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Abstract 

Gangliosides play important roles in the normal physiological operations of the nervous system, in par- 
ticular that of the brain. Changes in ganglioside composition occur in the mammalian brain not only during 
development, but also in aging and in several neuropathological situations. Gangliosides may modulate the 
ability of the brain to modify its response to cues or signals from the microenvironment. For example, cultured 
neurons are known to respond to exogenous ganglioside with changes characteristic of cell differentiation. 
Gangliosides can amplify the responses of neurons to extrinsic protein factors (neuronotrophic factors) that are 
normal constituents of the neuron's environment. The systemic administration of monosialoganglioside also 
potentiates trophic actions in vivo and improves neural responses following various types of injury to the 
adult mammalian central nervous system. The possible molecular mechanism(s) underlying the ganglioside 
effects may reflect an action in modulating ligand-receptor linked transfer of information across the plasma 
membrane of the cell. 

Index  Entries: Gangliosides; nervous system; neuroplasticity; cell differentiation; neuronotrophic fac- 
tors; microenvironment; neuronotoxic influences; neurodegeneration; aging; regeneration; ligand-receptor 
information transfer. 

Introduction 

Gangliosides have generated considerable 
interest among neurobiologists for some time, 
owing to their unusual physicochemical prop- 
erties and high concentration in the brain. Early 
studies included demonstrations that gangli- 
osides could restore excitability of brain slices 
to electrical pulses (McIlwain, 1963) and that 
antibody against brain gangliosides could elicit 
epileptic seizures when applied locally to the 
brain surface (Karpiak et al., 1976). Even so, the 
physiological function of gangliosides, espe- 
cially with respect to the nervous system, re- 
mained largely a matter of speculation. 

Use of both tissuecul~_re techniques for neural 
cells and in vivo experimental paradigms has 
now made it possible to explore the question of 
ganglioside action. Among the numerous func- 
tions proposed for gangliosides are those con- 
cerned with promotion of neuritogenesis and 
neuronal differentiation, axonal regeneration, 
and modification of neuronotrophic and neu- 
ronotoxic influences. These developments have 
provided the impetus for considering the effi- 
cacy of gangliosides as potential therapeutic 
agents for neuropathological conditions. 

Some Basic Chemical-Biological 
Considerations of Gangliosides 

Gangliosides are glycoconjugates consisting 
of sialooligosaccharides linked to a ceramide 
moiety (Ledeen, 1983; Svennerholm, 1984; 
Wiegandt, 1982). They represent a unique class 
of molecules that are negatively charged, amphi- 
pathic, and that have a diversity of structures. 
Over 60 molecular species of gangliosides have 
been isolated, from the simple sialylgalactosyl- 
ceramide (GM4) to complex fucosyl- and poly- 
sialogangliosides. The ceramide consists of a 
long-chain fatty acid linked by an amide bond to 
a long-chain base, unsaturated or saturated. 
The sialosyloligosaccharide is ~;-glycosidically 
linked to the ceramide, and consists of a neutral 
oligosaccharide core to which variable num- 
bers of sialic acid residues are attached. Figure 
1 illustrates the structure of the monosialogan- 
glioside GM1. The structural classification of 
gangliosides follows that according to Svenner- 
holm (1963). 

The highest concentrations of gangliosides 
in mammals are found in the gray matter of the 
nervous system, in contrast to other glycosphin- 
golipids (Ando, 1983; Ledeen, 1983,1985). The 

Molecular Neurobiology Volume 3, 1989 



Gangfiosides and Nervous System Function 

GH I 

III 
6 6 

Ha CH2OH HO [H2OH I[ 
v 0 ~ I 6 

.o' .o. o ?,o, ..% "r  v x / - . / v v v  
,v o. " "  

r ~ ,  / 
0 .  st~...~, 

NHAc ~.--4 
OH 

Fig. 1. Chemical structure of GM1 ganglioside. 

gangliosides found in this region differ qualita- 
tively from those found in other tissues, as well 
as within the same tissue. For example, the 
gangliosides present in the central nervous sys- 
tem (CNS) are mostly of the ganglio series, 
whereas those of the peripheral nervous sys- 
tem (PNS) and extra-neuronal tissues contain 
high amounts of the lacto- and globo-series 
gangliosides. 

Gangliosides are synthesized in the cytosol 
and transported to the plasma membrane, 
where they are almost exclusively localized to 
the outer leaflet of the lipid bilayer. The cer- 
amide portion is inserted into the lipid bilayer, 
whereas the sialosyloligisaccharide head group 
protrudes toward the external mileau. Gangli- 
osides comprise a major part of the glyconjugate 
network, extending from the neuronal mem- 
brane surface, with high concentrations having 
been found in synaptic plasma membranes. The 
degree of uniformity of their distribution over 
the plasma membrane remains a question, how- 
ever. Because of their location and diversity of 
structure, gangliosides are well-suited to func- 
tion as cell surface receptors and as modulators 
of various membrane processes. 

Ganglioside Expression 
in Neural Development 
Molecules that may be involved in develop- 

mentally regulated cellular and cell-substratum 
interactions important for neuronal develop- 
ment include glycolipids, particularly gangli- 
osides, and glycoproteins. Impetus for this 
assumption dates back to the original discovery 
of gangliosides in the human brain by Klenk 
(1942), and of inherited defects of ganglioside 
metabolism (Sandhoffand Christomanou, 1979) 
leading to abnormal brain development. 

Different brain areas would be expected to 
differ with respect to developmental profiles of 
gangliosides (Hilbig et al., 1983,1984; R6sner, 
1977; Seybold and Rahrnann, 1985; Vanier et al., 
1971), with different neuronal and glial cell typ es 
containing specific and characteristic sets of 
gangliosides (Byrne et al., 1988; Dreyfus et al., 
1980; Kim et al., 1986). Some general principles 
of an empirical nature, however, are evident in 
the developmental regulation of ganglioside 
expression in the brain. These principles are 
depicted in Fig. 2, and are briefly summarized 
below (cf., R6sner and Rahmann, 1987). 
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Fig. 2. Gangliosides in neuronal development of higher vertebrates. 

