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from macrophages in the artery wall [7]. However, HDLs 
have additional activities, some that appear unrelated to 
their role in plasma cholesterol transport. 

HDLs possess antioxidant properties [8]. They also 
promote the maintenance of normal, endothelium-depen- 
dent vasoreactivity [9,10] and inhibit endothelial cell 
apoptosis in response to a number of stimuli [11-13]. 
HDLs have antithrombotic effects both in vitro and in 
vivo [14-16]. They help repair damaged endothelium by 
stimulating migration of adjacent healthy endothelial cells 
[17] and by promoting recruitment of endothelial progeni- 
tor cells from plasma [18oo]. Lastly--and relevant to the 
topic of this review--HDLs also have potent anti-inflam- 
matory properties. 

Introduction 
In many large-scale prospective studies, an inverse rela- 
tionship between the concentration of cholesterol in 
high-density lipoproteins (HDLs) and the development of 
premature coronary heart disease has been observed [1,2]. 
Furthermore, animal studies provide robust evidence that 
HDLs protect against the development of atherosclerosis 
[3-6], although the precise mechanism of this protection is 
uncertain. HDLs have several properties with the potential 
to inhibit development of atherosclerosis. The best known 
of these relates to their ability to promote cholesterol efflux 

Anti-inflammatory Properties of HDL 
In both in vitro and in vivo studies, anti-inflammatory 
properties of HDLs have been documented with native 
HDLs isolated from plasma and with reconstituted HDLs 
(rHDLs) containing a single apolipoprotein (apo) com- 
plexed with phospholipids. 

In vitro studies 
HDLs inhibit the cytokine-induced expression of vascular 
cell adhesion molecule-1 (VCAM-1), intercellular adhe- 
sion molecule-1 (ICAM-1), and E-selectin in endothelial 
cells growing in tissue culture in a concentration-depen- 
dent manner [19,20]. One process responsible for this 
inhibition involves an HDL-mediated inhibition of endo- 
thelial cell sphingosine kinase [21]. The HDL-mediated 
inhibition of VCAM-1 and E-selectin protein expression 
is paralleled by significant reductions in their steady-state 
mRNA levels [19], suggesting that the lipoproteins may 
suppress gene transcription. The extent to which HDLs 
inhibit endothelial cell VCAM-1 expression varies mark- 
edly with HDLs isolated from different people (Fig. 1) 
[22]. Why this variability exists is not known. 

The anti-inflammatory properties of HDLs in vitro 
are apparent with native HDLs isolated from plasma 



494 Lipid Abnormalities and Cardiovascular Prevention 

Figure 1. Inhibition of cytokine-induced endothelial cell vascular 
cell adhesion molecule-1 (VCAM-1) expression by high-density 
lipoprotein (HDL) isolated from six human subjects [22], Human 
umbilical vein endothelial cells were preincubated for 1 hour with 
HDLs isolated from each of six subjects before being activated with 
tumor necrosis factor (TNF)-~ and incubated for another 4.5 hours. 
Expression of VCAM-1 was quantified by flow cytometry. Values 
are expressed relative to the samples that were preincubated in the 
absence of HDL before being activated with TNF-ct. 

and with rHDLs consisting of complexes of apoA-I (the 
main protein constituent of HDLs) and phosphatidylcho- 
line. The effects are dependent on the presence [23] and 
composition [24] of phospholipids in the particles. Along 
with inhibiting adhesion molecules, HDLs also inhibit the 
binding of monocytes [25] and neutrophils [26] to endo- 
thelial cells growing in culture. 

The HDL-mediated inhibition of adhesion molecule 
expression in cytokine-activated endothelial cells grow- 
ing in tissue culture can be achieved by pre-incubating 
the cells with the HDLs. HDLs do not have to be pres- 
ent at the time they are activated by tumor necrosis 
factor (TNF)-(~ [27], indicating that the inhibition is 
not the consequence of HDLs binding to and interfer- 
ing with the activity of TNF-~. Indeed, this inhibition 
persists even if the HDLs are removed from the cells up 
to 8 hours before TNF-c~ activation [27]. This suggests 
that HDLs have the capacity to modify endothelial cells 
in such a way as to make them resistant to subsequent 
cytokine activation. 

Mechanism by which HDLs inhibit 
endothelial inflammation 
Evidence exists that HDLs inhibit the nuclear fac- 
tor-kappa B (NF-~cB) signaling pathway. Xia et al. [21] 
reported that HDLs reduce the nuclear translocation of 
NF-~B in activated endothelial cells by about 50%. The 
results of this study indicated that the reduction in NF-~B 
translocation was secondary to an inhibition of endothe- 
lial cell sphingosine kinase and, thus, a reduction in the 
generation of sphingosine-l-phosphate, which is known 
to promote nuclear translocation of NF-~B. Indeed, the 
inhibition of NF-~cB translocation by HDLs was over- 

come by adding exogenous sphingosine-l-phosphate to 
the incubation mixture ]21]. 

