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OPTIMAL CONTROL OF THE HEAT EQUATION IN AN
INHOMOGENEOUS BODY

A. H. BORZABADI, A. V. KAMYAD AND M. H. FARAHI

Abstract. In this paper we consider a heat flow in an inhomogeneous
body without internal source. There exists special initial and boundary
conditions in this system and we intend to find a convenient coefficient of
heat conduction for this body so that body cool off as much as possible after
definite time. We consider this problem in a general form as an optimal
control problem which coefficient of heat conduction is optimal function.
Then we replace this problem by another in which we seek to minimize a
linear form over a subset of the product of two measures space defined by
linear equalities. Then we construct an approximately optimal control.
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1. Introduction

The optimal control problem for partial differential equation with an optimal
control function as heat conduction is investigated in [4], [5]. In these papers,
the methods are based on “linearization” and have used many of conditions for
finding optimal control. We intend to consider this system by giving a method
based on measure theory used in optimal control problems on a system of diffu-
sion equations and a control function, (see [6], [7], [8], [9], [12], [13]). Then we
will find an approximate optimal control for this problem.
Let D be a bounded domain in Rn with smooth boundary ∂D. We consider

the bounded cylindrical region QT = D × (0, T ) in Rn+1, here T is a positive
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real number, define

ΓT = {x ∈ ∂D, 0 < t < T} = ∂D × (0, T ),
D0 = {x ∈ D, t = 0} = D × {0},
DT = {x ∈ D, t = T} = D × {T}.

We now consider the diffusion equation by operator L as follows:

Lu = ut − div(k(x)∇u) ≡ 0, (1)

where k(x) ∈ C1(QT ) and k(x) ≥ c > 0, (c is a positive constant), with the
initial the condition

u|D0 = ρ(x), (2)

and the boundary condition

u|ΓT = 0. (3)

The function k(·) is the control function and assume it gets its values in a
bounded set as K ⊂ R. We consider the control function v(·) in terminal
condition such that

u|DT = v, (4)

where the control function v(·) ∈ V ⊂ R is Lebesgue measurable.

Definition 1. A triple (u, k, v) of trajectory function u and two control functions
k and v is said to be admissible if:

i) The trajectory function

u(x, t) ∈ C2,1(QT )
⋂

C(QT

⋃
ΓT

⋃
D0)

satisfies the problem (1)-(4).
ii) The control functions k(·) and v(·) are in C1(QT ) and C(DT ), respec-

tively.

Let Υ be the nonempty set of admissible triples. We intend to find a triple
in Υ, such that minimizes the functional

J(u, k, v) =
∫

QT

f◦(t, x, u,∇u, k)dxdt+
∫

DT

g◦(x, v)dx, (5)

where f◦ and g◦ are nonnegative, continuous and real functions respectively on
R2n+3 and Rn+1 and suppose that there exists a constant h > 0, such that

f◦(t, x, u,∇u, k) ≤ h|u|, ∀ (x, t) ∈ QT .
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From (3) we can find the bounded sets A ⊂ R and B ⊂ Rn such that (see [10]),

u(x, t) ∈ A, ∇u(x, t) ∈ B. (6)

We mention that A and B are intersection of such sets, that satisfy in (6), and
furthermore these sets must be locally compact.

2. Change of the space

In the given classical control problem, in general it is not possible to find a
triple in Υ such that to minimize the functional (5). So we may extend the
problem to measure space which is larger than the classic space of controls, then
we obtain a solution in the new space for the problem and finally we obtain an
approximate solution for the original problem in the classic space.

For this purpose in first we consider the following theorem.

Theorem 1. Let u(x, t) ∈ C2,1(QT )
⋂

C(QT

⋃
ΓT

⋃
D0) be a classic solution

of (1)-(4). Then this solution satisfies the following equation∫ T

0

∫
D

(−uϕt + k∇ϕ∇u)dxdt+
∫

DT

ϕudx =
∫

D0

ϕudx, (7)

where ϕ’s are in C1(QT ) and satisfy

ϕ|ΓT = 0. (8)

Proof. Assume Φ be the set of all ϕ’s in C1(QT ) that satisfy in (8). Multiplying
(1) by a member ϕ ∈ Φ, we have

ϕut = ϕdiv(k(x)∇u).