Proliferating neuronal and glial precursor 
cells express a simple set of gangliosides, 
predominantly GD3 and GM3 (Goldman et al., 
1984; Sbaschnig-Agler et al., 1988); more com- 
plex gangliosides containing a complete tetra- 
ose moiety are generally absent. After neuro- 
blast mitosis concludes, GD3 content decreases, 
with the post-mitotic neurons now accumu- 
lating highly sialylated complex gangliosides 
(R6sner, 1980,1982). During the growth spurt 
period synaptogenesis commences, accompa- 
nied by a marked increase in neuron size. A 
several-fold increase in ganglioside synthesis 
follows, with a rapid accretion of gangliosides 
synthesized via the a-pathway, like GM1 and 
GDla, in addition to gangliosides derived via 
those of the b-pathway, like GDlb and GTlb 
(R6sner, 1980; Willinger and Schachner, 1980); 
concurrently, expression of polysialogangli- 
osides of the c-pathway is decreased (see 
Tettamanti et al., (1987) for a discussion of the 

lines of biosynthesis of ganglioseries gangli- 
osides). The onset of myelination leads to an 
increasing accumulation of GM1 and GM4. This 
last developmental period, which continues in- 
to adulthood, is preceded by a second rise of 
GD3, most likely representing proliferation of 
oligodendroglia. The relative amounts of b- 
pathway gangliosides increase in adulthood, 
compared to those of the a-pathway (Kracun et 
al., 1986). During aging, total ganglioside-bound 
sialic acid markedly decreases, owing mainly to 
a further loss of GDla (Ando et al., 1986). 

Neurological Disorders 
and Mutations Related 
to Defects of Ganglioside 
Metabolism 
Normal developmental changes in the gan- 

glioside profile of the nervous system may be re- 
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lated to proliferation, neuronal differentiation, 
or myelinogenesis. At the same time, several 
ganglioside storage diseases are known in 
humans: GMl-gangliosidosis (~-galactosidase 
deficiency) and GM2 gangliosidosis (Tay-Sachs 
disease and its ~-hexosaminidase-deficient vari- 
ants (O'Brien, 1983)). In both diseases, the major 
pathological characteristic is the lysosomal ac- 
cumulation of gangliosides in neurons. Ultra- 
structural studies of neurons in humans and 
animals with GM1- and GM2-gangliosidosis 
have revealed aberrant sprouting of neurites 
from axon hillocks (meganeurites) prior to 
neuronal death (Purpura and Suzuki, 1976; 
Purpura and Baker, 1978). 

These metabolic disorders can be used to 
study the relative susceptibility of neuronal pop- 
ulations to abnormal ganglioside catabolism. A 
number of patients with the ~-hexosaminidase 
variant of GM2-gangliosidosis display cere- 
beUar atrophy and motor neuron disease 
(Johnson, 1981), suggesting that these popula- 
tions of neurons either metabolize gangli- 
osides more slowly than others (e.g., retinal 
ganglia) or are more sensitive to ganglioside 
accumulation. GM2-gangliosidosis variants can 
also include the absence of a GlVI2-activator 
protein (transfer protein) (Hinrichs et al., 1986). 
In feline GMl-gangliosidosis, major altera- 
tions of cholinergic function have been found in 
the brain of this animal model (,lope et al., 1985). 

A large number of mouse strains display- 
ing inherited neurological abnormalities have 
been described. In mutations affecting CNS 
myelination, neuraminic acid content is reduced, 
especially in the jumpy mutant (Baumann et al., 
1980). In the quaking mutant brain, which is 
characterized by an excess of polysialogangli- 
osides and a defect in myelin compaction, a pool 
of GM1 linked to myelin is markedly reduced 
(Baumann et al., 1987). Mutations affecting 
cerebellar development have also been studied. 
A considerable reduction of GTla has been re- 
ported in Purkinje cell degeneration, suggest- 
ing that this ganglioside is primarily a neuronal 

constituent enriched in Purkinje cells (Seyfried 
et al., 1982). Although it is difficult to always 
correlate such molecular changes to abnormal 
developmental processes, mutations can still 
provide a useful paradigm for studying the 
sequential phases of nervous system develop- 
ment under the influence of genetic alterations. 
Table I summarizes some of these defects. 

Antiganglioside Antibodies 
and Neurodegenerative 
Diseases 

Studies on ganglioside content and metabo- 
lism have provided much information on their 
role during nervous system development. 
Other insights may derive from neuropatho- 
logical situations that appear to be associated 
with antiganglioside antibodies. Recent stud- 
ies have demonstrated that gangliosides or 
other glycolipid antigens react with human 
IgM monoclonal antibodies in the parapro- 
teinemic neuropathies in which demyelination 
is often a prominent feature (Chou et al., 1986; 
Ilyas et al., 1984,1985; Quarles et al., 1986). 
Serum IgM antibodies reacting with GDla and 
GTlb gangliosides have been reported in pa- 
tients with Guillain-Barr6 syndrome, an inflam- 
matory demyelinating polyneuropathy (Ilyas et 
al., 1988a). Polyneuropathies associated with 
gammopathy have also been described, in which 
IgM monoclonal antibodies recognize the gan- 
gliosides GM1 (Ilyas et al., 1988b), or GM2, 
W4GalN-AcGMlb and IV4GalNAcGDla (Ilyas 
et al., 1988c). In at least one case of motor neu- 
ron syndrome, a monoclonal IgM was demon- 
strated to have antibody activity against gan- 
gliosides GM1 and GDlb (NardeUi et al., 1988). 

