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ABSTRACT 
In this note we describe the group of automorphisms of a commutative 
algebra with three generators x, y and z satisfying a relation xy = P(z), where 
P(z) is a polynomial. 

The algebraic automorphisms of the projective and affine planes have 
attracted attention since around 1830. From the point of view of an algebraist 
these are the automorphisms of a field of rational functions with two variables 
and of a polynomial ring with two variables. The groups of automorphisms of 
these planes were described around 1900 and 1941, respectively, at least over 
the complex numbers, by algebro-geometric means. It turned out later that the 
description given does not really depend on the base field. So the question on 
the automorphisms of an affine plane is long ago settled. Nevertheless a 
description of automorphisms of surfaces, even surfaces birationally 
equivalent to the plane, is far from completion. In work [2] M. Gizatulin and 
V. Danilov develop an algebro-geometric approach which allows a description 
of the groups of automorphisms of a class of affine surfaces. It is applicable to 
surfaces X which may be completed by so-called zigzags. (A zigzag is a 
projective curve with all irreducible components isomorphic to the projective 
line.) It happens that under some additional assumptions the completions of X 
form a tree on which the group Aut(X) acts naturally. In [3] they apply this 
approach to the case where the corresponding zigzags are irreducible 
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(i.e. isomorphic to the projective line). One of the possible surfaces here is 
the 'ordinary' two-dimensional sphere x 2 + y2 + z 2 = 1. This sphere over, say, 
an algebraically closed field may be given by the equation uv = 1 - z  2, in 
which form it was considered in [3] and corresponds to our situation with 
deg P(z  ) = 2. 

In 1970 the author suggested a 'purely' algebraic approach to a description 
of the automorphism group of a polynomial ring with two variables which 
worked equally well in a noncommutative setting (for the free associative 
algebra of rank two and for the first Weyl algebra). Here the same approach, as 
it is described in [1], is used for the surfaces of the form x y  = P(z) .  

Let K be an algebraically closed field and P ( z ) ~ K [ z ] .  R will denote the 
factor algebra K[x ,  y ,  z]/(xy - P(z)),  where (xy - P(z))  = (xy - e ( z ) ) K [ x ,  y ,  z] 

is the principal ideal generated by x y  - P(z) .  

Let us assume in what follows that the degree d of P(z )  is at least two. The 
case P(z )  is a constant is trivial and for a linear P(z )  the algebra R is 
isomorphic to K [ x ,  y], also a well known situation (e.g., see [1]). 

The statement which will be proved in this note is the 

THEOREM. The group Aut(R) is generated by the fol lowing automorphisms:  

(a) Hyperbolic rotations H ( x )  = 2x ,  H ( y )  = 2 - l y ,  H ( z )  = z; 2 E 

K*(K* = K \ 0). 

(b) Involution I ( x )  = y ,  I ( y )  = x ,  I ( z )  = z .  

(c) Triangular A(x)  = x ,  A(y)  = y + [P(z + x f ( x ) )  - P ( z ) l x - ' ,  A(z)  = 

z + x f (x ) ;  f ( x )  �9 K[x l .  

(d) I f  P ( z )  = c(z  + a) a then rescalings R ( x )  = x ,  R ( y )  -= 2ay, R ( z )  = 

2z + (2 - 1)a; 2 E K* shouM be added. 

(e) I f  P ( z )  = (z + a) iQ((z  + a)")  and  I~ E K  is such that lt" = 1, then a 

s y m m e t r y  S ( x )  = x ,  S ( y )  = ltiy; S ( z )  = ltz + (It - 1)a should be added. 

(f) Finally,  i f  char K = T > 0 and P( z )  = Q(z  ~ - a ' -~z ) ,  then a translation 

T ( x )  = x ,  T(y )  = y ,  T ( z )  = z - a should be added. 

The theorem will follow from several lemmas. (The scheme of the proof is 

similar to the one in [1].) 
The algebra R may be considered as a subalgebra of the algebra S - -  

K [ x ,  x-~, z]. Let us introduce a degree function on S (and therefore on R) by 

deg.,,,,x~z J = ni + m j  where n and m is a pair of  nonnegative real numbers at 

least one of which is positive. Any element of Smay be represented as a sum of 
homogeneous components relative to this degree. For s ~ S let us denote by 
d(s)  the highest degree of any homogeneous component o f s  and by Is I.,,. the 
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component with degree equal to d(s). Let Tbe a subalgebra of S. Let us denote 

by I T [,, ~ the subalgebra of  Sgenerated by [ t [,, ,, for t ~ T. Generally speaking 
IT [,,,, is not a subalgebra of  T. We will be dropping subscripts n and m 
whenever possible. 

L E M M A  1. R = K[x, z]~yK[y,  z] and if  m > 0 then [R J = K[x, x-Xz a, z] 
where d = deg P(z). 