Besides, div(k(x)∇u) = kΔu + ∇k∇u, since by the following definitions (see
chapter VI of [10])

∇u(x, t) =
(

∂u

∂x1
, · · · , ∂u

∂xn

)
, div(w1(x, t), · · · , wn(x, t)) =

∂w

∂x1
+ · · ·+ ∂w

∂xn
,

and

	u = div∇u(x, t) =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
,
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thus

div(k(x)∇u) = div
(
k(x)

∂u

∂x1
, · · · , k(x) ∂u

∂xn

)

=
∂

∂x1

(
k(x)∂u
∂x1

)
+ · · ·+ ∂

∂xn

(
k(x)∂u
∂xn

)

= k(x)
∂2u

∂x21
+ · · ·+ k(x)

∂2u

∂x2n
+

∂k(x)
∂x1

(
∂u

∂x1

)

+ · · ·+ ∂k(x)
∂xn

(
∂u

∂xn

)
= k(x)	u+∇k∇u.

Now by multiplying this equality by ϕ we have

ϕdiv(k(x)∇u) = ϕkΔu+ ϕ∇k∇u,

then by integrating over D,∫
D

ϕdiv(k(x)∇u)dx −
∫

D

ϕkΔudx−
∫

D

ϕ∇k∇udx = 0.

By Green’s theorem [10] for any two differentiable functions z, y on space Q we
have ∫

Q

yΔzdx =
∫

∂Q

y
∂z

∂n
ds−

∫
Q

∇z∇ydx.

Now by substituting of ϕk and u respectively for y and z the second term of the
above formula changes as follows:∫

D

ϕkΔudx =
∫

∂D

ϕk
∂u

∂n
ds−

∫
D

∇ϕk∇udx

=
∫

∂D

ϕk
∂u

∂n
ds−

∫
D

k∇ϕ∇udx−
∫

D

ϕ∇k∇udx.

By using this equality, since ϕut = ϕdiv(k(x)∇u) so we have∫
D

ϕutdx−
∫

∂D

ϕk
∂u

∂n
ds+

∫
D

k∇ϕ∇udx = 0.

Now by integrating of the above equality on [0, T ] we have∫ T

0

∫
D

ϕutdxdt −
∫ T

0

∫
∂D

ϕk
∂u

∂n
dsdt+

∫ T

0

∫
D

k∇ϕ∇udxdt = 0,

and by using part-part integration on the first term we obtain∫
DT

ϕudx−
∫

D0

ϕudx−
∫ T

0

∫
D

ϕtudxdt =
∫ T

0

∫
D

ϕutdxdt.
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Since ϕut is integrable, thus by Fubini’s theorem [15] and from two above equality
we have

−
∫ T

0

∫
∂D

ϕk
∂u

∂n
dsdt+

∫ T

0

∫
D

(−uϕt + k∇ϕ∇u)dxdt+
∫

DT

ϕudx =
∫

D0

ϕudx.

If u be a solution of (1)-(4), then by (8) we have∫ T

0

∫
D

(−uϕt + k∇ϕ∇u)dxdt+
∫

DT

ϕudx =
∫

D0

ϕudx,

for all ϕ’s in C1(QT ). �

In the following we define the weak solution of (1)-(4).

Definition 2. The function u(x, t) in H2,1(QT ) is called a weak solution of
(1)-(4), if this function satisfies in (3) and the equation (7) for all ϕ’s in H1(QT )
that satisfy in (8).
In general there exists a weak solution for the system (1)-(4) and if the weak

solution of this system is in C2,1(QT )
⋂

C(QT

⋃
ΓT

⋃
D0), then this solution is

a classic solution, [10].
Let F ∈ C(Ω) and G ∈ C(Ω), where Ω = QT ×A×B ×K and ω = DT × V .

Now consider the following mappings,

Λ : F −→
∫

QT

F (t, x, u, w, k)dxdt,

and

Π : G −→
∫

DT

G(x, v)dx,

where Λ and Π are positive, continuous and bounded respectively on C(Ω) and
C(ω). By Riesz’s theorem there exist the measures μ and λ such that

Λ(F ) =
∫
Ω

F (t, x, u, w, k)dμ,

and

Π(G) =
∫

ω

G(x, v)dλ.