High levels of antibodies to gangliosides 
GM1 but not to other gangliosides (GDla, 
GDlb, GTlb, and GQlb) have been reported in 
patients with Alzheimer's disease, and in pa- 
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Table 1 
Genetic Mutant Analysis in the Cellular Expression of Brain Gangliosides 

Cell defects 
Purkinje cell degeneration (pcd/pcd)--GTla deficiency 
Stagger (sg/sg) 
Lurcher mutant (Lc/+) 

Catabolic defects 
Ganglioside storage diseases; GMI-, GM2-gangliosidoses 
(meganeurites) 

Anabolic defects 
t wl mouse mutation---GQ1 deficiency in embryos with failure of neuronal 
differentiation in neural tubes 

tients with Parkinson's disease with dementia 
but not in nondemented patients (Chapman 
et al., 1988). This last observation is of special 
interest, because of the possible clinical over- 
laps between Parkinson's disease with demen- 
tia and Alzheimer's disease (Quinn et al., 1986). 
The pathological significance of antigangli- 
oside antibodies remains to be established; how- 
ever, antibodies with at least some of these spe- 
cificities can cause neuronal damage and/or  
dysfunction in vitro or in in vivo test systems 
(see the following section). 

In Vitro Responses of Neuronal 
Cells to Gangliosides: The Role 
of Neuronotrophic Factors 

Implication of Gangliosides 
as Neuritogenic Agents 
A role for gangliosides, and, in particular, 

GM1, in axonal growth has been suggested 
from several types of studies. The expression 
of GM1 on maturing postmitotic cerebellar gran- 
ule neurons and their growing neurites gradu- 
ally becomes restricted to the cell body as the 
neuron matures (Willi nger and Schachner, 1980). 
Ultrastructural observations of mature neurons 
in humans and cats with genetically determined 
ganglioside storage diseases (GM1- and GM2- 
gangliosidosis), which describe aberrant sprout- 

ing of neurites from affected neurons (Purpura, 
1978; Purpura and Baker, 1977; Purpura and 
Suzuki, 1976) have been interpreted as evidence 
of an effect of altered cell surface ganglioside 
patterns, with the overly abundant ganglioside 
acting as a possible neuritogenic agent~ Further- 
more, anti-GM1 antibodies inhibit neurite re- 
generation in vitro (Spirman et al., 1982) and 
axonal elongation in vivo (Sparrow et al., 1984), 
as well as produce long-lasting morphological 
and behavioral abnormalities when admini- 
stered to developing animals (Kasarskis et al., 
1981). 

Neuroblastoma Cells 
Neuroblastoma cells have been frequently 

utilized as a model system for examining the 
role(s) of plasma membrane constituents in the 
regulation of neurite outgrowth and cellular 
differentiation. Under some conditions, these 
cells may form neurite-like processes and ex- 
press biochemical properties characteristic of 
mature neurons (de Laat and van der Saag, 
1982). Several neuroblastoma cell lines under- 
go morphological differentiation following addi- 
tion to their culture medium of different gangli- 
oside species, including GM1 (Fig. 3) (Leon et 
al., 1982; Morgan and Seifert, 1979; Tsuji et al., 
1983). In N2A cells, the GM1 effect is correlated 
with a stable insertion of the ganglioside into the 
plasma membrane (Facci et al., 1984) and is a c -  
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m l  

Fig. 3. Neuroblastoma N2A cells grown for 24 h in the absence (left) or presence of 100 gM GM1 (right). 

companied by increases in cyclic AMP content 
and protein phosphorylation (Roisen et al., 1986). 
In the neural hybrid clonal cell line SB21B1, 
ganglioside-induced neurite outgrowth is fol- 
lowed by an increased expression of mRNA for 
tubulin (Rybak et al., 1983). 

Neuronotrophic Factor-Responsive 
Neuronal Cells 
Extracellular influences are important for 

neuritogenesis in development and/or  neurite 
repair in the adult. The potential for gangli- 
osides to modulate the behaviors of neuronal 
cells in response to cues or signals from the 
microenvironment must also be considered. 
Several specific examples will be given to illus- 
trate how gangliosides can potentiate the re- 
sponses of neurons to extrinsic protein factors 
that are normal constituents of the neuronal en- 
vironment, the latter agents being neurono- 
trophic factors. 

Information concerning neuronotrophic fac- 
tors derives, in large part, from the discovery 
and investigation of the Nerve Growth Factor 
(NGF). Trophic factors are special proteins pro- 
duced by the innervation territories of neurons, 
where they are taken up by nerve terminals and 
retrogradely transported along the axon to the 
cell body, to carry out their biological actions. 
The work of Levi-Montalcini (Levi-Montalcini, 
1966, 1987) demonstrated that NGF exerts 
trophic control of neural crest-derived sensory, 
and sympathetic neurons. Nerve growth factor 
may also provide atrophic function for some 
cholinergic neurons of the CNS (cf., Korsching, 
1986). Several other macromolecules with neu- 
ronotrophic activity have been purified since 
the identification of NGF. Among these are 
Ciliary Neuronotrophic Factors (CNTF) (Barbin 
et al., 1984; Manthorpe et al., 1986; Watters and 
Hendry, 1987) and Brain-Derived Neurotrophic 
Factor (Barde et al., 1982)o 
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Numerous findings support a neuritogenic 
effect of gangliosides in relationship to the 
presence of trophic influences. The addition of 
ganglioside GM1 to the culture medium of 
chicken embryonic d 8 (E8) dorsal root ganglia 
or El l  sympathetic ganglia, under the ap- 
propriate culture conditions facilitates NGF- 
induced neurite outgrowth (Leon et al., 1984; 
Roisen et al., 1981; Skaper and Varon, 1985) 
(Fig.4). Similar results have also been observed 
in the corresponding dissociated primary neu- 
ronal cell cultures (Doherty et al., 1985; Leon et 
al., 1984; Skaper et al., 1985) (Fig. 5), with a 
proper balance between permissive and inhib- 
itory influences providing for an optimal re- 
sponse (Skaper et al., 1985)--as also observed 
for the responses with ganglia (Skaper and 
Varon, 1985). GM1 has also been reported to 
enhance NGF effects in adult mouse sympa- 
thetic ganglia (Spoerri, 1986), indicating no 
limitation to fetal tissue. More importantly, the 
ability of GM1 to potentiate neuronotrophic 
action is not limited to NGF, but is also effec- 
tive with parasympathetic neurons and CNTF 
(Skaper et al., 1985), and dorsal root ganglia and 
NGF-unlike trophic activities in cell conditioned 
medium (Spoerriand Roisen, 1988). Antibodies 
to GM1 have been shown to block both NGF 
(Schwartz and Spirman, 1982) and conditioned 
media (Spoerri et al., 1988) induced neurito- 
genesis of chicken embryo sensory ganglia, 
suggesting that endogenously occurring GM1 
molecules may play a role in mediating the 
trophic effects. 