Park et al. [28], who found that pretreatment of endo- 
thelial cells with HDLs inhibited the DNA binding of both 
NF-~B and the transcription factor, activator protein-i, 
confirmed the ability of HDLs to inhibit activation of NF- 
~B. These investigators also suggested that HDLs may act 
by modulating cellular kinase activity, although the mech- 
anism was not elucidated. In addition, Schmidt et al. [29] 
found that HDL-associated sphingosylphosphorylcholine 
and lysosulfatide initiate the signaling cascade-involving 
activation of phosphoinositide 3-kinase and Akt, with a 
consequent attenuation of TNF-~-induced E-selectin 
gene expression. Because this reduction strongly cor- 
relates with repression in nuclear levels of NF-~cB, these 
authors concluded that NF-~B is likely a direct or second- 
ary downstream target of phosphorylated Akt. However, 
it should be noted that the precise mechanism by which 
phosphorylated Akt mediates cytosolic retention of 
NF-~B is not yet known. 

In vivo studies 
There is growing evidence that the anti-inflammatory 
properties of HDLs also operate in vivo, although, until 
recently, this has been demonstrated mainly in a setting 
of hypercholesterolemia and atherosclerosis. For example, 
intravenous infusion of rHDLs reduces the in vivo expres- 
sion of endothelial cell adhesion molecules induced by 
insertion of carotid periarterial cuffs in cholesterol-fed, 
apoE knockout mice [30]. In another study of apoE 
knockout mice, the increase in HDL concentration that 
accompanied overexpression of the human apoA-I gene 
reduced macrophage accumulation in the aortic root 
by more than threefold [31]. This was associated with 
a reduced in vivo oxidation of ]3-very-low-density lipo- 
protein, lower ICAM-1 and VCAM-1 expression, and 
diminished ex vivo leukocyte adhesion. In another study 
conducted in rabbits in which aortic atherosclerosis was 
induced by a balloon injury followed by 17 weeks of a 
high-cholesterol diet, as little as two intravenous injec- 
tions of relatively small amounts of HDL given during the 
last week of the study markedly inhibited the extent of 
inflammation in the aortic wall [32oo]. 

Several in vivo studies have also documented the 
ability of HDLs to inhibit acute vascular inflammation 
in the absence of hypercholesterolemia and atheroscle- 
rosis. For example, in studies of experimental stroke in 
rats, pretreatment with rHDLs significantly and sub- 
stantially reduced the brain necrotic area in a process 
possibly related to an rHDL-induced reduction in reac- 
tive oxygen species levels [33eo]. Furthermore, in a study 
of hemorrhagic shock in rats, the resulting multiple 
organ dysfunction syndrome was largely abolished by a 
single injection of human HDLs given 90 minutes after 
the hemorrhage and 1 minute before resuscitation [34]. 
In that model, injection of HDLs prevented the severe 
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disruption of tissue architecture and extensive cellular 
infiltration into the affected tissues. In a porcine model, 
injection of rHDLs has also been shown to inhibit the 
development of a local inflammatory infiltrate follow- 
ing the subcutaneous administration of interleukin-1 
[35]. In other studies, Levkau et al. [36] reported that 
infusion of human HDLs significantly increased the 
myocardial uptake of the perfusion tracer 99mTc-MIBI. 
This increase in myocardial perfusion was abolished in 
endothelial nitric oxide (NO) synthase-deficient mice. 
It was concluded that HDLs exert direct NO-mediated 
vasodilatory effects on the coronary circulation; thus, 
the ability of HDLs to increase the NO activity in the 
coronary arteries may contribute to a reduction in arte- 
rial inflammation at the site of atheroma formation. 

A potential role of HDL in combating the tissue 
damage arising from generalized states of inflammation 
has also been reported. McDonald et al. [37] found that 
pretreatment of rats with rHDLs greatly attenuated the 
multi-organ tissue injury and renal dysfunction result- 
ing from endotoxic shock. Treatment with rHDLs had 
no effect on the hypotension and increase in circulating 
levels of TNF-cx induced by lipopolysaccharide. However, 
they did decrease the expression of P-selectin and ICAM- 
1, suggesting that in the setting of endotoxic shock, the 
anti-inflammatory properties of HDLs result from direct 
inhibition of adhesion molecule expression. The ability of 
HDLs to bind and neutralize lipopolysaccharide, inhibit 
lipid peroxidation, and stimulate endothelial NO synthase 
are also likely to contribute to these beneficial effects. 