Of course we can use the Riesz’s theorem becauseQT andDT are locally compact
sets. In fact to each pair (u, k), we correspond a measure μ and to each control
v correspond a measure λ. Now (7) changes to the following form:∫

Ω

Fϕ(t, x, u, w, k)dμ+
∫

ω

Gϕ(x, v)dλ = cϕ, (9)
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where

Fϕ = −uϕt + k∇u∇ϕ, (10)
Gϕ = u|DT ϕ = vϕ, (11)

from (2) we have

cϕ =
∫

D0

ϕudx,

where Fϕ ∈ C(Ω) and Gϕ ∈ C(ω). Using these concepts we can put our non-
classical problem (9) with functional (5) in its definitive form. Thus, we seek
measures μ and λ which minimizes the functional

I(μ, λ) = μ(f◦) + λ(g◦), (f◦ ∈ C(Ω), g◦ ∈ C(ω)), (12)

subject to (by 9):

μ(Fϕ) + λ(Gϕ) = cϕ, ∀ϕ ∈ Φ, (13)

where from (10) and (11)

μ(Fϕ) =
∫
Ω

Fϕdμ,

λ(Gϕ) =
∫

ω

Gϕdλ.

So the problem of minimizing the functional (5) on Υ will convert to the problem
of minimizing (12) by the pairs (μ, λ) such that these pairs satisfy in (13). We
call the set of all positive Radon measures on Ω and ω by M+(Ω) and M+(ω)
respectively. We choose (μ, λ) from M+(Ω) ×M+(ω). Now consider the func-
tions ξ : Ω → R such that these functions are depend only on (x, t) ∈ QT . We
have

μ(ξ) =
∫
Ω

ξdμ = aξ. (14)

Similarly we consider the functions η : ω → R depend only on x ∈ DT and so
we have

λ(η) =
∫

ω

ηdλ = bη. (15)

Note that aξ and bη are the Lebesgue integral of the functions ξ and η on Ω and
ω respectively. Thus if 1Ω and 1ω are characteristic functions of Ω and ω and
LΩ and Lω be the Lebesgue measures of D and DT respectively then

μ(1Ω) = TLΩ, (16)

λ(1ω) = Lω. (17)

3. The existence of approximate optimal measure
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Let P be the subset of measures in M+(Ω) × M+(ω) satisfy the equalities
(13)-(17). We intend to show there exists an optimal measure pair (μ, λ) in P
such that this pair minimizes the functional (12). We assume P is nonempty.
To find an optimal measure pair we must use a convenient topological space

for M+(Ω) × M+(ω) such that P be a compact subset of this space. If we
topologize the space M+(Ω)×M+(ω) by the weak ∗-topology, we can say P is
compact and much as that Theorem II.1 in [11] any continuous function gets its
minimum on a compact subset of a Hausdorff space.

Theorem 2. The set P , that is the set of measure pairs in M+(Ω) ×M+(ω)
that satisfy in

μ(Fϕ) + λ(Gϕ) = cϕ, ∀ϕ ∈ Φ,

μ(ξ) =
∫
Ω

ξdμ = aξ, (18)

λ(η) =
∫

ω

ηdλ = bη

for all ξ’s and η’s that satisfy in (14) and (15) respectively, is compact respect
to weak ∗-topology on M+(Ω)×M+(ω).

Proof. The proof is similar to the proof of Proposition 4.4 in [1]. �

The functional (μ, λ) → μ(f◦)+λ(g◦) is continuous (see [1]) and thus we have
the following theorem:

Theorem 3. There exists an optimal measure pair, (μ∗, λ∗) in P such that for
any pair, (μ, λ) in P

I(μ∗, λ∗) = μ∗(f◦) + λ∗(g◦) ≤ μ(f◦) + λ(g◦) = I(μ, λ),

thus the functional I achieves a minimum on P .

The problem (12)-(13) is an infinite dimensional linear form, the underlying
space M+(Ω) ×M+(ω) is not finite dimensional and the number of equations
in (13) is not finite. In following we intend to find a way for converting this
problem to a finite dimensional problem.

Proposition 1. Let P ⊂ P be the set of measure pairs (μ, λ) in P correspond
to triples (u, k, v) of piecewise constant functions on QT and DT that satisfy in
(18) then P is dense in P respect to weak ∗-topology.
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Proof. The proof is like as the Proposition in appendix of [7]. �

Definition 3. We call the functions ϕi ∈ C1(QT ), i = 1, 2, · · · , total if for
each ϕ ∈ C1(QT ) and for given ε ≥ 0, there exists a positive integer N and real
numbers as γi, i = 1, 2, · · · , N such that

max
QT

|ϕ−
N∑

i=1

γiϕi| < ε,

max
QT

|ϕt −
N∑

i=1

γiϕit| < ε,

max
QT

‖∇ϕ−
N∑

i=1

γi∇ϕi‖ < ε.

