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Introduction 
Over the past several decades, epidemiologic studies 
have identified low-density lipoprotein (LDL) cholesterol 
(LDL-C) and high-density lipoprotein (HDL) cholesterol 
(HDL-C) as independent risk factors that modulate car- 
diovascular disease (CVD) risk [1,2]. Clinical trials of 
LDL-decreasing drugs have definitively established that 
reductions in LDL levels are associated with a 25% to 
45% reduction in clinical events [3-7]. However, despite 
lowered LDL levels, many high-risk patients continue to 
have cardiac events. This residual cardiovascular risk has 
been the focus of a great deal of interest. Because low HDL 

is often present in high-risk CVD patients [8], clinical and 
research programs have focused on using dietary, pharma- 
cologic, or genetic manipulations to increase plasma HDL 
levels as a potential supplement to current statin therapy to 
further reduce residual cardiovascular risk. 

Several lines of evidence have suggested that increasing 
HDL would decrease the risk of CVD. In addition to epi- 
demiologic studies, several animal studies including HDL 
infusions in the form of apolipoprotein (apo)A-I/phos- 
pholipids complexes were associated with atherosclerosis 
regression in cholesterol-fed rabbits [9]. Increased plasma 
HDL levels associated with overexpression of both human 
apoA-I in transgenic mice [10,11] and lecithin-cholesterol 
acyltransferase (LCAT) in transgenic rabbits were also 
associated with decreased atherosclerosis [12]. Although 
limited in number, human clinical trials have supported 
data that increasing HDL may decrease clinical events. 
In acute coronary syndrome patients, five weekly infu- 
sions of apoA-I Milano were associated with reduction of 
total atheroma volume by 4.2% in 36 patients compared 
with 11 controls using intravascular ultrasound (IVUS) 
to quantitate coronary atheroma [13]. In the ARBITER 
3 trial of 253 patients, the addition of niacin--which 
increased HDL by approximately 20%--to LDL therapy 
in combination with statins (n = 61) resulted in regression 
of carotid intimal-medial thickness (clMT) by 0.0225 mm 
(n = 125) and 0.037 mm (n = 67) at 12 and 24 months, 
respectively [14]. The combined results of the epidemio- 
logic, animal, and clinical studies provide support for the 
concept that raising HDL will be an effective additional 
therapeutic target for CVD prevention. 

Overview of ApoA-I and 
Cholesterol Metabolism 
Lipoprotein metabolism consists of two interconnected 
cascades: apoB-containing lipoproteins and apoA-I-con- 
taining lipoproteins (HDL). The apoB cascade includes 
both the chylomicron-chylomicron remnant pathway, 
which transports dietary lipids from the intestine to 
peripheral cells and liver, and the very-low-, intermedi- 
ate-, low-density lipoprotein (VLDL-IDL-LDL) pathway, 
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Figure 1. Lipoprotein metabolism consists of two interconnected cascades: apolipoprotein (apo)B-containing lipoproteins and apoAI- 
containing lipoproteins (high-density lipoprotein [HDL]). The apoB cascade includes the very-low-, intermediate-, low-density lipoprotein 
(VLDL-IDL-LDL) pathway. ApoA-I is synthesized in both the liver and intestine and is secreted as lipid-poor apoA-I. The HDL cascade 
includes 1) ATP binding cassette A1 (ABCA1) transporter-mediated lipidation of poorly lipidated apoA-I secreted from the liver to form 
nascent, pre-~ HDL; 2) ABCAl-mediated cholesterol efflux from cholesterol-filled macrophages to lipid-poor apoA-I to form pre-~ HDL; 3) 
conversion of pre-[~ HDL to mature 0~-HDL by lecithin-cholesterol acyltransferase (LCAT); 4) scavenger receptor class B type I (SR-BI) and 
ATP binding cassette G1 (ABCG1) transporter-mediated cholesterol efflux to mature oc-HDL; 5) HDL cholesterol return to the liver by transfer 
of cholesterol esters to the VLDL-IDL-LDL lipoproteins via cholesteryl ester transfer protein (CETP), with uptake by the liver via the LDL 
receptor; 6) HDL cholesterol return to the liver by selective uptake of cholesteryl esters (CE) by the hepatic SR-BI receptor; 7) HDL remodel- 
ing by hepatic lipase (HL), phospbolipid transfer protein (PLTP), and endothelial lipase (EL) to generate lipid-poor and pre-~ HDL following 
hepatic uptake of cholesterol via the SR-BI receptor. FC--free cholesterol; LPL--lipoprotein lipase; TG--triglycerides. 