Infusion of rHDLs is also beneficial in models of 
gastrointestinal inflammation. Cuzzocrea et al. [38] 
administered rHDLs to rats as either an 80-mg/kg infusion 
30 minutes prior to splanchnic artery occlusion shock or as 
daily 40-mg/kg intravenous infusions in the setting of dini- 
trobenzene sulfonic acid-induced colitis. In each model, 
rHDLs reduced the infiltration of inflammatory cells 
into the vessel wall and the degree of histological injury. 
The infusions also delayed the onset of clinical signs. In 
another study of acute intestinal inflammation, Vowinkel 
et al. [39] observed that apoA-IV, the third most abundant 
apolipoprotein in HDL, had profound anti-inflamma- 
tory properties in a mouse model of acute colitis. In this 
study, daily intraperitoneal injections of apoA-IV delayed 
the onset and reduced the severity and extent of colonic 
inflammation. This was associated with lower scores of 
clinical activity and less tissue myeloperoxidase activ- 
ity. Studies of the colonic microvasculature revealed that 
administration of apoA-IV inhibited the up-regulation of 
P-selectin and subsequent interactions between leukocytes 
and platelets. Demonstrating that acute colitis follow- 
ing administration of dextran sulfate sodium was much 
more severe in apoA-IV knockout mice than in wild-type 
mice--and that this was reversed in the apoA-IV-deficient 
mice by injecting exogenous apoA-IV--provided further 
evidence of an anti-inflammatory role of apoA-IV [39]. 

In other in vivo studies, Nicholls et al. [40.o] reported 
that infusing rHDLs containing 25-rag apoA-I into nor- 
mocholesterolemic rabbits on three consecutive days 
markedly inhibited the infiltration of neutrophils into the 
carotid arterial wall in response to application of a nonoc- 
clusive Silastic (Dow Corning Corp., Midland, Michigan) 
periarterial collar. In this study, apoA-I also inhibited the 
collar-induced increase in reactive oxygen species in the 
vascular wall, as well as expression of adhesion molecules 
and chemokines on the endothelial surface. Because this 
benefit was seen in animals with low systemic cholesterol 
levels, the effects of HDLs in this setting were determined 
unlikely to be secondary to enhanced cholesterol efflux. 

In subsequent studies in which carotid arteries were 
examined 24 hours after insertion of the collar, intravenous 
infusions of lipid-free apoA-I were found to inhibit acute 
arterial inflammation as effectively as rHDLs, as judged by 
infiltration of neutrophils into the vessel wall and expres- 
sion of VCAM-1, ICAM-1, and myeloperoxidase [41]. 
Furthermore, these anti-inflammatory effects were maxi- 
mal following a single intravenous injection of lipid-free 
apoA-I, whether given 24 hours before or at the time of col- 
lar insertion [41]. The anti-inflammatory effects of apoA-I 
were apparent even when it was administered several hours 
after insertion of the collar (Fig. 2). Perhaps an even more 
striking observation from these studies was that the anti- 
inflammatory effects of apoA-I were preserved when it was 
administered at a dose as low as 2 mg/kg, an amount that 
would have increased the plasma apoA-I pool at the time 
of injection by no more than 10% [41]. Therefore, it fol- 
lows that the observed anti-inflammatory effects of apoA-I 
cannot be explained simply in terms of an increase in the 
concentration of plasma HDL. Rather, it indicates that 
when lipid-free apoA-I is infused into animals, it assumes 
anti-inflammatory properties that are much greater than 
those of the bulk, endogenous HDL. 

It is interesting to note that lipid-free apoA-I does 
not inhibit endothelial cell inflammation when added to 
incubations in vitro [23], suggesting that the apoA-I was 
incorporated in vivo into particles with a high degree of 
anti-inflammatory activity. Presumably, in the in vivo set- 
ting, apoA-I becomes rapidly lipidated after being injected 
into the animals to form particles that may initially 
resemble the discoidal rHDLs, which have been shown to 
be highly anti-inflammatory when added in vitro to incu- 
bations of endothelial cells. 

Another potentially protective effect of HDLs relates 
to their role in promoting endothelial repair. Disruption of 
the endothelial monolayer integrity is an important con- 
tributing factor in vascular disorders, and its repair plays 
a fundamental role in the ultimate outcome. HDLs can 
enhance endothelial repair by at least two distinct mecha- 
nisms. First, in studies conducted in vitro in a model of 
endothelial injury, HDLs were shown to stimulate endo- 
thelial cell migration in a NO-independent manner via 
scavenger receptor B type I (SR-BI)-mediated activation 
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Figure 2. Effects of infusing lipid-free apolipoprotein (apo) A-1 on vascular inflammation in rabbits. Normocholesterolemic New Zealand 
White rabbits were infused with either saline or 1, 2, or 8 mg/kg of lipid-free apoA-I (n -- 5/group) at the time of a nonocclusive collar inser- 
tion to induce vascular inflammation in a carotid artery. The animals were sacrificed 24 hours after collar insertion. Carotid arteries were 
isolated and expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were quantitated 
[41]; the results are expressed as the mean + standard errors of the mean. 