The rat pheochromocytoma cell line PC12 
can be used to demonstrate an interesting as- 
pect of GM1 potentiation of trophic factor- 
dependent events. Unlike primary neurons, 
PC12 cells respond to NGF with expression of 
properties characteristic of mature sympath- 
etic neurons, without requiring NGF for sur- 
vival (Greene and Shooter, 1980). Ganglioside 
GM1 has been shown to elicit neurites from 
PC12 cells first primed with NGF (Ferrari et 
al., 1983) and from NGF naive PC12 cells 
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(Ferrari et al., 1983; Katoh-Semba et al., 1984), 
but only when the cells have been treated with 
GM1 and NGF together. Similarly, older 
chicken embryonic (E15) sensory neurons, that 
survive without NGF but that are NGF re- 
sponsive in terms of neurite outgrowth, still 
require NGF for the ganglioside effect (Skaper 
et al., 1985). 

The addition of gangliosides, including 
GM1, to a variety of primary dissociated CNS 
neurons in vitro has been reported to facilitate 
neurite outgrowth, as well (Massarelli et al., 
1985; Skaper et al., 1985)o Specific neurono- 
trophic protein molecules have not been 
established for these cells, but required low 
molecular weight trophic agents have been 
identified (Selak et al., 1985). Addition of GM1 
to cultured fetal mouse mesencephalic cells 
enhanced the biochemical development and 
survival of the dopaminergic and GABAergic 
neurons (Leon et al., 1988), effects that were 
correlated with the stable membrane insertion 
of the ganglioside molecules and the presence 
of cell density-derived trophic influences. 

These neuritogenic effects of ganglioside 
require the integrity of the GM1 molecule, as 
asialo GM1 (lacking sialic acid) has no activity. 
Other ganglioside species are reported to be 
functional. Among them, the major bovine 
brain ganglioside (GDla, GDlb, and GTlb) 
were effective only in the presence of NGF, in 
PC12 cells and E8 chicken sensory neurons 
(Doherty et al., 1986; Ferrari et al., 1983). Using 
again PC12 cells and sensory neurons, epi-GM3 
(a synthetic epimer of GM3 having a neura- 
minidase-resistant [~-ketosidic linkage) (Can- 
nella et al., 1988a) and a glycero-ganglioside (a 
glycerol-containing analog of ganglioside, with 
sialic acid attached to a diglyceride-like struc~ 
ture having two ether-linked alkyl chains) 
(Cannella et al., 1988b) stimulated neurite out- 
growth, indicating that metabolism of the sialic 
acid group of exogenous ganglioside is not di- 
rectly involved in the neuritogenic process, while 
stressing the importance of this moiety. 
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Fig. 4. GM1 ganglioside potentiates the effect of NGF on neurite outgrowth from chicken El l  sympathetic ganglia. 
Ganglia were grown for 48 h with NGF (10 ng/mL) without (A) or with 100 ~ , I  GM1 (B). 

The above in vitro studies bring out two 
very important points concerning ganglioside 
action. First, in neuronal cells with atrophic 
factor requirement for survival and/or  neurite 
outgrowth, ganglioside will not substitute for 
the trophic factor, but will only potentiate the 
response of the cell to the trophic factor. Second, 
the neuritogenic response to ganglioside is a 
time-related gain; in other words, one observes 
that neurite outgrowth begins faster with gan- 
glioside present. However, the number of 
neurite-bearing cells will, ultimately, not be dif- 
ferent (Katoh-Semba et aI., 1984; Skaper et aI., 
1985). Gangliosides, thus, seem to modulate the 

execution of a neurite program, rather than 
actually initiating the program itself. It is im- 
portant to emphasize that ganglioside effects 
in the presence of neuronotrophic factors neces- 
sitate a balance between neurite permissive 
and inhibitory influences that, in turn, permits 
a positive ganglioside effect. This principle is a 
critical one, in that neuronal damage and/or  
death in the adult following traumatic injury 
or pathological events or aging may also re- 
flect a balance between diverse environmental 
signals, and could conceivably determine the 
ability of exogenous ganglioside to exert a bene- 
ficial effect. 
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Fig. 5. Effects of NGF a n d / o r  GM1 on the binding of RT97 to sensory neurons. Dorsal root ganglion cells were cultured 
for 2 d with NGF (5 n g / m L )  + GM1 (100 p.M). Neurite regeneration was quantitated by  measuring the binding of a 
neurofilament protein monoclonal  antibody (McAbRT 97) with an ELISA technique (Doherty et al., 1985). The GM1 
potentiation of NGF-lnduced increase in neurofilament protein expression was statistically significant (p < 0.01, Student 's 
t-test). 

Control (r-l), GM1 (P~), NGF ([]), NGF + GM1 (11). 

