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ABSTRACT 

Let g be any probability measure on R with S I x I dg (x) < ~ ,  and let #* denote 
its associated Hardy and Littlewood maximal p.m. It is shown that for any 
p.m. v for which g < v < g* in the usual stochastic order, there is a martingale 
(Xt)o<t<l for which SUPo<t<lXt and Xl have respective p.m.'s v and/ l .  The 
proof uses induction and weak convergence arguments; in special cases, 
explicit martingale constructions are given. These results provide a converse 
to results of Dubins and Gilat [6]; applications are made to give sharp 
martingale and 'prophet' inequalities. 

O. Introduction 

For any martingale X = (Xt)o<_t <_~ with integrable right element X1, let/z and 
v be the probability measures associated with Xi and M = M ( X ) : =  
suP0<t__< iXt respectively. Blackwell and Dubins [5] and Dubins and Gilat [6] 
have shown that g < v </z* (with the usual stochastic order, see (2.1)), where 

#* is the Hardy and Littlewood maximal probability measure associated with 
/z, and have produced martingales for which v =/z and for which v =/z*. In 
this paper, this result is sharpened, as a converse question is considered: if/z 

and v are probability measures with/z < v </z*, is there a martingale X = 

(Xt)0~<t_< 1 for which M ~ v and X~ ~/~? The answer is yes, as it is shown that for 
any p.m./z on R with ~ Ix I dlz(x) < oo, the following collections of  probability 

measures are equal: 
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{v: there is a martingale X =  (Xt)o~t< l with M ~  v, and X1 ~ =/t} 
(O.1) 

= {v i sap .m .  o n R : / t  < v  </ t*}.  

The result is given as Theorem 2.1, and is proved from induction and weak 
convergence arguments. 

For given p.m.'s g0 and/t l  on R with S Ix I d/tl(x) < oo, the subcollection of  
the set of p.m.'s of (0.1) given by 

= �9 u M =~ (0.2) {v: there is a martingale X (Xt)o <-_t <__1 with X0 =/to, v, and XI =~/ti } 

is characterized in Theorem 3.4. The set in (0.2) is nonempty,  for example, if go 
and /tl are concentrated on some closed interval and go<c/tl  (i.e., 

~,dgo < ~ ~ud/t~ for all continuous convex functions ~u on the interval); see, e.g., 
Theorem 2 of Strassen [22] or Chapter XI of Meyer [ 16]. The characterization 
of the set in (0.2) follows from (0.1) and two intermediate characterizations. 
One of these states that for any probability measure/ t  with ~ xd / t ( x )  = 0, the 
following collections of probability measures are equal: 

{v: there is a martingale X =  (Xt)o~t.~ with X 0 ~ 0 ,  M ~  v, and XI ~ / t }  

(0.3) 
= {v i sa  p.m. on [0, oo):/t  < v  </ t*}.  

The result (0.3) is easily proved using (0.1). However, a constructive proof  of  
(0.3) is given which uses the martingale (2.4) of Dubins and Gilat [6] or 
equivalently a time-changed Brownian motion; this approach connects this 
result to those of Dubins and Gilat [6], Azema and Yor [1, 2], and van der 
Vecht [23]. Other connections of  these martingale questions to embeddings of 
martingales into Brownian motion, which involve related (but different) 
issues, have been made by Jacka [12] and Perkins [17]. 

These stochastic order representations can be used to prove sharp mar- 
tingale inequalities relating M and X~. Such inequalities have been given by 
Dubins and Gilat [6], Gilat [9], and Hardy and Littlewood [10]. In the context 
of optimal stopping, some of these inequalities have been referred to as 
'prophet '  inequalities; initial work in this area of 'prophet '  inequalities was 
done by Krengel and Sucheston [ 14, 15] in the context of independent r.v.'s 
and sums of independent r.v.'s. In Theorem 4.1, a 'prophet '  inequality of 
Dubins and Pi tman [7] (see also Hill and Kertz [11]) is sharpened by use of 
results from Section 2. We also give an interpretation of our main result in a 
'prophet '  problem context in Section 4. 
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1. The set of measures J / ~ ) :  Definition and properties 

In this paper X = (Xt)o~t ~ 1 is a martingale if there is some probability space 

(fL ~ ,  P) and a filtration (~}0z tz l  on (f~, ~r, p)  under which (i) (Xt)o~,~ is 
{~t}-adapted, (ii) Xt is integrable for every 0 < t < 1 and E(Xt [ ~ )  = Xs a.s. 
[P] for every 0 < s < t < 1 and (iii) the paths t ~ Xt are right continuous and 
have left-hand limits for 0 < t < 1 (RCLL). 

We define Jtt(~), the main object of  study in this paper. Let ~(R)  be the 

space of probability measures on (R, M(R)), given the topology of conver- 
gence-in-distribution, so that under the Prohorov metric, this is a complete, 

separable metric space (for reference see, e.g., Ethier and Kurtz [8]). For each 

p.m. /z on R satisfying ~ Ix l d l t ( x )<  oo, let ~r denote the set in ~(R)  
given by 

~r = ( v ~ ~'(R): there is a martingale X = (Xt)o ~ t ~= 

(1.1) 
for which M ~ v, and Xl = ~ }, 

where M = M ( X ) =  sup0~t~ tXt and we write Y=~ 2 if r.v. Y has distribution 
that of  p.m. 2. If p.m. # has associated r.v. Z, then by letting Xt = Z for all 
0 _-< t =< 1, it is clear that ~ ~ ( ~ ) ,  so that ~ ( ~ )  is nonempty. 

Our main objective in this section is to show that ~ ( ~ )  is convex and closed; 

this is done in Propositions 1.2 and 1.6. We will use path properties of 
martingales. For this purpose, we let D = D[0, l] denote the space of functions 
x on [0, l] that are right continuous and have left-hand limits, given the 

Skorohod J~ topology and associated Borel a-algebra ~(D) ,  and with metric do 
under which D is a separable complete metric space (for reference, see 
Billingsley [2] and Ethier and Kurtz [8]). Each martingale X=(Xt)0~t~l  
induces a p.m. on (D, ~(D)),  denoted by P x ( ' ) =  P ( X ~  .). We use '=*'  to 
denote weak convergence of p.m.'s on (D, ~(D))  (and of the associated 
stochastic processes), and write X ~ ~ X for Px ~ =* I x .  We also use Y~ ~ Y to 
denote weak convergence (convergence in distribution) of r.v.'s (Y~ }~ ~ to r.v. 

Y. The following lemma sets up the proof of convexity of ~q(~). In the 

remainder of this section, when discussing ~ ( ~ ) ,  it is implicitly understood 

that # ~ ~(R)  with ~ Ix ld#(x)  < 00. 

LEMMA 1.1. Given martingales X t and X 2, then there is a martingale X 

for which X = X ~ with probability 2, and = X 2 with probability 1 - 2. 