Now by (10) and (11) we define

∀ i Fϕi = Fi, Gϕi = Gi, cϕi = ci.

Furthermore we consider a different form of total functions in C(QT ) and C(DT )
respectively corresponding to the functions in (14) and (15) as follows

{ξi, i = 1, 2, · · · }, {ηi, i = 1, 2, · · · },
respectively, such that Lebesgue integral of them on Ω and ω are ai and bi for
aξi and bηi . Now consider the following theorem that its proof is like as the
Theorem 3 of [13].

Theorem 4. Let M1, M2 and M3 are positive integers. Now we consider the
problem of minimizing the functional

I : (μ, λ) → μ(f◦) + λ(g◦), (19)

on the set P (M1,M2,M3) ⊂ P of measures in M+(Ω)×M+(ω) that satisfy in

μ(Fi) + λ(Gi) = ci, i = 1, 2, · · · ,M1,

μ(ξj) = aj , j = 1, 2, · · · ,M2, (20)

λ(ηk) = bk, k = 1, 2, · · · ,M3;
μ(1Ω) = TLΩ and λ(1ω) = Lω,

then as M1, M2, M3 → ∞
inf

P (M1,M2,M3)
[μ(f◦) + λ(g◦)] → inf

P
[μ(f◦) + λ(g◦)].

One can show that (see [11]),

inf
P
I ≤ inf

Υ
J.



Optimal control of the heat equation in an inhomogeneous body 135

We can proceed now the construction of suboptimal triples of trajectory and
controls for functional (5). In the first step we obtain the optimal pairs (μ∗, λ∗)
in P that its existence is shown in Theorem 3. For this purpose, we consider the
pairs (μ, λ) in P correspond to triples (u, k, v) of piecewise constant functions
on QT and DT that satisfy in (18) which we called the set of all these pairs P .
By Proposition 1, P is dense in P , thus we apply Theorem 4 for members of
P∩P (M1,M2,M3). Now by optimal measure obtained from (19)-(20), we find a
triple (u, k, v) of piecewise constant functions. The obtained function v belongs
to L2(DT ), because DT is bounded and v is piecewise constant. By a similar
reason the piecewise constant function k belongs to L2(QT ). We call the function
u corresponding to k, v in any triple by uk

v . Now by the weak solution of (1)-(4)
and Definition 2, since the function uk

v belongs to H1(QT ), so is a weak solution
for (1)-(4) as well. In [10] is shown this weak solution exists. Someone can see a
same framework in [2] and [13], by borrowing a term from [14], we call the triple
(uk

v , k, v) of trajectory and control functions asymptotically admissible if:
i) the control functions

v(·) ∈ L2(DT ), v(x) ∈ V

and
k(·) ∈ L2(QT ), k(x) ∈ K.

ii) trajectory function uk
v is the weak solution of (1)-(4) corresponding to

the control functions k(·) and v(·) and satisfies in (7).

Finally in a theorem we will show if the numbers M1, M2 and M3, that are
introduced in Theorem 4, are sufficiently large and the approximate optimal
measure pair, that is obtained by above manner, be sufficiently good then the
value of J(uk

v , k, v), the value of functional J in (5) by (uk
v , k, v), is close to infP I .

Note that we do not need to obtain the trajectory function which is made by
the control functions k(·) and v(·).

Theorem 5. Let (uk
v , k, v) be the triple of controls and trajectory that is obtained

in above discussion then
i) The triple is asymptotically admissible
ii) As M1, M2, M3 → ∞ then

J(uk
v , k, v)→ inf

P
I.

Proof. Firstly we call the pairs which is considered in P corresponding to the
triples (u, k, v) of piecewise constant functions by (μk

u, λv). In fact P is the set of
all these pairs. By Proposition 1, P is compact in P . Now if we assume that the
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pair (μ∗, λ∗) be the solution of problem (19)-(20) then in each neighborhoods of
(μ∗, λ∗) there exists a member (μk

u, λv) such that

|I(μk
u, λv)− I(μ∗, λ∗)| < ε

2
.