Gangliosides and Functional 
Recovery of .the Damaged 
Nervous System 

Understanding the mechanisms underlying 
neuronal plasticity has benefited greatly from 
cellular studies at the in vitro level. Identifi- 
cation of molecules that can influence the way 
neurons respond to extracellular signals may 
facilitate attempts at repair of a damaged nerv- 
ous system. The importance of in vitro models 
cannot be overemphasized, but in vivo observa- 
tions are needed to validate the former. 

Studies from many independent laborato- 
ries have shown that exogenously administered 

gangliosides are effective in enhancing neu- 
ronal repair in experimental in vivo paradigms 
mimicking pathological situations of either the 
peripheral nervous system (PNS) or CNS. An 
overview of the current information on this 
subject is presented below (see also Mahadik and 
Karpiak, 1988; Stein and Sabel, 1988). 

Ganglioside Treatment 
and PNS Repair Processes 
The first indication that exogenous gangli- 

osides can facilitate nervous system repair in 
vivo appeared in 1976. Ceccarelli et al. (1976) 
demonstrated that the parenteral administra- 
tion of a bovine brain ganglioside mixture was 
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capable of enhancing recovery of the dener- 
vated-nictating membrane in the cat. This effect 
was independent of the specific neurons in- 
volved, i.e., cholinergic or adrenergic (follow- 
ing either pre- or post-ganglionic denervation, 
respectively). A similar effect was observed 
with the extensor digitorum muscle of the rat 
(Gorio et al., 1980). Numerous, independent 
reports have supported the conclusion that gan- 
gliosides are effective in improving repair proc- 
esses in various models of peripheral nerve 
damage: traumatic, metabolic, or toxic (Calcutt 
et al., 1988; Gorio et al., 1983; Kalia and Di Palma, 
1982; Kleinbeckel, 1982; Marini et al., 1986; 
Norido et al., 1981,1984; Robb and Keynes, 1984; 
Sparrow and Grafstein, 1982). 

Ganglioside Treatment 
and CNS Repair Processes 
The potentiating role of gangliosides, in 

particular GM1, administration on postlesion 
recovery in the CNS is well-documented. 
GMl-induced improvements of biochemical, 
morphological, and behavioral parameters 
after various types of brain lesion (mechanical, 
chemical, electrolytic) have been observed. The 
first reports described enhanced survival and 
function of lesioned nigral dopaminergic neu- 
rons following GM1 treatment (Agnati et al., 
1983; Toffano et aL, 1983). Subsequent studies 
demonstrated that administration of GM1 gan- 
glioside stimulated the recovery of dopami- 
nergic (Agnati et al., 1985; Commissiong and 
Toffano, 1986; Kojima et al., 1984; Raiteri et al., 
1988; Toffano et al., 1984a, b; Yavin et al., 1987), 
serotonergic (Fusco et al., 1986,1988; Hadjicon- 
stantinou and Neff, 1986; Jonsson et al., 1984), 
and cholinergic (Casamenti et al., 1985; Cuello 
et al., 1986; Oderfeld-Nowak et al., 1984; 
Sofroniew et al., 1986) neurons. GM1 treat- 
ment has been reported to also facilitate be- 
havioral recovery following brain damage 
(Karpiak, 1983; Li et al., 1986; Poplawsky, 1987; 
Sabel et al., 1984). In several cases, the bio- 
chemical and functional ameliorative effects of 

ganglioside have been associated with an in- 
creased survival of specific neuronal popula- 
tions (Agnati et al., 1983; Commissiong and 
Toffano, 1986; Cuello et al., 1986; Sofroniew et 
al., 1986; Toffano et al., 1984b). 

One interesting paradigm among the exper- 
imental models of neurochemical CNS lesions 
is that that develops following administration 
of 1-methyl -4-phenyl - l ,2 ,3 ,6- te t rahydro-  
pyridine (MPTP). MPTP induces neurodegen- 
erative changes in mammalian brain and clini- 
cal symptoms in humans  that resemble 
Parkinson's disease, with loss of dopamine- 
containing nigrostriatal neurons (Heikkila et al., 
1984). In this case also, treatment with GM1 
results in elimination of the accompanying bio- 
chemical and behavioral deficits (Hadjiconstanti- 
nou et al., 1986; WeihmuUer et al., 1988). 

A relationship between in vivo effects of 
ganglioside and neuronotrophic factors--an 
interaction strongly supported from in vitro ob- 
servat ions-may well exist. It is important to 
keep in mind that trophic factors also serve a 
functional role in the adult CNS where, for 
example, NGF affects forebrain cholinergic neu- 
rons (cf., Korsching, 1986). Trophic activities, 
including NGF, increase at the lesion site fol- 
lowing damage (Nieto-Sampedro et al., 1983; 
Gasser et al., 1986). Intraventricular injections 
of NGF are found to prevent retrograde de- 
generation of septal cholinergic neurons (Hefti, 
1986; Kromer, 1987; Williams et al., 1986). Also, 
ganglioside effects in vitro are obtained at con- 
centrations (Leon et al., 1988) compatible with 
the ganglioside concentrations obtainable in 
the brain after its systemic administration in 
vivo (Ghidoni et al., 1986). 

Recent findings support the hypothesis that 
monosialoganglioside can potentiate neurono- 
trophic factor effects in vivo. Cuello et al. (1989) 
reported that both NGF and GM1 prevented the 
biochemical and morphological changes ac- 
companying lesions to rat basal forebrain neu- 
rons; NGF and GM1 acted synergistically to 
stimulate choline acetyltransferase activity in 
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the nucleus basalis magnocellularis following 
unilateral decortication and in cultured septal 
neurons (see also Di Patre et al., 1989). In a PNS 
model, Vantini et al. (1988) showed that exo- 
genous GM1 facilitates the ability of NGF to 
antagonize vinblastine-induced sympathecto- 
my in neonatal rats, as measured by evaluat- 
ing noradrenergic innervation in the heart and 
spleen; GM1 itself was ineffective on vin- 
blastine action. 