PROOF. This follows easily by making appropriate definitions. For 
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example, if  X ~ = (X~)o_-<t_-<l and X 2 = (X 2)o~t~l are martingales with respect to 
{ ~ }  and (~-~l,~l, pI) and {~t~2} on (~-~2,/~r2, p2) respectively, then 

define ~)=Ui=k2~'~i X {i}, ~ = a ( A i •  { i } , A ~ E ~ r ' , i =  l,2),  ~ t =  
a ( N •  { i } , A i E ~ i , i  = 1,2), P(A)=2P~(AI)+(1  - 2 ) p 2 ( A  2) for A = A ~ X  

{1} U A 2 X { 2 } in ~ ,  and X,(09, i) = X 1 (to) if  (to, i ) ~  f~l • {1}, and = X~2t (to) 

if  (to, i) E f12 X { 2 }. Then X = (Xt)0 z t _-< 1 is a martingale with respect to { ~ t  } on 
(f~, ~r, p )  satisfying P(X E C) = 2P~(X ~ G C) + (1 - 2 ) p 2 ( x  2 E C) for all C E 

~ ( D ) ;  so the conclusion holds for X. [] 

PROPOSn'ION 1.2. d / ( g )  is a convex subset of  ~(R) .  

PRooF. For  i = 1, 2, let v ~ ~ J l ( g )  with martingale X ~ = (X])o<_t~ satisfy- 

i n g M  ~ ~ v ~, and X~ ~ / l .  Also let 0 < 2 < 1. Then the martingale X = (Xt)o~t<=~ 
of  L e m m a  1.1 satisfies M ~ = 2 v ~ + ( 1 - 2 ) v  2 and X l ~ / ~ ,  so that 2v~+ 
(1 - 2 ) v 2 e ~ ) .  []  

To set up the p roof  of  closedness of  J / ( g ) ,  we give three lemmas.  

LEMMA 1.3. Let I~ be a p .m.  on ( R , ~ ( R ) )  with $lxld~(x)<oo, and 
assume X" = (XT)0~t=<l, n = 1, 2 , . . . ,  are martingales satisfying X ~ l t  for 
n >-_ 1 andX"=*Xin  DforsomeRCLLstochast icprocessX = (Xt)o<_t<=~. Then 
X is a martingale. 

PROOF. We may assume that X", n => 1, are martingales with respect 

to the same filtration { 4 }  on a probabil i ty  space (fL ;~,  P), and X is 
defined on (fl, ~r, p )  and adapted  to {~t}. Use  the martingale property 

of  the X"'s and c o m m o n  integrable distr ibution of  X~ "s to obtain collection 
{Xp, 0 < t < 1, n = 1, 2 , . . .  } is uniformly integrable. It follows that 

~ c X p d P ~ c X # I P  as n ~ o o  for all C~3~  r, for each t in T x =  
{u ~ [0 ,  1] : P(X(u) ~ X(u - )) = 0}, and hence that 

~ X, dP= f XtdP 
(*) 

f o r a l l A E ~ ,  foreachs,  t E T x  w i t h 0 _ - < s < t  < 1  

(in particular, 0, 1 E Tx). By use o f  right-continuity of  X a n d  uni form integrabi- 

lity of{Xt : t ~ Tx}, one obtains ( .)  for all 0 < s < t < 1; so X i s  a martingale. [] 

N o w  let a be a fixed small posit ive number  in (0, 1) (e.g., a = 0.1). Define set 

Da[0, 1] to be that subset o f  D[0,  1] o f  functions x = (x(t))o<=t<=~ satisfying the 
following: 
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(1.2) fo r  the  func t ion  x the re  is a cons t an t  b = b(x)  with  a < b ==_ 1 for  

which  

(i) x ( t )  = x (0 )  i f  0 ___< t < a ;  x ( t )  - x(O) >= (t - a)/(1 - t) i f  a _-__ t < b; and  

x ( t ) = x ( 1 )  i f b  =< t < 1; 

(ii) x = (x(t))o~t<=l is nondec reas ing  on  [0, b), and  x(b  - ) - x(O) -=- 

(b - a)/(1 - b) > x (b)  - x(0) ;  and  

(iii) for  a < t < b, t is a po in t  o f  increase  o f x  i f  and  on ly  i f x ( t  - ) - x (0 )  -=- 

(t - a)/(1 - t). 

(Recal l  t is a po in t  o f  increase  o f x  i f f x ( t  + e) - x( t  - e) > 0 for  each e > 0 

small .)  

LEMMA 1.4. Let  X--- (X, )0~t~l  be any martingale. Then there is a mar- 

tingale Y=(Yt)o~t~=l with paths in Da[O, 1] for which M ( Y )  ~=M(X) and 

Y I ~ X 1  . 

PROOF. Le t  X = (X,)o~,~ ~ be a mar t inga le  wi th  respect  to  f i l t ra t ion {~,,} on  

p robab i l i ty  space (~ ,  ~ ,  P) .  F o r  each x > 0, let rx be  the  op t iona l  s topp ing  

t ime  

rx = z (x )  = inf{0 =< t < 1 : Xt - X 0 > x }  i f  this set § ~ ,  and  = 1 o therwise .  

F o r  the fixed a o f  (1.2), def ine the  process  Y = (Yt)o~t~ by 

(1.3) Y , = X o i f O < - _ t < a ,  =X~(r a n d = X ~ i f t = l ;  

and  def ine f i l t ra t ion { 4 , }  by  ~ ,  = ~0 i f 0  _-<' t < a ,  = ~r162 i r a  _--< t < 

1, and  = ~ i f t  = 1. T h e n  Y = (Y~)o~,_~ is a mar t inga le  wi th  respec t  to  {~ ,}  

(use the  Op t iona l  Sampl ing  T h e o r e m  as given,  e.g., in Kara t za s  and  Shreve  

[131). It  is c lear  f r o m  the  cons t ruc t i on  tha t  Yo~Xo ,  M ( X ) ~ = M ( Y ) ,  and  

Xl~=Y~. 
N o w  fix ~ E ~ .  Obse rve  tha t  M ( X ) ( c a ) <  ~ (since X is in D[0 ,  1]), and  let 

b = b ( ~ )  sat isfy (b - a)/(1 - b) = M(X)(ca) -- Xo(ca). T h e n  f r o m  the  defini-  

t ion  o f  z and  Y, it fol lows i m m e d i a t e l y  tha t  Y , ( ~ ) =  X0(ca) i f  0 _-< t < a ,  

Yt(ca) - Y0(ca) > (t - a)/(1 - t) i f a  _-< t < b, and  let(ca) = X~(ca) i f b  < t < 1; 

Yt(ca) is nondec reas ing  on  [0, b - ) and  

Yb- = (b - a)/(1 - b) + X0(co) = M(X)(co) > Yb(ca) = Xl(ca); 

and  for  a _--- t < b,  t is a po in t  o f  increase  o f  Y i f  and  on ly  i f  Y,_ - Y0 = 

(t - a)/(1 - t) (i.e., limt,)t X, tt,.-a>m-~.)) = (t - a)/(1 - t)  + Xo(ca)). T h u s  

Y(ca) = (Yt(ca))o~,:<l is in Da[0, 1]. []  
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N o t e  tha t  the  p a r a m e t e r  a > 0 is used  in (1.2) and  the  subsequen t  pa r t  o f  the  

sec t ion  so tha t  the  new process  Y = (Yt)o~t=~l f o r m e d  f r o m  X in L e m m a  1.4 

will have  bo th  I10----X0 and  right c o n t i n u o u s  paths .  