which transports hepatic lipids to peripheral cells and 
returns cholesterol to the liver via the LDL receptor 
(Fig. 1). Major advances in our understanding of HDL 
and cholesterol metabolism have been made in the past 
several years. ApoA-I, the major structural apolipoprotein 
of HDL, is synthesized and secreted by the liver and intes- 
tine as a lipid-poor apolipoprotein. The discovery of the 
ATP binding cassette A1 (ABCA1) transporter provided a 
major breakthrough in understanding the mechanism by 
which apoA-I lipidation forms HDL as well as HDL's abil- 
ity to efflux cellular cholesterol. The ABCA1 transporter 
was identified as the molecular defect in Tangier disease 
[15-21], a rare genetic dyslipoproteinemia characterized 
by orange tonsils and low HDL caused by accelerated 
lipid-poor HDL catabolism resulting from decreased 
apoA-I lipidation secondary to ABCA1 transporter muta- 
tions [22]. The discovery of the ABCA1 transporter solved 
the enigma of which key receptor pathway regulates cel- 
lular cholesterol efflux to HDL. Regulation of cholesterol 
efflux by the ABCA1 pathway plays a pivotal role in cho- 
lesterol efflux from the liver and the intestine and, thus, 

is a major determinant of the HDL plasma level. The 
ABCA1 pathway also provided key insight into the mech- 
anism for cholesterol efflux from the cholesterol-loaded 
macrophage and reverse cholesterol transport. Over the 
past four decades, the major mechanism by which HDL 
was proposed to decrease CVD was reverse cholesterol 
transport, a process in which HDL carries excess cho- 
lesterol from peripheral cells, including foam cells in the 
coronary artery, back to the liver [23]. 

Recently, the underlying molecular mechanism by 
which apoA-I and the ABCA1 transporter facilitate the 
removal of cellular cholesterol has been addressed. Cell 
culture studies have established that the ABCA1 trans- 
porter and apoA-I recycle from the cell membrane to the 
late endocytic compartment; this appears to be critical in 
intracellular cholesterol's movement to the cell surface for 
cholesterol efflux to lipid-poor apoA-I [24,25]. Follow- 
ing cholesterol efflux, lipid-poor apoA-I is converted to 
nascent or pre-]3 HDL, which matures into the spherical 
0~-HDL following the esterification of free cholesterol to 
cholesteryl esters by LCAT (Fig. 1). 
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In the initial in vitro studies analyzing cellular efflux, 
the major apolipoprotein acceptor for ABCAl-medi- 
ated cholesterol efflux was poorly lipidated apoA-I [26]; 
however, detailed analysis of several other plasma apo- 
lipoproteins, including apoA-I, apoC-I, apoC-III, and 
apoE, also demonstrated facilitation of excess cellular 
cholesterol removal [27]. The common structural feature 
of these apolipoproteins--which provides the basis for 
lipid binding--is the amphipathic helical structure (one 
hydrophilic and one hydrophobic surface [28,29]), which 
was initially recognized following the determination of 
the amino acid sequences of apoA-I [30], apoA-II [31], 
and apoC-III [32]. 

In addition to the ABCA1 transporter pathway, a 
second pathway using mature ct-HDL as the ligand and 
either of two receptors--scavenger-receptor class B 
type I (SR-BI) or the ATP binding cassette G1 (ABCG1) 
transporter--has also been shown to modulate efflux 
of excess cellular cholesterol. SR-BI has the capacity to 
transport cholesterol both into and out of the cell depend- 
ing on the decreased or increased intracellular cholesterol 
level, respectively [33,34[. The increased atherosclerosis 
observed following the exchange of bone marrow cells 
derived from SR-BI knockout mice to control mice by 
bone marrow transplantation supported a physiological 
role of SR-BI in the efflux of cellular cholesterol from vas- 
cular macrophages, thereby preventing the development 
of diet-induced atherosclerosis in the mice model [35]. 