The ability of GM1 to act in vivo appears to 
depend on the extent of the lesion applied 
(Gradkowska et al., 1986; Stephens et al., 1988; 
Toffano et al., 1984a), suggesting the need for a 
minimum level of endogenous neuronotrophic 
support. This idea is consistent with in vitro 
studies, where the facilitating action of GM1 is 
dependent upon a proper balance between per- 
missive and retarding influences acting together 
with NGF or other neuronotrophic factors 
(Katoh-Semba et al., 1984; Skaper and VaIon, 
1985; Skaper et al., 1985). 

This model implies that the potentiating ef- 
fect of GM1 in vivo is related to an enhancement 
of neuronotrophic activity already present in 
the damaged tissue, and slowly increasing. 
Such trophic activity by itself would be in- 
adequate after injury, especially during secon- 
dary neuronal damage, but would be made 
effective by the presence of GMl-- in  effect, 
allowing the neurons to surpass a critical "set 
point." The effects of ganglioside on CNS le- 
sions may thus reflect a facilitation of neuronal 
action dependent on an injury-induced supply 
of trophic factor(s). In other words, gangli- 
osides are more likely to act on cellular events 
that characterize a neuron's response to a neu- 
ronotrophic factor. 

Brain Ischemia and Excitatory 
Amino Acid Neurotransmitter- 
Induced Neurodegeneration: 
Gangliosides as 
Neuroprotective Agents 
The observed efficacy of monosialogangli- 

osides like GM1 in improving neural behaviors 
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following brain lesions has led several labor- 
atories to explore the action of these molecules 
in paradigms where a brain insult is thought to 
result from the action of excitatory amino acid 
neurotransmitters. Under physiological cir- 
cumstances, the excitatory amino acid gluta- 
mate (or related compounds) is released at the 
synaptic cleft, leading to postsynaptic action 
and mediation of key plastic responses such as 
long-term potentiation. Excessive release of 
glutamate under neuropathological situations, 
however, like cerebral ischemia, anoxia, or hypo- 
glycemia may also be responsible for the conse- 
quent neuronal death (Rothman and Olney, 
1986). Glutamate receptor antagonists are pro- 
tective when applied to both animal models of 
ischemia, and to CNS neurons in vitro exposed 
to glutamate directly or to anoxia (Choi, 1988). 
These observations provide a strong basis foran 
excitotoxic hypothesis of neurotoxicity (Roth- 
man and Olney, 1987). 

Most strategies directed to neuroprotection 
have relied on glutamate, in particular, N- 
methyl-D-aspartate (NMDA) type antagonists. 
Unavoidable side effects associated with the 
use of any NMDA antagonists will be events 
directly attributable to altered synaptic trans- 
mission. Loss of normal NMDA receptor- 
mediated synaptic plasticity, perhaps affecting 
learning and memory (Collingridge and Bliss, 
1987) could prove quite undesirable. Likewise, 
blocking Ca 2§ channels could interfere with 
normal excitatory neurotransmission. How- 
ever, a more novel approach to the problem of 
excitotoxin-induced neurodegeneration has 
made use of monosialogangliosides. GM1 (or 
its inner ester derivative) have been observed 
to protect the brain against various biochem- 
ical and functional deficits occurring in differ- 
ent experimental models of cerebral ischemia, 
either focal or global (Cahn et al., 1986; Karpiak 
et al., 1987,1988; Komatsumoto et al., 1988; 
Seren et al., 1989; Tanaka et al., 1986). Excito- 
toxin brain damage induced by ibotenic acid, a 
glutamate receptor agonist (Coyle, 1982) has 
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also been reported to be protected by GM1 
administration (Mahadik et al., 1988). 

Recent studies have shown that gangli- 
osides, including monosialogangliosides, are 
able to reduce excitatory amino acid-related 
neurotoxicity in cultured cerebellar granule 
cells, under both normoxic (Favaron et al., 1988) 
and anoxic (Facci et al~ 1989) conditions. Fig- 
ure 6 illustrates the ability of GM1 and its inner 
ester derivative (siagoside) to protect against 
glutamate neurotoxicity. The following section 
will discuss some considerations for possible 
ganglioside mechanisms of action. 

Molecular Mechanisms 
of Ganglioside Action: 
Implications in Membrane- 
Mediated Transfer 
of Information 

Exogenous vs Endogenous 
Gangliosides 

Ganglioside-initiated events, as well as the 
ganglioside-induced potentiation of neurono- 
trophic factor effects on neuronal cells, very 
likely involve a modification of cell surface 
properties consequent to the stable insertion of 
the ganglioside. However, the molecular mech- 
anism(s) underlying the biological effects of the 
ganglioside have yet to be identified. One im- 
portant question is whether the exogenously 
inserted ganglioside molecules behave as do the 
endogenous ones. 

Studies using artificial and natural mem- 
branes have shown that the concentration of 
gangliosides in a given membrane area is not 
static but depends on dynamic interactions 
among ganglioside polar head groups, dival- 
ent cations, and cell surface glycoproteins 
(Tettamanti et al., 1985). Gangliosides are able 
to spontaneously incorporate into the phos- 
pholipid structure of artificial membranes and 
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display considerable lateral mobility (Sharon 
and Grant, 1978). Under the appropriate ionic 
environment, the gangliosides tend to concen- 
trate into clusters, thereby affecting the curva- 
ture, local composition, and stability of the 
membranes (Maggio, 1985). 