As in Bill ingsley ([2]: C h a p t e r  3), def ine the  m o d u l u s  Wx' (~) fo r  0 < fi < 1 and  

x ~ D [ O ,  1] by  

Wx'(O) = i n f  m a x  W x [ t ~ - l ,  t i ) ,  
{ts} O<i<r  

where  W x [ a ,  b )  = sup{ Ix(s )  - x ( t ) l :  s ,  t E [a,  b)} fo r  a < b, and  the  i n f i m u m  

is t aken  o v e r  all finite sets {t~} o f  po in t s  sat isfying 0 = to < tl < . . -  < tr = 1 

and  ~ _-< ti - t~ - l  for  i = 1 , . . . ,  r .  Also d e n o t e  Ix  l = sup0_<_t__<l Ix ( t )  l. 

LEMMA 1.5. I f  x ~ D a [ O ,  1], t h e n  f o r  e a c h  ~ w i t h  0 < ~ < a ,  w~(~) < 

~(1 - a ) - l ( 1  + 2 1 x l )  2. 

PROOF. Le t  x EDa[0 ,  1 ] and  0 < ~ < a .  Choose  So E [0, 1] sat isfying 

X(So - ) = Ix  l = (So - a)/(1 - So) + x (0 )  (such an  So exists). I f  So = a ,  t hen  the  

resul t  holds;  suppose  So > a .  H a v i n g  chosen  So > sl > �9 �9 �9 > s, > a ,  wi th  

x ( s ,  - ) - x ( O )  = ( s .  - a)/(1 - s , ) ,  def ine 

s, +l = inf{s : x ( s )  = x ( s .  - ~)}. 

T h e n  

(i) s . + l < s . - ~ ,  

(ii) x ( s . + O  >= x ( ( s .  - ~ )  - ) ~ ( ( s .  - ~ )  - a)/(1 - (s. - 0)) + x(0) ,  and  

(iii) (1 - s . )  - 1 < (1 - a )  - 1(1 + 21 x I ) ( f rom (s. - a)/(1 - s . )  + x (0 )  = 

x ( s .  - ) < Ix l ) .  
It  fol lows tha t  

sup{ I x (s )  - x ( t )  I: s ,  t ~ [s. + i, s.)} 

< x ( s .  - ) - x ( s . + l )  

(1.4) < ((s. - a)/(1 - s . ) )  - (((s. - O) - a)/(1 - (s. - O))) 

_-<~(1 - a ) ( 1  - s . )  -2 

_-<J(1 - a ) - l ( l  + 2 1 x l )  2. 

At  this  poin t ,  e i ther  s.  + I E  [0, a ]  or  s .  +1~  (a,  1]. In the  first case, s top the  

p rocedu re ;  and  in the  s econd  case, no te  tha t  X ( S n + l - ) - x ( O ) =  

(Sn + 1 - -  a ) / (  1 - -  s .  + i) and  c o n t i n u e  by  choos ing  s.  + 2 by  the  a b o v e  p rocedure .  I f  

we label  the  chosen  po in t s  o b t a i n e d  in this  way  by  so > Sl > �9 �9 �9 > sin, t h en  



Vol. 69, 1990 MARTINGALES 179 

W'x(6) < max0__<j<m Wx[Sj+~, sj) < g(1 - a ) - l ( 1  -4- 2 Ix  I) 2 

by (1.4); and we are done. [] 

PROPOSITION 1.6. J l ( a )  is closed subset o f  O~(R). 

PROOF. Let v,, n = 1, 2 . . . .  , be in ~r and v , ~ v .  We show v ~ r  

Let AT" = (XT)0~t ~ 1 be a martingale with M(X")  ~= v, and X~ =~ a ,  for n _-__ 1. As 

in the p roof  of  Lemma 1.3 we may assume that the X"'s are martingales with 

respect to the same filtration on the same probabil i ty space. F rom Lemma 1.4, 

we may also assume that all paths of  the X"'s are in Da[O, 1]. Let P" denote Px", 

the p.m. induced by X" on D[0, 1]. We claim that {P"},>=l is tight on D[0, 1]. 
From Billingsley ([4]: Theorem 15.2), it suffices to show 

(i) for each r / >  0, there exists an a E R such that 

P(s<u,p [XTl>a)<-_tl for all n > 1; and 
0 = t = l  

(1.5) 

(ii) for each e, r / >  O, there exist 6, with 0 < 6 < 1, and an integer no such 
that 

P(w'x.(6) >= e) <-_ rl for all n > no. 

Now, (1.5)(i) follows easily from the inequality 

e(s<ul~<<llXlnl~ol)~ol- le lX~l=ol- l f  lxlda(x), 
o= z 

for a > 0. For (1.5)(ii), let e, t / >  0 be given and obtain from Lemma 1.5, for 
0 < 6 < a A (e(1 -- a)), the inequality 

P(w'x,(6) > ~) <= P(6(1 - a)-~(1 + 2IX" I) 2 > e) 

< P (  1 IXTl > ( ( e ( 1 - a ) 6 - ' ) l / 2 - 1 ) / 2 )  

< ((e(1 - a)(~-l) 1/2 - 1) - l  .2 f Ix [ da(x).  

By choosing g sufficiently close to 0, (1.5)(ii) follows. 

From Prohorov 's  Theorem ([4]; p. 37), there is a subsequence {P",} with 

p, ,  =.  p0 for some p.m. p0 on D [0, 1 ]. Let X = (Xt)o~t ~l be a process with paths 

in D [0, I ] having associated p.m. p0. We may assume that the martingales X",, 
i _>--1, and the process X are all defined on the same probabil i ty space 
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(~, ~ ' ,  P). From the weak convergence, it is immediate that XI ~/~. From 
Lemma 1.3, we have that X is a martingale. Finally, we have M(X",) ~ ~ni , 
v,, =* v, and also M(X",)==, M(X) (from continuity of Tx = sup0~t z lx( t )  on 
D[0, 1] and the Continuous Mapping Theorem as in, e.g., [4]; p. 138). Thus 
M(X) ~= v; and it follows that v E~/(/z). [] 

2. Characterization of ~(/z)  

Our main results are based on use of the usual stochastic ordering for 
probability measures. For vl and v2 in ~(R),  we write ])1 ~ V2 if 

(2.1) f O d v l < f O d v 2  for every nondecreasing function 0 on S. 