PROOV. R is linearly generated by monomials x~yJz k, and xiyJz k is equal to 
either P(z)&i-Jz k or P(z)iyJ-izk. Therefore R = K[x, z] + K[y, z]. If  r ~ R  
and r = rx  + ry, where rxEK[x,  z], ry~K[y, z], then we may assume that 
ry ~ yK[y, zl. Now ] K[x, z]] = K[x, z] and l yK[y, z]l = x - l z a K i x - I z a ,  z] 
since y = x- IP(z)  and [R [ = K[x, x -  lza, z]. But K[x, z] N x -  lzdK[x-lzd, z] = 
0 and hence R = K[x, z] ~yK[y ,  z]. [] 

LEMMA 2. For any p, q ~K(x ,  z) such that d(p) 4~ 0 there exist homo- 
geneous Pl, ql ~ K(x, z) such that [K[p, p -  1, q] [ c K[pl, p;- l, qd and [ p [ = 
2p~ where )~ ~ K* and a is a natural number. 

PROOF. This is Lemma 6.8.3 from [1]. [] 

Let gEAut (R)  and p =g (x ) ,  q - -g (z ) .  Note p, p-1 and q generate an 
algebra containing g(R ) = R. 

LEMMA 3. I f  n/m is irrational then [ p [ is either x a or (x-lza) ~. 

PROOF. By Lemma 2 there exist homogeneous Pl, ql such that 
K[pl, p l  ~, q~] D [K[p, p- l ,  q][ D K[x, z, x -~z  d] where d --- deg~P(z). It is 
clear from the choice of  n and m that p~ and qt are monomials. It is also clear 
that the mapping D of the multiplicative semigroup T = ]K[p~, Pi- 1, q~] I to 
the integer vectors Z • Z given by xiz j ~ (i , j)  will embed Tinto the halfplane 

bounded by D(pO. Therefore D(pO should not lie inside of the angle between 
the vectors (1, 0) = D(x) and ( - l, d) = D(x-lzd). On the other hand ]Pl 

IRI and therefore D(lp  I)~l inear  span {(1, 0), (0, 1), ( - 1, d)}. Therefore 

D(Pl) which is collinear with D(I P I) is either (1, 0) or ( - 1, d) which proves 
the lemma. [] 

LEMMA 4. If] p I = cx~ for any choice of  positive n andre then p = c~x + c2 
(c~ E K, c~ v~ 0). 

PROOV. P ---- Po(X, z) + yp~(y, z). It follows from our assumption that p~ --- 
O, poCK[x]. (Otherwise [p [6, t 4. cx" for a sufficiently small tL) Since g(R)q~ 
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K[x] it is clear that  deg~ q > O. Now R = K[p,  q] ~ p - l P ( q ) K [ p - l P ( q ) ,  q] 

which implies that  x E K [ p ]  because degz of  any element f rom R \ K[p] is 

bigger than zero. Therefore p is a linear polynomial.  [] 

I f p  = ClX + c2 we may  assume that  Cl = 1 because we can take an automor- 

phism x --" cx, y --, c -  ~x, z ---, z.  

LEMMA 5. I f  p = X + C then c = O. 

PROOF. Let q ---- qo(x, z)  + yq~(y, z)  where qi are polynomials.  I f  ql ~ 0, 

then [ q 10,1 = c~x izj, where j  >_- d and I R [0, i c [K[p, p -  1, q] [ ~ z .  So ql = 0 and 

q ~ K [ x ,  z]. Now g(y)  = (x + c ) -  ~P(q). There exists an i such that 

xig(y)  = x i ( x  + c ) - l P ( q ) ~ K [ x ,  z] 

which means that  P(q) is divisible by x + c i f  c ~ 0. Then (x + c)-~P(q)~.  

K[x,  z] and g(R ) c K[x ,  z] which is impossible. [] 

LiSMMA 6. I f  g (x )  = X, then g(z)  = qo(X) + cz, where qo(x)EK[x]  and 

c EK*.  

PROOF. As it was shown in the proof  of  the previous lemma g ( x ) =  x 

implies g(z)  E K[x ,  z]. Since g -  l(x) = x ,  g - ~(z) E K[x ,  z] and therefore g is an 

automorphism of  K[x ,  z]. Let g(z)  = qo(x) + zql(x, z). Then f i x )  = x ,  f ( z )  = 

zql is also an automorphism of  K[x,  z] and z = f -  '(zqO = f -  ~(z). f -l(qO is 

possible only if  ql E K. [] 

LEMMA 7. The automorphism A o f  K[x ,  z] which is given by A(x) = x,  
A(z) = z + xr(x) ,  where r ( x ) E K [ x ]  induces an automorphism o f  R .  

PROOF. 