Now by the definition I in (12) we have

|{μk
u(f◦) + λv(g◦)} − {μ∗(f◦) + λ∗(g◦)}| < ε

2
, (21)

and

|{μk
u(Fi) + λv(Gi)} − {μ∗(Fi) + λ∗(Gi)}| < ε

2
, i = 1, 2, · · · ,M1.

Thus by (20) we can write

|{μk
u(Fi) + λv(Gi)} − ci| < ε

2
, i = 1, 2, · · · ,M1. (22)

We do not need to prove (i), since by previous discussion the triple of (uk
v , k, v)

is asymptotically admissible.
To prove (ii), for given ε = 1

M1
, we need to show by choosing M1, M2 and

M3, sufficiently large, then

|J(uk
v , k, v)− {μ∗(f◦) + λ∗(g◦)}| < ε, (23)

where (μ∗, λ∗) is the optimal solution of problem (19)-(20). Now by above
inequality we have

|J(uk
v , k, v)− {μ∗(f◦) + λ∗(g◦)}| < |J(uk

v , k, v)− (μk
u(f◦) + λv(g◦))| (24)

+|(μk
u(f◦) + λv(g◦))− (μ∗(f◦) + λ∗(g◦))|.

Now by (21) is enough to show

|J(uk
v , k, v)− (μk

u(f◦) + λv(g◦))| < ε

2
, (25)

where from (5),

J(uk
v , k, v) =

∫
QT

f◦(t, x, uk
v ,∇uk

v , k)dxdt+
∫

DT

g◦(x, v)dx.

Now by definition of functionals, Λ and Π and the measures μ and λ we suppose
that (μk

uk
v
, λv) is corresponding to triple of (uk

v , k, v), then since,

λv(g◦) =
∫

DT

g◦(x, v)dx,

we have
J(uk

v , k, v)− (μk
u(f◦) + λv(g◦)) = μk

uk
v
(f◦)− μk

u(f◦),
thus is enough to show

|μk
uk

v
(f◦)− μk

u(f◦)| <
ε

2
,
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but the function f◦ ∈ C(QT ) satisfies in f◦(t, x, u,∇u, k) ≤ h|u|, thus∣∣∣(μk
uk

v
− μk

u)(f◦)
∣∣∣ ≤ h

∣∣∣μk
uk

v
− μk

u

∣∣∣ (ϑ). (26)

We suppose that ϑ = u and without loss of the generality assume u > 0. Now
we consider a set of total functions in C1(QT ) as ϕi, i = 1, 2, · · · , N such that
for ε′ > 0 we have ∥∥∥∥∥∇ϕ−

N∑
i=1

γi∇ϕi

∥∥∥∥∥ < ε′, (27)

∣∣∣∣∣ϕt −
N∑

i=1

γiϕit

∣∣∣∣∣ < ε′. (28)

By multiplying relation (27) in ‖∇u‖ we have

−ε′‖∇u‖ ≤ ‖∇u‖
∥∥∥∥∥∇ϕ−

N∑
i=1

γi∇ϕi

∥∥∥∥∥ ≤ ε′‖∇u‖.

For each two vectors a and b we have

−‖a‖‖b‖ ≤ a.b ≤ ‖a‖‖b‖,
thus

−‖∇u‖‖∇ϕ−
N∑

i=1

γi∇ϕi‖ ≤ ∇u.(∇ϕ−
N∑

i=1

γi∇ϕi) ≤ ‖∇u‖
∥∥∥∥∥∇ϕ−

N∑
i=1

γi∇ϕi

∥∥∥∥∥ ,

and by above inequalities we can write

−ε′‖∇u‖ ≤ ∇u.

(
∇ϕ−

N∑
i=1

γi∇ϕi

)
≤ ε′‖∇u‖.

Multiplying above inequality by k(·) and add ∇u.
∑N

i=1 γi∇ϕi, we have

−ε′k‖∇u‖+ k∇u.

N∑
i=1

γi∇ϕi ≤ k∇u.∇ϕ ≤ ε′k‖∇u‖+ k∇u.