It is straightforward to show (2.1) is equivalent to 

(2.2) Vl[X, ~ )  < rE[x, oo) for everyx ~ R  

(for a reference on stochastic orderings, see, e.g., Stoyan [21 ]). 
As in Section 1, g denotes any p.m. on R satisfying S Ix I dg(x) < oo, and 

.4/(g) is the set defined in (1.1). It is known that under the partial ordering of 
(2.1), 

(i) there exists a least upper bound of J r  denoted/.t*, and g* Ed t (g ) ;  
and 
(2.3) 

(ii) there exists a greatest lower bound of dt(~),  the p .m. / t ,  and # E aCt(~). 

The result (2.3)(ii) is immediate from the remarks after (1.1). For future 
reference, we discuss result (2.3)(i) and a representation of/~*; see Blackwell 
and Dubins [5] or Dubins and Gilat [6] for details. 

Let F denote the distribution function associated with p.m. /t. Let F -1 
denote the left continuous inverse of  F defined on (0, 1) by F - l (w)  = 
inf(z : F(z) > w} and extended to [0, 1] by setting F - ' ( 0 )  = F - l (0  + ) and 
F - I ( 1 ) - - F - I ( 1 - )  (for references on F -l ,  see, e.g., [19] of [20]). On the 
probability space ([0, 1], 8([0,  1]), 2), where 2 denotes Lebesgue measure, the 
r.v. F -1 has d.f. F and associated p . m . g .  Define the filtration {~t} by 
~t -- a (~ ( [0 ,  t]), (t, 1]} for 0 < t =< 1 and ~0 -- (~, [0, 1]}. Then the stochastic 
process (Zt)0_<t ~ 1, defined by 

(2.4) Z, = E(F -1 ] ~tt), 

is a martingale with respect to {~} ,  satisfying Zo = S xdla(X) and ZI = F -  l, 
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with associated p .m.g .  Now, it was shown in [5] and [6] that the Hardy and 

Littlewood maximal function h associated with F,  defined by h ( w ) =  

(1 - w )  -~ ~[w. 1~ F - ~ ( u ) d u  (with h ( 1 ) =  F-l(1)) ,  as an r.v. on this probability 
space has associated p.m. g*. This function h is continuous and nondecreasing 

on [0, 1]; h(0) = ~ xd/~(x) and h(1) = F-~(1 - ) = xr, the fight endpoint of  the 
support of  F; and F - l  < h. Thus it follows from the representation 

(2.5) Z t ( w ) = F - ~ ( w ) i f O < w < t < l ,  and = h ( t ) i f O < t < w < l  

for 0 < w < 1, that M ( Z ) )  = h a.e. and has associated p.m. #*. This martingale 

demonstrates that g* E ~t/~).  

THEOREM 2.1. dl(/ t)  = {V~ ~(R)  :/t < v <g*} .  

From (2.2) it is clear that J / ~ ) c  {vE ~(R): /L < v  </~*}; to establish 

Theorem 2.1, we must show that 

(2.6) 

given p.m.'s/l  and v on R with g < v </~*, 

there is a martingale X = (Xt)o ~ t ~ ~ for which M ~ v and XI -- ~. 

We prove (2.6) after Proposition 2.3. 

LEMMA 2.2. F i x  N E {1, 2 . . . .  } a n d  let l~ be a p . m .  on R with S Ix  Id/~(x) < 

oo. Le t  Xl < �9 �9 �9 < XN a n d  0 < aN < �9 �9 �9 < a2 < al be numbers  sat is fy ing 

bt[xi, oo ) < ai < #*[xi, ~ ) for  i = 1 . . . . .  N .  
Then  there exist  p . m . ' s  lt~ a n d  lt2 on R sat is fy ing ~ Ix  I d#~(x) < oo a n d  

Ix I d/z2(x) < oo; It2[xi, oo) is constant  in i = 1 . . . . .  N;  a n d  there is a n u m b e r  

2 E [0, 1] such t h a t / t  = 2/t~ + (1 - 2)/./2 a n d  2g*[x~, oo) + (1 - 2)/.L2[xi, oo)  ~ a~ 
f o r  every i = 1 . . . . .  N ,  with equal i ty  holding for  at  least one i = 1 . . . . .  N .  

PROOF. Case 1. In this case assume that p.m./ t  has no point mass. Let 

= a(z )  be any continuous function on [XN, o0) taking values in ( -- oo, xl) 

with g = a(z )  decreasing to - ~ as z increases to + ~ .  Without loss of  

generality, assume that g([g, z ] ) >  0 for all z in [xu, oo). (If #([~, z ] ) =  0 for 

some z in [XN, 00), then the conclusion follows by taking/t~ =/z --/,12 and 

2 = maxo<i<NCi, where ci = (a i - - l t [XN,  oO))/(fl*[Xi, ~ ) - - l t [ X N ,  ~) )  if 
#[X~, ~)</Z*[XN, O0) and c~ = 0 if IZ[XN, ~ ) = g * [ X N ,  O0)). Let 2(Z) be the 

strictly positive function defined on [XN, 00) by 2(z) =/~([~, z]); observe that 
2(z) is a continuous, increasing function with limzt| 2(z) = 1. 
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For each z in [xs, ~ ) ,  define probabil i ty measures /tz(.) and /~z(') on 

~ ( R )  by 

flz(A) = (~,(z))-I , t t(A O [2, z] ) ,  and 

(2.7) 

#z(A) = (1 - 2(z))-~/t(A r3 [2, z] c) i f2 (z )  < 1, and = ey(A) i f ; t(z)  = 1 

for some y ~ (~, x0.  As at the beginning of  this section, associated with p.m. # 

are the functions F - l  and h on [0, 1]; and analogously, associated with p.m. #z 

are functions F 7  ~ and h~, and p.m. ~*. From the continuity o f F ( x )  and from 

representations of  F71 and h~ in terms of  F ,  F -1 ,  and h, one obtains that for 

each i -- 1 . . . . .  N,/~*[x~, oc) and /~[x i ,  oo) are cont inuous in z over [xs, oo) 
with l i m ~ / t * [ x ~ ,  ~ )  =/~*[xi, oo) and lim, t~ (1 - 2(z))#~[xi, ~ )  = 0. 

Finally, define ~ in [xs, 0o] by 

= inf{z : 2(z)/t*[xi, ~ )  + (1 - ;t(z))/~[x~, oc) >_- ai for all i = 1 . . . .  , N}. 

We may assume that i < ~ (otherwise, it must  follow that/~*[x~, oc) = a~ for 

some i ~ ( 1 , . . . ,  N}, and the conclusion follows by letting 2 = 1,/tl = #,  and 

/t2 = ey). I f  we let 2 = 2(~), ]-~l = ]'~, and/t2 =/2~, then #~ and P2 are probabil i ty 
measures on R and 2 is a number  in [0, l] satisfying the desired conclusions. 