A(y) = x -~P( z  + xr(x) )  = y + X-I[P(z  + xr)  - P(z)] = y + S (x ,  z)  

where S ~ K [ x ,  z]. So A is defined on R.  It is clear that  A is invertible. [] 

LEMMA 8. I f  g(x)  = x ,  g(z)  = Co + ClZ then either 

(a) cl is not a root o f  l and P(z)  = c2(z - c0(1 - c l ) - l )  d or 

(b) cl is a root o f  1 o f  degree k (k v ~ 1) and P(z)  -- Q((z - Co(1 - q )  - i)k) or 

(c) cl = 1, Co v~ O, P(z)  -- Q(z ~ - c~- lz )  where z = char K or 

(d) C l = l ,  c 0 = 0 .  

PROOF. Let g(y) = ro(X, z)  + yr,(y, z). Then P(c,z  + Co) = xro(X, z)  + 

P(z)r~(y, z ) E K [ z ] .  Therefore r0 = 0, rl ~ K [ z ]  and P(clz + Co) = P(z)r~(z). 
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Hence r a ( z ) E K ,  P(Cl Z q-CO)= c 3 P ( z )  and the finite set of  roots o f  P ( z )  is 

invariant  under  t ransformation a ( z )  = c t z  + Co. I f  c~ is not  a root of  1 then a 

has a unique fixed point z0 = c0(1 - c a ) - a  and all other trajectories of  a are 

infinite. So in this case P ( z )  = c2(z - Zo) a. I f  c k = 1 where k > 1 is minimal  

possible, then a has order k and preserves ( z -  Zo)k; hence in this case 

P ( z )  = ( z  - Zo) iQ((z  - Zo)k). I f  Cl = 1 and Co # 0 then a does not have fixed 

points and trajectories are finite only i f  char K = z > 0. In this case a has order 

z and P ( z )  = Q ( z  ~ - c ~ - a z ) .  Finally, ifcl  = 1 and Co = 0 polynomial  P ( z )  may 

be arbitrary. [] 

So we have settled the case I g(x)  In, m = c x  a for any choice of  n, m > 0. The 

complete list of  possible automorphisms is given in Lemmas  7 and 8. 

I f  ]g(x) ln ,  m = C ( X - ~ z d )  ~ then since l ( x ) = y ,  l ( y ) = x ,  I ( z ) = z  gives an 

automorphism of  R,  I g  is also an automorphism and I Ig(x) In , ,  m' = c x  a with an 

appropriate choice o f  n' ,  m' .  Hence it remains to consider the case when 

Ig(x)l = c x  a for some choices of  n, m and Ig(x)l = c ( x - ~ z a )  a for other 

choices. It is clear that  then there are uniquely defined relatively prime integers 

n and m for which 

Ig(x)l = cax"  + " "  + C2(X-Iza) fl 

where ca, c 2 E K * ,  a = degxg(x), dfl  = deg~g(x). Let us denote these par- 

ticular n and m by p and a.  
Let us apply Lemma 2 to g ( x )  and g ( z )  and denote the Pa and ql 

obtained there by ~ and r As we know [g(x)l = c ~  a and IRI c 
I K [ g ( x ) , g ( x ) - ~ , g ( z ) ] l  C K [ r  ~ -a, g]. With our  choice of  n and m, ~0 = 

x ~ + �9 �9 �9 + ? ( x -  ~zd) ~ for suitable 7, 6. 

L~MMA 9. I f  I C/h,0 = c x  ~ t h e n  a~- -0(modp)  a n d  t h e r e  e x i s t s  a t r i a n g u l a r  

a u t o m o r p h i s m  A(x) -- x ,  A(z) = z + c3x" w h e r e  r = tr/p (A(y) = A(x) -ae(A(z))), 

such  t h a t  lAg(x)[p, ~ = c 2 ( x -  aZd)a. 

PROOF. z EK[~o, ~0-l, ~]. Therefore tr = deg z is a linear combinat ion of  

7P = deg and ip = deg V. Now Alg(x) l  = c~x ~ + �9 �9 �9 + c 2 ( x - l ( z  + C3xr)d) p. 

By the choice of  r, A(z) is (p, a) homogeneous, and c3 may be chosen in such a 

way that  the coefficient with x" in Ag(x) is zero. But then I Ag(x) l  = 

I c 2 ( x -  azd)P [ because otherwise 

I Ag(x) I = c 4 x J ( x -  l zd)k  + " ' "  + C2(X- aza)a 

where c 4 , j ,  k ~ 0 and IAg(x) ln, m = e 4 x J ( x - a z a ) k  for some choice o f n  and m,  
contradicting the conclusion of  L e m m a  3. [] 
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LEMMA 10. I f  I~10,1 = C(X-'Zd) i then there exists a triangular automor- 
phism A such that I A/g(x)Ida-p, a = q ( x -  lzd)". 