The examination of ganglioside organiza- 
tion in natural membranes presents a more dif- 
ficult problem, since highly specific probes are 
generally not available. One notable exception 
is the B subunit of cholera toxin, which dis- 
plays an almost absolute affinity for the gan- 
glioside GM1 (Fishman, 1982). By using the B 
subunit together with fluorescently labeled 
cholera toxin antibodies, it has been possible to 
show that the distribution of endogenous GM1 
molecules on the surface of lymphocytes at 4~ 
changes at 37~ to form a cap at one pole of the 
cells (Revesz and Greaves, 1975; Spiegel et al., 
1984). This capping phenomenon is accompa- 
nied by cocapping of the cytoskeletal protein 
actin and is inhibited by the actin destabilizing 
drug cytochalasin B (Kellie et al., 1983), suggest- 
ing that GM1 may be associated with mem- 
brane proteins, and in turn linked to the cy- 
toskeletal system. The B subunit has also been 
used to evaluate the role of membrane gangli- 
osides in the regulation of fibroblast cell growth 
(Spiegel and Fishman, 1987). 

Radioactively labeled GM1 is known to read- 
fly associate with cells in a temperature-, time-, 
and concentration-dependent manner (Callies 
et al., 1977; Facci et al., 1984; Radsak et al., 1982; 
Skaper et al., 1988). Other than a labile type of 
association with the cell surface, there occurs a 
stable, trypsin-resistant type of association, 
with the ganglioside intercalated into the outer 
layer of the membrane (Schwarzmann et al., 
1983). Formation of caps has also been ob- 
served after addition of fluorescently labeled 
GM1 to lymphocytes treated with the cholera 
toxin B subunit (Spiegel et al., 1984). In addi- 
tion, the stably associated GM1 is functionally 
and metabolically active (Fishman et al., 1983; 
Moss et al., 1976). This suggests that exogen- 
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Fig. 6. Ganglioside GM1 and its inner ester derivative (Siagoside) prevent morphologic evidence of glutamate neuro- 
toxicity. Granule cells were prepared from cerebella of 8-d-old rat pups (Gallo et al., 1982) and used after 12 d in vitro. Cells 
were treated with 100 p.M GM1 or Siagoside for 2 h, followed by washout with serum and a 3-h pulse of 500 p.M glutamate. 
Cultures were returned to their normal medium and photographed under phase microscopy 24 h later. Control (A), gluta- 
mate (B), glutamate plus GM1 (C), or siagoside (D). 

ous gangliosides, once inserted into the plasma 
membrane, display a dynamic behavior similar 
to that of endogenous gangliosides. Good evi- 
dence for this also comes from the finding that 
treatment of astroglial cells (which contain en- 
dogenous GM1)with the B subunit markedly 

reduces DNA synthesis (Facci et al., 1988), an 
effect reproduced in C6 glioma cells (devoid of 
endogenous GM1) by insertion of exogenous 
GM1 or by treatment with neuraminidase to 
generate endogenous GM1 from poly-sialo- 
gangliosides (Skaper et al., 1988). 

Molecular Neurobiology Volume 3, 1989 



Gangliosides and Nervous System Function 187 

Ganglioside Modulation 
of Cell-Ligand Associated Events 
Gangliosides seem to be involved in the 

molecular machinery responsible for cellular 
responses to external ligands. These situations 
are different from those where ganglioside in- 
teracts directly with the external ligand, e.g., 
in the action of cholera toxin B subunit  Rather, 
the ganglioside action is presumed to operate 
via modulation of protein complexes playing 
key roles in signal reception and transduction. 
Ganglioside-dependent modulation of mem- 
brane receptor function has been suggested by 
the modification of protein kinase activity of 
polypeptide growth factor receptors by gangli- 
osides GM3 and GM1, but not by other types 
of glycolipids (Bremer et al., 1986; Hanai et al., 
1988a,b). Furthermore, these observations cor- 
relate with the effects of exogenous addition 
of the gangliosides on mitogen-dependent cell 
growth stimulation (Bremer et al., 1986; Hanai 
et al., 1988a)o Among other membrane-associ- 
ated proteins known to be influenced by exo- 
genous gangliosides are sodium channels 
(Carpenter et al., 1988; Spiegel et al., 1986) and 
enzymes, such as Na § K§ (Esmann et 
al., 1988; Fass et alo, 1987; Leon et al., 1981; Li et 
al., 1986; Vyskocil et al., 1985)o 

The activities of several protein kinases are 
also regulated by gangliosides. This gangli- 
oside action may be particularly relevant, given 
that protein phosphorylation represents one 
of the most important post-translational mod- 
ification systems in the regulation of biological 
processes. Most of the kinases affected are 
membrane-associated proteins, and have been 
studied in cell-free or whole-cell preparations; 
the ganglioside effects observed have been ei- 
ther inhibitory or stimulatory, depending upon 
the particular system. These proteins include 
two distinct enzymes from guinea pig brain 
(Chan, 1987a,1988), a Ca 2§ ecto-kinase in GOTO 
neuroblastoma cells (Tsuji et al., 1985), a Ca 2§ 
dependent protein kinase from rat brain 

(Goldenring et al., 1985), Ca2+/calmodulin - 
dependent protein kinase (Cimino et al., 1987), 
and protein kinase C (Cimino et al., 1987; Kreut- 
ter et al., 1987; Vaccarino et al., 1987). Although 
the exact physiological significance of gangli- 
oside-responsive protein kinases is not known, 
it is possible that certain functions related to 
gangliosides in the nervous system are medi- 
ated through their activation or inhibition. 
One such case may be that of ganglioside- 
mediated protein phosphorylation in myelin 
(Chan, 1987b). 

Ganglioside Implications in Plasma 
Membrane-Cytosk eletal 
Associated Events 
and Intracellular Responses 
Exogenous, membrane-inserted gangliosides 

can interact not only with each other, but with 
cell surface glycoproteins (Felgner et al., 1983), 
suggesting that the inserted ganglioside may 
self-associate to form microdomains in the lipid 
bilayer. The formation of compositional do- 
mains with differing ganglioside content may 
cause local changes in membrane fluidity that 
can, in turn, influence processes taking place at 
the cell surface (e.g., receptors or kinases) as 
well as at the intramembrane level. The possi- 
bility that ganglioside clusters may be associ- 
ated with intramembrane proteins connected 
with the cytoskeletal system suggests that 
gangliosides may be involved in the regula- 
tion of the metabolic response of the cell to 
external stimuli. An example is the implica- 
tion of gangliosides in cell adhesion phenom- 
ena (Blackburn et al., 1986; Cheresh et al., 1986; 
Thompson et al~ 1986). 