Case 2. In this case ~ is any p.m. on R satisfying the hypotheses of  this 
l emma for numbers  x~ < �9 �9 �9 < xs  and 0 _-< a s  < �9 �9 �9 < al. The p roof  in this 

case is similar to, but  technically more  complicated than, the p roof  in Case 1. 
The key new notion is that port ions of  the weights of  a toms are taken into 
account.  Letting xv denote the right endpoint  o f  the support  o f  F ,  one 
associates with pairs (z, p)  with x s  < z ~-XF and 0 _--< p < 1, pairs (2, p)  with 
- ov < 2 < x l  a n d  0 < p < 1; constants 

A~,. = (1 - p)/~{2} +/1(~, z) + (1 - p)#{z};  

and p.m.'s/t~,p and #2p on ~ ( R )  defined by 

/z~,p(A) : = A~,l{(1 - p)l~{~. }e~(A) + I.t(A n (2, z)) + (1 - p)l.t{Z}ez(A)}, 

and for A~,, < 1, 

: = (1 - a z , . ) - ' { u ( A  n ( - oo ,  2 ) )  

+ pU{z}e (A) + U(A n (z, 

and for A~,p = 1,/~2,,(A) = e~,(A), where 2 < y  <x~,  so that  continui ty and 
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limit arguments analogous to those of  Case 1 can be applied. [] 

PROPOSmON 2.3. F i x  N ~ ( 1 , 2  . . . .  ) a n d  let It be a p . m .  on R with 

S Ix I d It(x) < oo. L e t  xl  < �9 �9 �9 < x s  a n d  0 <--_ a s  < �9 �9 �9 < al <-_ 1 be n u m b e r s  

sat is fying It[x~, ~ )  < ai < It*[x~, oo) f o r  i = 1 . . . .  , N .  Then  there exis ts  a p . m .  

v E ~ l ( p )  sat is fy ing v[xi, oo) = a J o r  i = 1 . . . .  , N .  

PROOF. The proof  is by induct ion on N. For N = 1, we assume It[Xl, oo) < 

It*[x~, oo) (the case of  equality is trivial), and define v = ;tIt + (1 - 2)It*, where 

It and It* are the p.m.'s in ~ / ~ )  in (2.3) and 2 " =  

(p*[Xl, oo) - aO/(p*[x~, oo) - I t [ X l ,  or)). Then v ~ J//(p) from Proposition 1.2, 

and v[x~, oo) = a~ by definition. We assume the result holds for N, and will 

show the result holds for N + 1. So assume there are numbers 

O<=au+l<-_au<=. . .  <=al<=l and X I < ' ' ' < X N < X N + I  

such that  It[x~, ~ )  _-< a~ _-< It*[x~, ~ )  for i = 1 , . . . ,  N + 1. 

We claim that it suffices to show the induction result holds i f  

(2.8) It*[x~ 0, oo) = ai 0 for some i0E(1 . . . .  , N +  1}. 

Indeed, suppose the induct ion result is true under  condit ion (2.8). Let It1 and It2 

be the p.m.'s in the conclusion of  Lemma 2.2. I f  2 = 0 in the conclusion of  

Lemma 2.2, then It[x~, ~ )  = a~ for i = 1 , . . . ,  N + 1 and the result follows by 

letting v = I t .  Suppose 2 > 0 ,  and define d~ =,~ , - l ( a i -  ( 1 -  2)itz[xi, oo)) for 

i = 1, N + 1. Then Itl[xi, oo) < ai < * �9 . - ,  = = I t l [ X ~ , ~ )  for all i = l  . . . . .  N + I ,  

with ~i = It* [xi, ~ )  for some i; here the left inequality follows from It [x;, oo) < 
a~ for all i and It = 2It~ + ( 1 - 2)It2, and the right inequality and equality follows 

from Lemma 2.2 and the definition ofa~. Also 0 _-< ds+~ ---< �9 �9 �9 =< a~ ___< 1, f rom 

the property of It2 that It2[x~, ~ )  is constant  in i = 1 . . . . .  N +  1. Since the 

induction result is assumed to hold under  condit ion (2.8), we obtain a p.m. 

v ~ J t ( i t 0  satisfying v ~ [ x i , ~ ) = ~ ,  for every i = 1  . . . . .  N +  1. Let U =  

(Ut)o~t<=~ be a martingale with M ( U ) ~ =  v~ and U~ ~It~. We know that It2E 

~r so there is a martingale W = (Wt)0zt~ with M ( W )  ~It2 and W~ ~g2.  

Finally, define p.m. v" = ;tv~ + (1 - 2)it2 and observe that  v[xi, ~ )  = ai for 

i = 1 . . . . .  N + 1. I f  we define X = (X,)0<=,~ as a martingale mixture of  U a n d  

W as in Lemma 1.I, then M ( X ) ~ = 2 V l + ( 1 - 2 ) i t 2 = v  and X ~ 2 i t l +  

( 1 - 2)it: = It, so that v ~ dC(,u). 
Assume that (2.8) is satisfied. We prove the reduction result in two cases. We 

give the proof  for 1 < i0 < N + 1; the proofs for i0 = 1 and i0 = N + 1 are slight 

modifications of  this argument.  
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Case 1. In this case assume that/Z has no point mass. Let y be the number  

in [0, x J  satisfying X~o=(g[y ,~ ) ) -~ t y ,  oozd/z(z), so that / z [ y , ~ ) =  
/z*[X;o, ~ )  = a~ 0 f rom use of  the maximal  function h associated with/Z and (2.6). 

Define p.m.'s/Z~ and/Z2 on R by, for A ~ ~(R) ,  

(2.9) 
/Z~(A) =/Z{A n ( -- ~ , y ) }  +,u[y,  aZ)eX, o(A), 

/Z2(A) = (/Z[Y, oo))- ' /z(A n IV, ~ ) ) .  

First observe that/Zl is a p.m. satisfying S xd/zl(X) = ~ xd/z(x) and 

(2.10) /ZI[Xi, 00)=a i  < <  =/z~*[xi, oo) for i - 1, . . . ,  i 0 -  1. 

The first inequality in (2.10) follows from/zl[Xg, ~ )  = #[xi, ~ )  < ag for x~ < y,  

and f rom /z~[x;, ~ )  =/Z[y, oo) =/z*[Xgo, oo) = a~ o < a~ for y < xt < x~0; the 
second inequality in (2.10) follows from /z*[x~, oo)=/z*[xi,  oo) for i = 
1 , . . . ,  i0 (e.g., compare/Zl, F~, F~-', h~, and/z* to/z, F ,  F -I,  h, and/z* of  (2.4)). 
From the induct ion hypothesis, there is a p.m. Vl in d/(/zl) satisfying 
v,[x~, oo)= a, for i = 1 . . . . .  i 0 -  1, and hence there is also a martingale 

Y = (Yt)o~tz~ with M ( Y )  ~= Vl and Y~ Z/Z I (we also have v][Xio, ~ )  = aio since 

YI[XIo, O0)=  P ( M ( Y )  >-_ x 0 = e (Y l  = Xio)= /Zl[Xio , O0)=/z[y, 0O)= a~o). Second, 
observe that/Z2 is a p.m. satisfying S xd/z2(x) = xio and 

(2.11) #2[x~, oo)<a/ /z[Y,  ~ )  </z*[x,,  oo) f o r / =  i0+ 1 . . . . .  N +  1 

(use that/z2[xi, 0 0 ) = / z [ x ,  oo)//z[y, ~ )  and/z*[xi,  00)--/z*[x;, ~) /# [y ,  00) for 
i = io + 1 , . . . ,  N). From the induct ion hypothesis, we can obtain a p.m. v2 

and a martingale Z = (Zt)o<t~l satisfying Zo-----xio, M ( Z )  = ~ rE, Z1--~/Z2, and 
v2[xi, or) = ai//z[y, ~ )  for i -- io + 1 . . . . .  N + 1. 