PROOF. It is clear that I Ig (x )  Ida-p,a -~" C2 xp "~ " " ~ ~- Cl(X- Igd) a and 

I I (g )  11,0 = cx i, so we may apply the previous lemma. [] 

It follows from Lemmas  9 and 10 that  i f  either I ~ h , 0 = c x  i o r  I ~ [ 0 , 1  = 

C(x- lzd) i ,  then with the help o f  a triangular automorphism or involution and a 

triangular automorphism we can decrease d e g x g ( X ) +  degzg(x). So after a 

finite number  o f  such steps we obtain an automorphism g '  for which either 

g ' (x )  = clx (and then use Lemma 8) or for corresponding q/' both I~u'h,o-- 
cxiz j where j ~ 0 and I q/' Io, 1 = c (x - l zd )kz l  where l 4: O. 

LEMMA l 1. I f l  ~11,o = CX izj where j  v~ 0, then 7 = J  = 1. 

PROOF. I R I C K[x  ~, x -r,  x~zJ], therefore K[xL  x - Y ] ~ x  implying ~, -- 1. 
So K[x,  x -1, x i z  j] = K[x ,  x -1, zJ]Bz a n d j  = 1. [] 

REMARK. Similar considerations show that if  I ~ Io, 1 = c ' ( x -  lzd)izJ where 
j ~ O, then J = j  = 1. 

So from now on we may assume that  [~h,  0 = cx'z,  Iv  10, i = C t (x - lZd)  kZ and 
~ 0 = x + . . .  + 6 x - ' z d  where ( 4= O. 

Since deg x = deg x -  Izd and g may be replaced by ~t~0 i where i is any integer, 

we may assume that  I~Uh, o = e z ,  I~,ul0,1=c'z and ~ t = z . z ( w )  where 
w = x - a z  p and Z ( w ) E K ( w )  is a ratio of  two polynomials of  the same degree. 
We may also assume that  p > 1, because otherwise a ---- 0 (mod p) and there 
exists a 'reducing'  triangular automorphism (see proof  of  Lemma 9). 

LEMMA 12. For ~o and ~ as above, K[~o, ~o- 1, ~,] ;b I R I. 

PROOF. I f  K[q~, ~-1, ~ ] ~ z  then z = v.f(r  (where f ( t ) E K [ t ] )  

because deg z = deg ~u. Now ~ = x~(w)  where ~(w) is a polynomial  of  degree 
at most two since 2p = dtr and 2p >= d. 

So 1 = Zf(w~-aXP). It is clear that  ~r < p because d >_- 2. Therefore ifg(w0) = 

0 for some w o E K  then ~ must have w0 as a root of  multiplicity two and 

p - 2tr < 0. But then X-2zd = W 2 and tr = 1, so p < 2 contrary to our assump- 

tion on p. Consequently Z(w)  does not have roots and thus is a constant, since 

it is a ratio of  two polynomials of  the same degree. We may  assume then that  
~ / - - z .  
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If K[r r ~u]Dx, then x = ~0 .h(fp-~ p) and 1 --- ~h(w~ -~) where h(t)E 
K[t]. 

Since ~ (w)=  1 + . . .  + Cx-2z d, ~(0)~  0. Let w 0 be a root of  ~(w) of  

multiplicity n. Then ~h(w~ -~) has a pole in w 0 if n - t r k n  < 0  (here 

k = deg h(t)). So 1 - ak ~ 0 and tr = k = 1. Therefore 1 = ~(h0 + hlw~ -~) = 
hog + h,w and ~ is a linear polynomial. But then x-2z d = w and tr = 2. 

Since a cannot be 1 and 2 simultaneously, the lemma is proved. [] 

We reduced our assumptions on I~h,0 and I~10.~ to a contradiction. 
Therefore any automorphism may be presented as a product of  involutions, 

triangular automorphisms, a hyperbolic rotation and an automorphism from 
Lemma 8. 

REMARK. (1) Though we assumed that K is algebraically closed it is not 

really essential. It is not difficult to show that all roots necessary in Lemma 9 
belong to the field itself. 

(2) The groups described are subgroups of  the group of  automorphisms of  

the polynomial ring K[x, y, z]. It would be of  considerable interest to describe 

all factor algebras of  K[x, y, z] with this property. 

(3) The structure of  Aut(R) is especially nice when P(z) has degree at least 3 
and is a 'general' polynomial (i.e. not of  the form (d), (e) or (f) of  the theorem). 

Let T be the group of  all triangular transformations and let G be the group of  
hyperbolic rotations. Then Go = span(T, ITI) is the free product of  these 
groups and is a normal subgroup of  Aut(R). Further Aut(R) is a semi-direct 
product of  Go and G~ where G1 is a semidirect product of  G and span(I). When 
degP(z)  = 2 there is a big 'linear' part which makes the structure more 
complicated. 
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