Recently, ct-HDL has been also shown to bind to a 
second transporter, ABCG1, which modulates cholesterol 
efflux from cholesterol-loaded macrophages [36,37]. In 
addition to normal ~-HDL, the large HDL isolated from 
cholesteryl ester transfer protein (CETP)-deficient patients 
binds to the ABCG1 transporter and mediates cholesterol 
efflux [38.]. An increased level of LCAT as well as apoE 
present on the large HDL particles that are isolated from 
CETP-deficient patients have been reported to markedly 
increase the cholesterol efflux from cholesterol-loaded 
macrophages. The effect on experimental atherosclerosis 
in control animals following bone marrow transplanta- 
tion with cells derived from ABCG1 transporter knockout 
mice is still controversial. In one report, the atheroscle- 
rosis was decreased [39], whereas it was increased in a 
second report [40]. 

The cellular levels of the ABCA1 and ABCG1 trans- 
porters are major determinants regulating cholesterol 
efflux. The expression level of the ABCA1 and ABCG1 
transporter genes plays a key role in determining intra- 
cellular cholesterol levels. The expression of both the 
ABCA1 and ABCG1 transporter genes is enhanced by 
increased intracellular oxysterols concentrations via the 
liver X receptor (LXR) pathway. Excess intracellular 
cholesterol is converted to oxysterols that stimulate the 
LXR pathway; LXR binds to the LXR response elements 
(LXREs) in the ABCA1 and ABCG1 promoters, result- 
ing in increased ABCA1 and ABCG1 gene expression 

[41-45]. Enhanced expression of the ABCA1 and ABCG1 
transporters increases intracellular cholesterol efflux 
to lipid-poor apoA-I to form pre-J3 HDL and ~-HDL, 
respectively. Thus, the overall effect is to decrease the 
cholesterol content of cholesterol-loaded cells by stimula- 
tion of the LXR pathway and upregulation of the ABCA1 
and ABCG1 transporters. 

The cholesterol in plasma HDL derived from the 
arterial wall is transported to the liver by two pathways 
(Fig. 1) [46,47]. The first involves the exchange of cho- 
lesteryl esters within HDL with the apoB-containing 
lipoproteins VLDL-IDL-LDL by CETP. This cholesterol 
ester-triglyceride exchange will increase the cholesterol 
and triglyceride content of the apoB-containing lipopro- 
teins and HDL, respectively. The cholesterol exchanged 
into the apoB-containing lipoproteins will be transferred 
to the liver following interaction of the apoB-containing 
lipoproteins with the LDL receptor. 

The second pathway involves the direct delivery of the 
HDL-C to the liver following interaction with the SR-BI 
receptor. The hepatic transfer of HDL-C via the SR-BI 
receptor involves selective uptake of the lipid component 
with virtually no HDL particle degradation. Associated 
with the delivery of cholesterol to the liver, HDL under- 
goes remodeling by hepatic lipase, phospholipid transfer 
protein, and endothelial lipase with regeneration of lipid- 
poor HDL, pre-]3 HDL, and poorly lipidated ~x-HDL 
[48-50]. The lipid-poor HDL can once again bind to the 
ABCA1 transporter, allowing the cholesterol cycle from 
the periphery to the liver to continue (Fig. 1). 

Overview of the Role of HDL in Protection 
Against CVD 
Several major mechanisms by which HDL protects against 
the development of CVD have now been identified. As 
outlined above, HDL-mediated efflux of cholesterol from 
cholesterol-loaded macrophages is a well-established anti- 
atherogenic function of HDL. 

A second important mechanism by which HDL may 
protect against CVD is the reduction of inflammation 
through the selective decrease of endothelial cell adhesion 
molecules that facilitate the binding of mononuclear cells 
to the vessel wall and promote lesion development. In 
vitro studies using cultured endothelial cells demonstrated 
a marked reduction in vascular cell adhesion molecule-1 
(VCAM-1) and intercellular adhesion molecule-1 (ICAM- 
1) following incubation with HDL or reconstituted HDL 
[51]. An in vivo rabbit model using a carotid artery cuff 
substantiated the reduction in inflammatory cells in the 
vessel wall following an infusion of reconstituted HDL or 
apoA-I before, at the time of cuff application, or for a few 
hours following cuff placement [52,53]. HDL may also 
decrease atherosclerosis by protecting LDL from oxida- 
tion. Oxidized or modified LDL, unlike normal LDL, is 
readily taken up by the scavenger receptor SR-A or CD36 
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on macrophages, resulting in cholesteryl ester accumula- 
tion with foam cell formation. The cholesterol-loaded 
react,phage secretes several inflammatory cytokines that 
stimulate monocyte chemotactic protein-1 (MCP-1) as well 
as endothelial cell adhesion molecules. Oxidized lipids are 
transferred to HDL from LDL and may be hydrolyzed by 
HDL paraoxonase and PAF acetylhydrolase [54,55]. 