We may  assume martingales Y and Z and their  respective filtrations {fqt } 
and {M~t} are defined and independent  on the same probability space. Define 

filtration { ~ }  by ~tt = (~2t i f0  _-< t < �89 and = tr{fq~, ~(t-, /2)} if�89 _-< t _-< 1; and 
define stochastic process X = (Xt)o<t<l by Xt = Y2t if  0 _-< t _-< �89 and = Y, if  

�89 =Z2(t_ " ~ < = 1/2) lf~ = t -_< 1 and YI = Xio. Then (Xt)o<t< 1 
9 

is a martingale w.r.t. { ~ } .  Also X~ = #, since 

P(X~ E A  ) =- P(YI ~ A ,  Y~ < x~) + P(YI ~ A ,  XI -- x~) 

=u(A n ( -  oo, 

=u(A n ( -  oo, y)) + oo))- u(A n [y, oo) =u(A); 
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and M ( X )  has associated p.m. v satisfying v[x~, 0o)= a~ for all i = 1 . . . . .  

N + 1 since 

v[xi, 0o) = P ( M ( X )  >= xi) = P ( M ( Y )  >-_ x,) = vl[xi, 0o) = ai for i = 1 . . . . .  i0, 

and 

il[Xi, 0(3) = P ( M ( X )  > xi) = P ( M ( Z )  > xi, )(1 = X,o ) 

= P ( M ( Z )  >-_ x , ) e ( x ,  = x~o) 

= v2[x~, oo)/z[y, ~ )  = ai for i = i0 + 1 , . . . ,  N + 1. 

This completes the induct ion result in this case. 

Case 2. In this case/~ is any p.m. on R with S Ix I dlt(x) < ~ satisfying the 

hypotheses of  this proposit ion with respect to the numbers x, < �9 �9 �9 < xu+~ 

and 0 < au+~ < �9 �9 �9 < a~ < 1, and satisfying (2.8) for index io. As in Lemma 

2.2, the new idea in this case is that of ' spl i t t ing atoms' .  Recall the objects/~, F ,  

F -1, h, and/ t* ,  and define numbers Uo, ao, bo, and y,  by 

(2.12) Xio=h(uo);(ao, b o ] = ( u ' F - l ( u ) = F - l ( u o ) ) ;  and y = F - l ( U o ) .  

In particular, this gives/t*[X~o, 0o) = 1 - Uo = / t [ y ,  ~ )  - (Uo - ao) and 

= (1 - Uo) -1 f F - l ( u ) d u  X i  o 
J t  uo, 1) 

=(1-Uo)-l{~tao, 1)F-l(u)du-F-l(uo)(Uo-ao)). 
For notat ional  convenience, we denote Co '=  p[y,  o o ) -  (Uo-  ao). Analogous 

to (2.9), define p.m.'s ~, and/t2 on R by, for A ~ ~(R) ,  

p ~ ( A ) = # ( ( - ~ , y ) N A ) + ( U o - - a o ) e y ( A ) + c o e x ,  o(A) and 

(2.13) 
u2(A) = Col{(bo - Uo)ey(A) + lt(A f) (y, oo))}. 

Analogous to Case 1, we have/~  is a p.m. satisfying/l~[xi, 0o) < ai _-</t*[x~, ~ )  

for i = 1 . . . .  , i o -  1; and we may  apply the induct ion hypothesis to obtain 

p.m. v~ and martingale Y=(Yt )o~ t<l  satisfying M ( Y )  ~ = v~, Y1 = / t l  and 

Vl[Xi, 0o) = ai for i = 1 , . . . ,  io. We also have/t2 is a p.m. satisfying S xd#2(x) = 
__ ~ * . . .  x~and/t2[x~, ~ ) < - c o t a i  =/~2 [xi, ~ )  for i = i 0 +  1, , N +  1; and m a y a p p l y  

the induct ion hypothesis to obtain p.m. v2 and martingale Z = ( Z t ) o ~ / ~  

satisfying Zo~xio,  M ( Z )  ~ =v2, Z l = # 2  and v2[x i ,~)=c6- ta i  for i = i 0 +  
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1 . . . . .  N + 1. Define martingale X = (Xt)o<t<~ as in Case 1; then one verifies 

as in Case 1 that  M ( X )  ~= v, X1 ~= It, and v[xi,  ~ )  = ai for i = 1 . . . . .  N + 1. [] 

PROOF OF THEOREM 2.1. We prove (2.6); Theorem 2.1 is then established. 

Let p and v be p.m.'s on R with /t < v  </z*.  From (2.2) we have that  

Iz[x,  o o ) <  v[x ,  o o ) < / z * [ x ,  ~ )  for every x E R .  Let C, be a set of  numbers 

Co,,, < c~, n < " " " < Ck(,),, < ~ for each n > 1, for which C, c C, + ~ for all n 

and C : = U , > ~ C ,  is dense in R. For  each n > l ,  a~=v[c~ , , , oo ) ,  

i = 0 . . . . .  k ( n ) ,  are numbers satisfying tz[c~,,,, ~ )  < a~ <lz*[ci, , , ,  oo); and 

hence from Proposition 2.3 there is a p.m. v" E J/( /z)  satisfying v"[ci,,, ~ )  = a~ 

for i = 0 . . . . .  k (n ) .  We have that  l im, v"[c, ~ )  = v[c,  oo) for each c ~ C; and 

v"[c,  oo) = v[c,  oo) from some n onwards, for each c ~ C. This implies v" ~ v. 

From Proposit ion 1.6, it follows that  v ~ J / ( g ) ,  and (2.6) holds. 

3. Martingales with given initial, maxima, and terminal distributions 

The goal of  this section is stochastic ordering characterization of  the 

collection of  p.m.'s 

-/'/(/to,/~1) = {v E ~(R) :  there is a martingale X = (Xt)0~, ~1 with 

(3.1) 
~r0N N = go, M = v, and Xl =/zl}, 

for given p.m.'s go and/z~ on R with S I x I di l l (x)  < ~ .  This is Theorem 3.4. Two 
preliminary characterizations are given of  collections related to (3.1). 

