
Webster connection). The first two identities in (A.5) lead to 

Ra/~,~ A 0 ~ = 2 i 0/~ A z~, 

~X~ A 0 F = 2 i 0~ A z/~ 

where z~ = h ~  z/~, ect. Finally (9) follows from (A.5) and the identity 

R(X, Y)T~ = 2(doJ~ - co~ A r Y)TIj. 
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