N∑
i=1

γi∇ϕi.
(29)

From (28)

−ε′ +
N∑

i=1

γiϕit ≤ ϕt ≤
N∑

i=1

γiϕit + ε′,

and multiply it by −u(·) we find ,

−uε′ −
N∑

i=1

γiϕit ≤ −uϕt ≤ −
N∑

i=1

γiϕit + ε′. (30)
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Now from (29) and (30) we have

−ε′k‖∇u‖ − uε′ +
N∑

i=1

γi(−uϕit + k∇u∇ϕi)

≤ −uϕt + k∇u∇ϕ

≤ ε′k‖∇u‖+ uε′ +
N∑

i=1

γi(−uϕit + k∇u∇ϕi).

Assume Fϕ = −uϕt + k∇u∇ϕ and

Fi = Fϕi = −uϕit + k∇u∇ϕi,

so we can write

−ε′k‖∇u‖ − uε′ +
N∑

i=1

γiFi ≤ Fϕ ≤ ε′k‖∇u‖+ uε′ +
N∑

i=1

γiFi. (31)

But

μk
u(Fϕi) + λv(Gϕi) =

∫
D0

ρϕidx,

and

μk
uk

v
(Fϕi) + λv(Gϕi) =

∫
D0

ρϕidx,

thus

μk
uk

v
(Fϕi)− μk

u(Fϕi) = 0.

By linearity of μk
uk

v
and μk

u we obtain

−μk
u(ε

′k‖∇u‖+ uε′) +
N∑

i=1

γiμ
k
u(Fi) ≤ μk

u(Fϕ)

≤ μk
u(ε

′k‖∇u‖+ uε′) +
N∑

i=1

γiμ
k
u(Fi),

and

−μk
uk

v
(ε′k‖∇u‖+ uε′) +

N∑
i=1

γiμ
k
uk

v
(Fi) ≤ μk

uk
v
(Fϕ)

≤ μk
uk

v
(ε′k‖∇u‖+ uε′) +

N∑
i=1

γiμ
k
uk

v
(Fi),
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From above two inequality,

−μk
uk

v
(ε′k‖∇u‖+ uε′)− μk

u(ε
′k‖∇u‖+ uε′) +

N∑
i=1

γi(μk
uk

v
(Fi)− μk

u(Fi))

≤ μk
uk

v
(Fϕ)− μk

u(Fϕ),

and

μk
uk

v
(Fϕ)− μk

u(Fϕ)

≤
N∑

i=1

γi(μk
uk

v
(Fi)− μk

u(Fi)) + μk
uk

v
(ε′k‖∇u‖+ uε′) + μk

u(ε
′k‖∇u‖+ uε′),

since (μk
uk

v
− μk

u)(Fi) = 0, so

−(μk
uk

v
+ μk

u)(ε
′k‖∇u‖+ uε′) ≤ μk

uk
v
(Fϕ)− μk

u(Fϕ)

≤ (μk
uk

v
+ μk

u)(ε
′k‖∇u‖+ uε′),

thus

|(μk
uk

v
− μk

u)(Fϕ)| ≤ (μk
uk

v
+ μk

u)(ε
′k‖∇u‖+ uε′)

≤ (μk
uk

v
+ μk

u)(ε
′kmeasB + ε′measA)

≤ 4LQT (kmeasB +measA)ε′,

where A and B are the bounded subset of R and Rn that are contain of u(x, t)
and ∇u(x, t) respectively and LQT is the Lebesgue measure on the space of Ω.
Now we choose the ϕ’s functions such that |ϑ(1 − ϕt)| < ε′ and |k∇u∇ϕ| < ε′

then by linearity of measures and

ϑ = ϑ(1− ϕt) + k∇u∇ϕ− (−ϑϕt + k∇u∇ϕ),

we have

|μk
uk

v
− μk

u|(ϑ) ≤ |μk
uk

v
− μk

u|(|ϑ(1− ϕt) + k∇u∇ϕ|) (32)

+|μk
uk

v
− μk

u|(| − ϑϕt + k∇u∇ϕ|).
On the other hand it is easily to show that

|μk
uk

v
− μk

u|(|ϑ(1− ϕt)|) ≤ (μk
uk

v
+ μk

u)ε
′,

and
|μk

uk
v
− μk

u|(|k∇u∇ϕ|) ≤ (μk
uk

v
+ μk

u)ε
′,

thus
|μk

uk
v
− μk

u|(|ϑ(1− ϕt) + k∇u∇ϕ|) ≤ 2(μk
uk

v
+ μk

u)ε
′ ≤ 4LQT ε

′.