For  the first result (stated in (0.3)), let g be any p.m. with S x d g ( x )  = O, and 

denote Jg0(/z) = ~#/(e0, /z ). Observe that ~/o(#) is nonempty.  Indeed, i f  Y is an 

r.v. associated with p .m. /z ,  define/z+ to be the p.m. on R associated with 

Y+ = Y v 0. Then by taking Xt ==- 0 i f  0 < t < �89 and = Y if  i < t _-< 1, we have 

tha t / z+EJ l0 ( / z ) .  The martingale (Zt)o<=t~ of  Section 2 shows again that  

#* ~dt0(u) .  

THEOREM 3.1. For  a n y  p . m .  on R wi th  S xdlz(X)  = O, 

(3.2) d/0(/z) = {vE ~'(R):/z+ < v  </z*}. 

PROOF. The containment  ' c '  is clear from (2.2). For  a proof  of  the 

containment  ' D '  one can use Theorem 2.1 to obtain a martingale Y = 

(Yt)o<-_t<l for which M ( Y )  ~ = v and Y1 =/z;  and then define martingale X = 

(Xt)o<_t<_l by 

Xt = O i f  O < t < �89 and = Y2t_ ~ i f  �89 < t <-_ l 

to show that  v E J/0(/z). 
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A second proof of the containment '  D ', independent of Theorem 2. l, could 
be carried out as follows. Let ~ be the set of  all functions s: [0, 1] X [0, l] --- 
[0, 1] with the properties s( . ,  v)t for each v fixed; s(u, . ) t  for each u fixed; 
s(u, v) <= u for all u, v; s( -, v) is right continuous for each tr, s(u, v) equals either 
u or limnus(t,v); and s(0, . ) = 0 ,  s(1, . ) =  1. Le t / t  be a p.m. on R with 

~xdlt(x)=O and (Zt)0~tZl be the Dubins and Gilat martingale of (2.4) 
associated with/z. Let the probability space be f~ = [0, 1 ] X [0, 1 ], ~ = M(f~), 
and P = L e b e s g u e  measure on ft. For each s~6~ ,  define (Xt)o~=t<~ on 

(fl, ~ , P )  by Xt(o. )  ) = Zs(t , t~)(O)l)  for co =(o)1, o)2)~'~. Then (Xt)o<~t~l is a 
martingale with respect to filtration (~tn} where ~tt = a(~([0,  t]), (t, 1]) • 
~([0, 1]) for t E [0, 1]. One shows that for each p.m. v with/z+ < v </z*, there 
is a function s in 9 ~ with associated martingale (X,)0<,__<~ satisfying X0--0, 
M(X) ~ v, and XI =~ g by using techniques similar to those used in this paper. 
This involves showing that ( v E ~ ( [ 0 , ~ ) ) :  there is a martingale 

Z ~ = (Z~, .))0_-<tz~ with M(Z ~) ~= v for some s ~ ~ )  is convex and closed with 
respect to weak convergence, and contains an appropriate dense subset, 

obtained by explicit construction. 

Since van der Vecht [23] has shown that (Zt)o<t<__ 1 =(BT(t))O<__t<__l where 
(B~)~ >_-0 is standard Brownian motion and (T(t))o<t<~l is a standard family of 
stopping times of the type described by Azema and Yor [1], we have 

(Xt)o<=t <l ~= (BT(s(t)))o<-_t <1" [] 

For the second result of  this section, let ~ be any p.m. on (R 2, ~(R2)), with 

marginals denoted by /to and /l~, for which ~lxld#~(x)<oo and 
xl~(dXllXo) =x0 a.e. [/to]. (Here and below regular conditional p.m.'s are 

used.) For characterization of such p.m.'s ~, see [16] or [22]. Define 

(3.3) 

d[2(~)  = {v E ~ ( R ) :  there is a martingale X = (Xt)o~t~ 

for which (Xo, X,) ~ ~ and M g v }. 

The following result extends Theorem 3.1. 

THEOREM 3.2. 

,//2(~) = {v E ~'(R): there is a p.m. 2 on R 2, 

(3.4) with marginals go and v, satisfying ~(. ] x)  < 2(. I x)  < (~(. I x))* 

and Ix)a.e. LUo]}. 
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PROOF. Let ~ be any p.m. o n  R 2 with marginals P-0 and/zl given as above. 
For the proof  of the containment ' c '  in (3.4), let v E ~(R)  and X = (Xt)o<=t <=1 
be a martingale for which (X0, X~) =~ ~ and M(X)  ~ v. Let 2 be the probability 
measure on R 2 associated with (X0, M(X)), and 2(A Ix) denote a regular 
conditional p.m. version of P(M(X)  CA [ Xo = x). Then 2 has marginals ~ and 
v, and ~(. [ x) < 2(.  I x) and ex(.) < 2(. [ x) a.e. [/to]. To show that A(. I x) < 
(~(. Ix)) * a.e. Luo], one uses martingales yx __ (Y~)o<=t<=l satisfying Yf~-x  if 
0_-<t=<�89 and ( Y ( , . . . ,  YiX)~=(X2t,_~ . . . .  ,X2 t_ t ) [Xo=X,  if �89 < . . .  _-< 
t, < 1 and n ->_ 1, so that Y~=--x, M ( Y  x) ~ 2(. I x), Y~ ~ ~(. I x) a.e. [/to]. From 
Theorem 3.1, one obtains that 2(.  I x) < (~(. Ix)) * a.e. Luo]. From Theorem 
3.1, one obtains that 2(.  Ix) < (~(- Ix)) * a.e. Luo]. 

To show the conta inment '  3 '  in (3.4), let 2 be a p.m. on R 2 with marginals Po 
and v satisfying 

(3.5) ~(. I x ) < 2 ( .  I x ) < ( ~ ( .  Ix)) * and e x ( . ) < 2 ( .  Ix)a.e. Luo]. 

We ensure appropriate measurability conditions are satisfied in our martingale 
construction by taking the following approach. In the following, the filtrations 
for the martingales are taken to be the natural filtrations. Let R • ~(D[0,  1]) 
be given the product Borel a-algebra, denote by F the set in this space given by 

F = {(x, P): P i s  the p.m. Pvon  D[0, 1] induced 

by some martingale Y = (Yt)o<=t<l 

for which Yo=--x, M ( Y )  ~ 2(. Ix), and Y~ ~ ~(. Ix)}. 