HDL has been reported to have a number of other 
important effects on endothelial cells. In addition to 
reducing adhesion molecules, HDL and reconstituted 
HDL increase nitric oxide production by SR-BI-medi- 
ated stimulation of the endothelial nitric oxide synthase 
(eNOS) pathway [56], increase endothelial precursor cell 
levels in the plasma and at the site of injury [57], and 
decrease endothelial cell apoptosis [58]. 

Reports from experimental animal models that HDL 
as well as apoA-I Milan,  can reduce infarct size suggest 
other potential important clinical effects of HDL [59,60.]. 
(~-HDL can also function as a transport vesicle for a num- 
ber of different proteins identified by proteomic analyses 
that may ultimately be shown to have several important 
physiological functions [61]. 

Future Approaches for Increasing HDL and 
Protection Against Atherosclerosis 
Based on current information, two separate conceptual 
approaches--acute and chronic HDL therapy--are under 
development to raise HDL and potentially decrease clini- 
cal events [62]. Acute HDL therapy is directed toward 
acutely increasing lipid-poor, nascent, pre-13 HDL by 
infusions in acute coronary syndrome patients at high 
risk for repeated clinical events. The underlying hope is 
that HDL infusions will reduce the number of vulnerable 
plaques that rupture and result in acute cardiac events. 
The first clinical data to suggest that infusions of lipid 
poor apoA-I would be effective in decreasing athero- 
sclerosis were provided by the apoA-I Milan ,  infusion 
study, in which patients with the acute coronary syn- 
drome were given five weekly infusions of either saline 
or apoA-I Milano/phospholipid complexes; the coronary 
atherosclerosis was quantitated by IVUS [13] as outlined 
above. The potential to significantly reduce atherosclero- 
sis within weeks rather than months led to the concept 
of "acute HDL infusion therapy," in which high-risk 
acute coronary syndrome patients would receive weekly 
HDL infusion for a short period of time (6-8 weeks) to 
acutely decrease atherosclerosis and potentially decrease 
recurrent cardiac events. Additional approaches for 
acute HDL therapy under development include infu- 
sion of synthetic apoA-I mimetic peptides based on 
the amphipathic structure of apoA-I and reinfusion of 
autologous delipidated HDL. Further detailed clinical 
trial data will now be required to definitively establish 
whether acute HDL infusion therapy will protect against 
cardiovascular events. 

A second approach to HDL therapy is the development 
of oral agents that significantly increase plasma HDL 
and can be used for a long or indefinite period of time. 
Currently, available oral drugs to increase HDL include 
statins, fibrates, and niacin. Until recently, the most 
promising new approach to significantly raise HDL was 
CETP inhibition. CETP inhibitors both increase HDL 
and reduce LDL. As previously outlined, CETP mediates 
exchange of cholesteryl esters for triglycerides between 
HDL and the apoB-containing lipoproteins, VLDL-IDL- 
LDL. The efficacy of CETP inhibition as an approach to 
increase HDL has been controversial because patients with 
complete CETP deficiency have been reported to be both 
protected against or at an increased risk for atherosclero- 
sis development [63,64]. Because of the small number of 
patients with complete CETP deficiency, it has been dif- 
ficult to make a definitive conclusion regarding the risk or 
benefit of CETP inhibition on CVD. 

Studies with the chemical oral CETP inhibitor, 
JTT-705, administered to cholesterol-fed rabbits led to 
approximately a two-fold increase in HDL-C, a 50% 
decrease in non-HDL-C, and a 70% decrease in ath- 
erosclerosis [65]. A second study in which markedly 
hypercholesterolemic rabbits were fed the JTT-705 
inhibitor was not associated with decreased atheroscle- 
rosis, presumably due to the marked hyperlipidemia and 
atherosclerosis present in these animals [66]. A second 
oral CETP inhibitor, torcetrapib, was associated with a 
three-fold increase in HDL-C levels, with no change in 
non-HDL-C and a 60% reduction in aortic atherosclero- 
sis in cholesterol-fed rabbits [67]. Combined, these results 
suggest that increasing HDL by CETP inhibition would 
be anticipated to reduce coronary atherosclerosis and 
decrease cardiac events in high-risk patients with CVD. 