Now by (32) and above mentioned inequalities we have

|μk
uk

v
− μk

u|(ϑ) ≤ 4LQT ε
′ + 4LQT (kmeasB +measA)ε′,
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where by choosing

ε′ = min
{

ε

16hLQT

,
ε

16hLQT (kmeasB +measA)

}
,

we have
|μk

uk
v
− μk

u|(ϑ) ≤
ε

2h
,

and by (26)

|(μk
uk

v
− μk

u)(f◦)| ≤
ε

2
,

and the proof is completed. �

4. The approximate optimal pair measures

Let (μ∗, λ∗) be the optimal pair measures that is obtained by solving the
linear programming problem (19)-(20). Now by unitary atomic measures we can
write μ∗ and λ∗ as a finite linear combination of unitary atomic measures as
follows

μ∗ =
M∑

m=1

α∗
mδ(Z∗

m),

λ∗ =
N∑

n=1

β∗
nδ(z

∗
n),

where α∗
m ≥ 0, m = 1, 2, · · · ,M and β∗

n ≥ 0, n = 1, 2, · · · , N , Z∗
m ∈ Ω, z∗n ∈ ω

for any m,n and δ(Z), δ(z) are unitary atomic measures respectively supported
by Z and z.
Now by using Proposition III.3 of [11], by considering dense sets as Ω1 ⊂ Ω

and ω1 ⊂ ω and by choosing Z∗
m ∈ Ω1, m = 1, 2, · · · ,M , and z∗n ∈ ω, n =

1, 2, · · · , N , the optimal pair measures (μ∗, λ∗) that is obtained from problem of
(19)-(20) can be approximate by pair measures (μ, λ) where

μ =
M∑

m=1

αmδ(ZM ), λ =
N∑

n=1

βnδ(zn), (33)

and αm ≥ 0, m = 1, 2, · · · ,M , and βn ≥ 0, n = 1, 2, · · · , N , will obtain by
solving a linear programming problem as follows

Minimize
M∑

m=1

αmf◦(Zm) +
N∑

n=1

βng◦(zn), (34)
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subject to
M∑

m=1

αmFi(Zm) +
N∑

n=1

βnGi(zn) = ci, i = 1, 2, · · · ,M1,

M∑
m=1

αmξj(Zm) = aj , j = 1, 2, · · · ,M2,

N∑
n=1

βnηk(zn) = bk, k = 1, 2, · · · ,M3; (35)

M∑
m=1

αm = 1Ω

N∑
n=1

βn = 1ω

αm ≥ 0, m = 1, 2, · · · ,M, βn ≥ 0, n = 1, 2, · · · , N,

where 1Ω = TLΩ and 1ω = Lω, (LΩ and Lω are defined already). For obtaining
Zm’s and zn’s that are dense in Ω and ω we divided the sets of K, B, A, D
and (0, T ) respectively to m1, m2, m3, m4 and m5 subrectangulars and so we
have M = m1m2m3m4m5 subrectangulars of Ω as Ωm, m = 1, 2, · · · ,M . We
choose from each Ωm a member as Zm = (tm, xm, um, wm, km). In a similar
framework we obtain zn’s by dividing DT and V to n1 and n2 subrectangulars
and we will have N = n1n2 subrectangular as ωn n = 1, 2, · · · , N , and we choose
zn = (xn, vn) from each ωn.

5. Numerical example

In this section we apply the mentioned method for finding a control function
k(·) for an optimal control problem that is to minimize a certain given functional
of u(x, t) at time t = T as ∫ 1

0

u2(x, T )dx, (36)

on a system governed by following parabolic equation

ut = (kux)x, (37)

where suitable initial and boundary conditions are as follows

u(x, 0) = ρ(x), (38)
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ux(0, t) = 0, (39a)

u(1, t) = 0, (39b)
this problem is considered in [5] as well and has a physical motivation as

below.
Suppose an inhomogeneous rod of length 1 is to be constructed with some

specification for the conductivity coefficient k(x), (0 ≤ x ≤ 1). We wish to
design the rod in such a way that with prescribed initial temperature (38) and
boundary conditions (39) the rod cools off as much as possible after T units of
time, The cooling off is measured by (36). Furthermore k ∈ K where

K =
{
k |

∫ 1

0

k(x)dx = ρ, σ ≤ k(·) ≤ τ, k(·) is measurable
}
.