Now F is a Borel set. This follows, for example, from results in Chapter 7 of  
[3]; uniform integrability and right continuity of the processes; and the 
representation 

F = {(x, P)'P(z~;-I(E)) = ~(E Ix), P(T-I(E))  = 2(E Ix), and 

(3.6) 
P(rt0-I(E)) = ex(E) for all E E g;  and 

f k f k nay) II fArCu(j)(.v))dP = rt,(y) II fAn.(j)(y))dP 
j= l  j= l  

for allfl . . . . .  fk E ~ ,  and all u(1) . . . . .  u(k), s, t 

in I with u(j)  < s < tl for k = 1, 2 . . . .  }, 

where xs(y)=ys  and Ty = sup0=<t=< I Yt; 8 is a countable collection of  open 
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subsets of  R generating ~(R); c~ is a countable dense subset of  the unifomly 
continuous functions on R; a n d / i s  a dense subset of[0, l] including number 1. 
Also, from (3.5) and Theorem 3.1, F(x), the section o f F  at x, is nonempty for 
almost all x Lu0]. From the Jankov-von Neumann Selection Theorem (see e.g., 
[3]: Proposition 7.49), one obtains a Borel measurable mapping P from R into 
~(D[0,  1]) for which (x,/5(x)) E F a.e. [/to] (for another selection result along 
these lines, see Proposition 3.3 of[18]). Finally, define p.m. P on D[0, l] by 

P(C)=S(tS(x))(C)dtzo(X) for C ~ ( D [ 0 ,  1]), and let r=(Yt)0_-<t=<l be the 
process associated with P. Then Y is a martingale satisfying for B E ~ ( R  2) and 
.4 

P((Yo, Yt)~B) = : (P(x))((y ~.D" (rto(y), nl(y))~-B })dl.to(X) 

: Is(x, Xl)?~(dXl [X)#o(dx) = ~(B), 

and 

This proves that v ~ ,A~2(~ ) .  [] 

REMARK 3.3. For p.m. ~ given as above with marginals ~ and #1, let/Zo v 1~1 

be the p.m. on R defined by (#0 v/~l)(A)= ~({(x0, xl):XoVX~A}) for A E 
~(R). We claim that 

(3.7) .A~2(~) C {v E ~(R)  : #o v Pl < v < #* }. 

This follows from (3.3), (3.4), and the result that 

The inequality of (3.8) follows from 

(3.9) P [x, o c ) -  -< Y~ PNi [x, oe) f o r a l l x ~ R ,  
i 1 i = l  

for any p.m. 's /zl , . . . , /zn and nonnegative numbers Pl . . . . .  pn with zn= I P~ = 
1. This is proved using the maximal function of Section 2 and observing that 
the p.m. on the left-hand side of (3.9) involves the appropriate rearrangement 
and averaging first, and then a mixture, and the p.m. on the right-hand side of 

(3.9) involves a mixture first, and then the appropriate rearrangement and 
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averaging. To see that  the containment  in (3.7) can be strict, let ~ = 

(1 - x ) .  e(0, 0) + x .  e(1,1), and let v = It* with d.f. H(u) = 0 if  u _-< x,  = 1 - xu - i 
i f x _ - < u < l ,  and --1 if  l = < u < ~ . I n t h i s c a s e , ~ v I t ~ = I t l < V < I t * , b u t  

v ~ C t ( ~ )  = {m} (use e.g., (3.4) and ~(. I x ) =  (~(" Ix))* to see this last 

equality). 

As an immediate  corollary to Theorem 3.2, we have the following result. 

THEOREM 3.4. The set of  p.m.  's ~r It1) equals the set of  p .m. "s v ~ ~(R)  

for which 
(i) there is a p.m. ~ on R 2 with marginals Ito and It1 and S xl~(dxl [ Xo) = Xo 

a.e .  [/to], and 
(ii) there is a p.m.  2 on R 2 with marginals ~ and v andS(.  Ix)  < 2 ( .  Ix)  < 

(~(" [ x))* and ex(. ) < 2(. I x) a.e. [P.o]. 

4. Sharp martingale inequalities and prophet problems 

We first give a result which illustrates the use of  these stochastic order 

comparisons of  the previous sections to prove sharp martingale inequalities. 

THEOREM 4.1. Let it be any p.m.  on [0, 1], with associated d.f. F. Then for 
any martingale (Xt)o~t~l with X1 ~ =It and M = SUpo__<t=~l Xt, 

(4.1) E(M) < f (1 - F(z)) - (1 - F(z))ln(1 - F(z))dz 
J [  o, i1 

(the integrand is taken to be zero if  F(z) = 1). Inequality (4.1) is attained. 

PROOF. Let x = S z d # ( z ) ,  and let Z=(Zt)ozt~=I be a martingale con- 

structed as in the beginning of  Section 2 for which Zo=--x, M(Z)~= It*, and 

Zl ~ It. F rom Theorem 2.1, M(X)  < M(Z)  in the stochastic ordering and so 

E(M(X)) <= E(M(Z)). Letting s(u) = (1 - u)ln(1 - u) - (1 - u) i f  0 =< u < 1 

and = 0 i f  u = 1, inequality (4.1) follows from the calculation 

f~ zdIt*(z)= f t  ( 1 - w ) - l f t  F-l(u)dudw E(M(Z))  = 0, o 0, l) w, i) 

= ~ 0 , 1 ,  r - l ( u  )( -- l n (1 - -  u ))dU = ~o,  l, r -  l(u )ds(u ) 

= lira f - s ( u ) d F - ~ ( u ) + F - l ( b ) s ( b ) - F - l ( a ) s ( a )  
a~O, btl J[a,b] 

= f t  - s(F(x))dx. 
0, 1) 

[] 
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COROLLARY 4.2. ([7]: Inequality (9) ) .Foranymart ingale(Xt)o~,z l  taking 

values in [0, 1] with E X o = X ,  

(4.2) E ( M )  <= x - x In x. 

The inequality (4.2) is attained within this class o f  martingales. 

PROOF. The function x -- x In x is concave on [0, 1]. Inequality (4.2) thus 

follows from (4.1), Jensen's inequality, and ~(0, 1) (1 - F(x ) )dx  = St0. q zdF(z)  = 

x. For attainment of  inequality (4.2), let / l = ( 1 - x ) . e x + X . e l  and let 

(Zt)0=<,=< 1 be a martingale of  the type constructed at the beginning of Section 2 

so that Z o ~ x ,  M(Z)~=It*,  and Z~ ~ /t* = / l .  Then p.m. has associated d.f. 
H ( u ) = O i f  -oo<u___<x,  = l - x u  - ~ i f x _ _ _ < u < l , a n d  = l  ifl___<u<oo; 

and E ( M ( Z ) )  = ~ zdl~*(z) = x - x In x. [] 

We give an interpretation of  our results of  prophet vs. gambler type. 

Consider a subclass ~ of  processes X = (Xt)0 z t z i in D [0, 1] which satisfy the 
property that the gambler can achieve the value sup{EX~ : z is a stop rule for 

(Xt)o -, t -, ~ } as EX~. with some stopping time z *. Now, let X vary within ~ under 

the constraint that X~. has fixed p.m./~, and find the possible distributions of  

M = M ( X )  and associated values of  E M ,  the possible rewards of  the prophet. 
If we assume that ~ is the collection of  uniformly integrable martingales in 

D[0, 1] and that p is a p.m. on R with S Ix [d / t (x)< 0% then a uniformly 

applicable optimal stopping time in this setting is z * ~  1. Theorem 2.1 says 

that if we let X vary within ~ under the constraint that X, = p, so that the 

gambler receives S xdp(x) ,  then the possible distributions of  Mare  the p.m.'s v 
satisfying/t < v < p*, and the possible associated reward for the prophet are 
the values ~ xdv(x)  between ~ xdl t (x)  and ~ xdp*(x).  
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