Extensive clinical data on the changes in the plasma 
lipoproteins with CETP inhibitors are now available. 
Initial human studies with JTT-705 were performed in 
198 healthy, mildly hyperlipidemic subjects in a 4-week 
phase II trial at doses of 300, 600, and 900 mg/d. At the 
900-mg/d dose, CETP activity decreased 37%, HDL-C 
increased 34%, and LDL-C decreased 7% [68]. Exten- 
sive clinical data are now available with the torcetrapib 
CETP inhibitor. Torcetrapib, over the dose range of 10 
to 240 mg/d, increased HDL and decreased LDL by 10% 
to 90% and 10% to 40%, respectively [69*]. In the ini- 
tial phase II studies, there was a 2.2 mm Hg increase in 
systolic blood pressure with the torcetrapib 60-mg dose, 
and, as the clinical experience with torcetrapib continued, 
the systolic blood pressure was shown to increase by 4 to 
5 mm Hg [70]. Analysis of 10 phase II studies revealed 
that approximately 4% of the patients who were treated 
with the torcetrapib plus atorvastatin combination had a 
greater than 15 mm Hg increase in blood pressure [70]. 
These results suggest that there was a subgroup of people 
who appeared to be more sensitive to the increased blood 
pressure effect of torcetrapib. 
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The phase III torcetrapib program included both imag- 
ing and morbidity and mortality trials to evaluate the effect 
of atorvastatin alone compared with atorvastatin plus 
torcetrapib (60 mg) on safety and vascular disease events. 
The imaging trials included a IVUS (ILLUSTRATE) trial 
(in acute coronary syndrome patients), and two cIMT 
trials (RADIANCE I in familial hypercholesterolemic 
patients, and RADIANCE II in mixed hyperlipidemic 
patients). As reported in the IVUS - ILLUSTRATE trial 
[71.], as well as the cIMT RADIANCE I and II trials 
[72o,73o], atherosclerosis was not decreased by either 
IVUS or c lMT methodology using the combination of 
torcetrapib plus atorvastatin compared with atorvastatin 
alone; however, there was a significant increase in HDL 
and reduction in LDL. In the ILLUMINATE morbidity 
and mortality study, 15,000 patients were randomized to 
atorvastatin or torcetrapib plus atorvastatin. However, in 
December 2006, the ILLUMINATE trial was terminated 
due to increased deaths and vascular events in the torce- 
trapib plus atorvastatin arm of the trial. The increased 
toxicity associated with torcetrapib has raised the critical 
question as to whether the toxicity is due to CETP inhibi- 
tion or an off-target torcetrapib toxicity. It is important 
to note that torcetrapib is able to raise blood pressure in 
both the mouse and rat, neither of which expresses CETP; 
therefore, the increase in blood pressure is independent of 
CETP inhibition. Furthermore, the increase in blood pres- 
sure may not be the potential major factor in the toxicity 
of torcetrapib; rather it may represent a biomarker for 
a more systemic vascular toxicity leading to endothelial 
dysfunction, thrombosis, or some other form of vascular 
injury. A more definitive conclusion regarding the reason 
for the torcetrapib toxicity awaits a detailed and definitive 
analysis of the patients who participated in the ILLUMI- 
NATE clinical trial. This information is necessary before 
further studies can be conducted with this interesting and 
important new class of HDL-raising drugs. 

Conclusions 
The residual cardiac events present in statin-treated 
patients provide a challenge to the cardiovascular field to 
develop supplementary therapy to statin administration 
to reduce these recurrent clinical events. The combined 
data from epidemiology, animal models, and initial clini- 
cal trials support the concept that raising HDL may be an 
effective new target to decrease clinical events. However, 
the question remains: what is the best method to increase 
HDL? Definitive clinical trials focusing on both safety 
and efficacy will be required to establish that increas- 
ing H D L - - b o t h  in terms of acute infusion HDL therapy 
and long-term chronic oral therapy--wil l  reduce clinical 
events and provide the additional therapy necessary to 
further reduce vascular disease in high-risk patients. 

Clinical Trials Acronyms 
ARBITER--Arter ia l  Biology for Investigation of the 
Treatment Effects of Reducing Cholesterol; ILLUS- 
TRATION-Inves t iga t ion  of Lipid Level Management 
Using Coronary Ultrasound to Assess Reduction of 
Atherosclerosis by CETP Inhibition and HDL Elevation; 
RADIANCE--Ra t ing  Atherosclerotic Disease Change by 
Imaging With a New CETP Inhibitor. 
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