of Rac GTPase [17]. This process depends on the activa- 
tion of Src kinases, phosphatidylinositol 3-kinase, and 
p44/42 mitogen-activated protein kinases. Paralleling the 
in vitro findings, re-endothelialization of carotid arteries 
after perivascular electric injury was blunted in apoA-I 
knockout mice; reconstitution of apoA-I expression in 
these animals promoted restoration of the endothelium 
but only in mice expressing SR-B1 [17]. 

Other studies conducted in mice have shown that 
endothelial progenitor cell engraftment into damaged 
endothelium is also enhanced by HDL infusion [181o]. 
The number of endothelial progenitor cells was signifi- 
cantly increased in the aortic endothelium after damage 
induced by lipopolysaccharide and also in the aortic 
endothelium of apoE-deficient (-/-) mice. When apoE(-/-) 
mice were given a single intravenous infusion of a rela- 
tively small amount of rHDLs containing human apoA-I 
complexed with phospholipids, the number of endothe- 
lial progenitor cells in the aortic endothelium more than 
doubled. These findings suggest an additional protective 
function of HDLs in promoting endothelial repair. 

HDLs and Inflammation in Humans 
In humans, a relationship between plasma concentrations 
of HDL cholesterol and soluble cell adhesion molecules 
has been reported. In a study of subjects with a wide 
range of HDL cholesterol concentrations, the plasma lev- 
els of soluble ICAM-1 (slCAM-1) and soluble E-selectin 
(sE-selectin) (but not soluble VCAM-1) were significantly 
higher in subjects with low HDL levels compared with 
subjects with average or high HDL levels [42]. Further- 
more, the concentration of HDL cholesterol correlated 
inversely with both slCAM-1 and sE-selectin in the low 

HDL subjects, but not in those with normal or elevated 
HDL levels. It was also reported that the fenofibrate 
treatment-induced increase in HDL levels is associated 
with a significant reduction in the plasma concentrations 
of slCAM-1 and sE-selectin [42]. However, it is unclear 
whether the reduction in slCAM-1 and sE-selectin results 
from the increased HDL level or due to a direct anti- 
inflammatory effect of the fibrate on the artery wall. 

Another human study investigated the influence of 
altering the fatty acid composition of a high-fat meal 
on the anti-inflammatory properties of HDLs [43]. In 
this study, 14 healthy human subjects consumed, on 
two occasions, an isocaloric meal enriched with either a 
polyunsaturated or saturated fat. The effects of postpran- 
dial HDL on endothelial cell expression of ICAM-1 and 
VCAM-1 were determined. HDLs collected 6 hours after 
the saturated fat meal were significantly less effective than 
HDLs isolated from fasting plasma in terms of their abil- 
ity to inhibit expression of both ICAM-1 and VCAM-1 in 
activated endothelial cells, whereas HDL collected 6 hours 
after the polyunsaturated fat meal had an inhibitory activ- 
ity significantly greater than that of HDL collected from 
fasting plasma. This study concluded that the anti-inflam- 
matory potential of HDL is reduced by consumption of 
a meal containing saturated fat but enhanced following 
consumption of polyunsaturated fat [43]. 

Infusion of human apoA-I into human recipients 
results in LDLs becoming resistant to oxidation and being 
less effective in inducing monocyte chemotactic activity in 
a human artery wall co-culture [44]. There is also circum- 
stantial evidence that HDLs have direct anti-inflammatory 
effects in vivo in humans. In one study, a single intra- 
venous infusion of rHDLs into hypercholesterolemic 
humans normalized endothelium-dependent vasodilation, 
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possibly by increasing NO bioavailability [9]. In a second 
human study, a single injection of rHDLs corrected the 
endothelial dysfunction associated with low HDL levels 
in ATP-binding cassette-A1 heterozygotes [10]. 

In another human study, people with coronary artery 
disease received five weekly intravenous injections of a 
preparation of rHDLs containing a variant of apoA-I 
(apoA-I Milano) complexed with a phospholipid [451. This 
resulted in a significant reduction in the atheroma burden 
in the coronary arteries, as assessed by intravascular ultra- 
sound. Although the study included only a small number 
of subjects, the result was consistent with a profound 
protective action of HDLs via a mechanism that may well 
have included an inhibition of vascular inflammation. 

strategies to combat the vascular inflammation that accom- 
panies acute coronary syndromes and acute ischemic stroke 
may assist in possibly exploiting these findings. 
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