We convert this problem as in Sections 1-4. For this means, observe that the
parabolic system (36)-(39) is equivalent to the problem

ut = (k(x)ux)x (x, t) ∈ (−1, 1)× (0, T ),

u(x, 0) = ρ(x), −1 < x < 1,

u(±1, t) = 0, 0 < t < T,

provided ρ(x) = ρ(−x) and k(−x) = k(x). We set u(x, T ) = v(x) and suppose
that v(x) is a control function and thus our control problem is to minimize∫ 1

−1

v2(x)dx,

by the following constraints

ut = (k(x)ux)x (x, t) ∈ (−1, 1)× (0, T ),

u(x, 0) = ρ(x), −1 < x < 1,

u(x, T ) = v(x), −1 < x < 1,

u(±1, t) = 0, 0 < t < T,

this form of problem is same as problem (1)-(4) by minimization (5) that is
defined in Section.1, where we have

D = (−1, 1), QT = (−1, 1)× (0, T ), f◦(t, x, u, w, k) = 0

and g◦(x, v) = v2. For our numerical example we considered T = 1, ρ(x) =
cos(πx

2 ), A = [0, 1], B = [0, 1] and V = [0, 1]. By assuming σ = 0.05 and
τ = 0.85 and by even property of k(·) we have

K =
{
k |

∫ 1

0

k(x)dx = 2ρ, 2σ ≤ k(·) ≤ 2τ, k(·) is measurable
}
,



Optimal control of the heat equation in an inhomogeneous body 143

thus we have K = [0.1, 1.7]. We divide the intervals (0, T ) = (0, 1), D = (−1, 1),
A, K and B to 5 equal subintervals, thus we have M = 3125. As above we
divide DT = (−1, 1) and V to 25 equal subintervals, thus N = 625. We define
the functions ϕ that are defined in Section.2 as

ϕ(x, t) = (t+ 0.1)p sin(lπx).

Note that ϕ’s satisfy in (8), i.e. ϕ(±1, t) = 0. We consider four various form of
this functions for p = 1, 2 and l = 1, 2 thus in the problem (35) we have M1 = 4
and by (12) and (13)

Gi = Gϕi = vϕi,

Fi = Fϕi = −uϕit + k∇u∇ϕi = −uϕit + kw∇ϕi,

and by definition ϕ in above when p = l = 1 and by i = 1 we have

F1(Zj) = F1((tj , xj , uj , wj , kj) = −uj sin(πxj) + πkjwj(tj + 0.1) cos(πxj),

G1(zj) = G1(xj , vj) = 1.1vj sin(πxj),
as above we define i = 2 with p = 2, l = 1, i = 3 with p = 1, l = 2, i = 4 with
p = 2, l = 2. We consider the functions ξ’s and η’s as functions that are depend
only to (x, t) ∈ QT and x ∈ DT respectively. Note that where k(·) ∈ K we have∫ 1

−1

k(x)dx = 2ρ.

Thus by choosing ρ = 1
2 we can write∫ 1

0

∫ 1

−1

k(x)dxdt = 1,

thus ∫
QT

k(x)dxdt = 1

and we shall consider an additional constraint for problem by setting

H(t, x, u, w, k) = k(x),

where H ∈ C(QT ). Thus we have the following linear programming problem

Minimize
625∑
n=1

βnv
2
n,

subject to
3125∑
m=1

αmFi(Zm) +
625∑
n=1

βnGi(zn) = ci, i = 1, 2, 3, · · · ,M1,

3125∑
m=1

αmξj(Zm) = aj , j = 1, 2, · · · ,M2,
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625∑
n=1

βnηk(zn) = bk, k = 1, 2, · · · ,M3,

3125∑
m=1

αm = 2,
625∑
n=1

βn = 1,

3125∑
m=1

αmkm = 1,

αm ≥ 0, m = 1, 2, · · · , 3125, βn ≥ 0, n = 1, 2, · · · , 625,

by solving this linear programming problem we construct the optimal control
problem by the method that is proposed in [9, Sec.5]. The value of cost function
is 0.0032 and the optimal control function that is a manner for designing rod is
shown in the Fig.1.
Experimentally, the best design is to take the conductivity coefficient “as large
as possible” near the end points and “as small as possible” near the center.

Figure 1. The approximate control function k(·)
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