Functional implications of gangliosides con- 
cerning a plasma rnembrane-cytoskeletal con- 
nection can also relate to the mechanism of 
genome expression. Either stimulatory or in- 
hibitory effects can be observed, depending on 
the parameter under study. One example is 
that of the GMl-induced production of mRNA 

Molecular Neurobiology Volume 3, 1989 



188 

for tubulin in a hybrid neuroblastoma cell line 
during differentiation (Rybak et al., 1983). GM1 
is also reported to increase tubulin gene tran- 
scripts when administered following a CNS 
lesion (Yavin et al., 1987). A different case can 
be seen from studies using cultured astroglia. 
This CNS glia cell type undergoes a change 
in morphology in response to cyclic AMP- ele- 
vating agents that resembles, morphometrically, 
reactive astroglia in vivo. Treatment with GM1 
prevents or reverses this morphological reac- 
tion (Skaper et al., 1986), independent of cyclic 
AMP (Facci et al., 1987). Such cyclic AMP- 
stimulating agents also increase levels of mRNA 
for Glial Fibrillary Acidic Protein (GFAP), a 
major cytoskeletal protein of astroglia; this 
nuclear response is reduced by GM1 (Skaper 
et al., unpublished observations). 

A Working Model for the Action 
of Exogenous Gangliosides 

Any model to define the molecular bases of 
ganglioside action must account for two as- 
pects: 1. the relationship between gangliosides 
and their functional involvement, and 2. their 
ability to affect a wide variety of cellular 
events. The diversity of oligosaccharide chains 
of gangliosides imparts a high potential for 
specific binding to a variety of ligands. Attach- 
ment of this carbohydrate chain to a lipophilic 
ceramide moiety, on the other hand, provides 
for transmission of conformational changes to 
the membrane imparted by ligand binding. As 
the inserted ganglioside is now an integral part 
of the membrane, variability in ganglioside 
composition may be critical in conferring to the 
membrane microenvironment special proper- 
ties in selecting membrane-associated proteins 
for modulation. Ganglioside interactions with 
external ligands and membrane components 
can influence membrane dynamics, leading to 
a local reorganization of membrane architec- 
ture. Such structural changes can be of impor- 
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tance in modulating the activity of membrane 
proteins, e.g., receptors, ion channels, and 
signal-transducing systems= Furthermore, the 
nature and extent of the endogenous gangli- 
oside complement may influence the effect of 
the exogenous ganglioside (Hanai et al., 1988b). 
Figure 7 presents these concepts schematically. 

The application of this scheme to exogen- 
ous ganglioside action on neuronal cell be- 
haviors is consistent with currently available 
information. Ganglioside-mediated potentia- 
tion of neuronotrophic factor action can be 
viewed as operating via modulation of cell sur- 
face transduction events or enhancement of 
specific trophic factor-induced post-transla- 
tional steps. The trophic protein initially binds 
to cell surface receptors, with the ensuing 
production of second messenger species. These 
messenger molecules, and /o r  the trophic factor 
complex itself, may eventually alter cellular 
processes at the nuclear level, the latter events 
expressing themselves as trophic effects. In the 
case of GM1 and NGF, PC12 cells treated with 
GM1 do not appear to alter the binding con- 
stant of their NGF receptors (Ferrari et al., 1983). 
The entire sequence of events in NGF inter- 
action with its target neuron receptors--bind- 
ing, sequestration, and internalization--has not 
yet been fully explored, however, under GM1 
action. One post-translational event, namely, 
NGF stimulation of tyrosine hydroxylase 
phosphorylation, is reported to be potentiated 
by GM1 (Hilbush and Levine, 1988) in PC12 
cells. Phosphorylation of this enzyme, the rate- 
limiting step in catecholamine neurotransmit- 
ter synthesis, is necessary for its activity. 

The action of gangliosides in modulating 
excitatory amino acid neurotoxicity can also 
fit within this model. Glutamate treatment of 
granule cells is observed to provoke a trans- 
location of protein kinase C from cytosol to 
membrane (Vaccarino et al., 1987), a process 
that depends on extracellular Ca 2§ A pre- 
exposure of the cells to ganglioside diminishes 
this translocation, without affecting glutamate 
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Fig. 7. A proposed  mode l  for exogenous ganglioside action as mediator  of information transfer  across the p lasma 
membrane.  The inserted gangl iosides  can be envisaged as: modula t ing  extracellular matrix proteins or  interacting with 
external ligands; modu la t ing  functional membrane  proteins; or modula t ing  intracellular response  mechanisms (e.g., 
genome expression). 

binding to its receptor (Vaccarino et al., 1987) 
or glutamate-triggered intracellular signals, 
like c-fos induction, opening of receptor gated 
Ca 2§ channels or phosphoinositide hydrolysis 
(Favaron et aL, 1988). Thus, gangliosides seem 
to influence the neuronal response to an ex- 
tracellular cue (glutamate) not at the level of 
receptor-activated signal transduction, but rather 
at the level of secondary ceUular responses. In 
contrast to antagonists directed to glutamate 
recognition sites, the action of gangliosides 
would not be expected to adversely impact upon 
normal neuroplastic behaviors. 

Perspectives for the Future 

Understanding the mechanisms underly- 
ing neuronal plasticity is one of the major tasks 
facing neurobiological research today. The cen- 
tral nervous system is no longer considered to 
be a static and structurally irreparable unit. 
Experimental evidence shows that even the 
mature CNS carries the potential for structural 
reorganization and the resulting functional re- 
covery following brain damage. This intrinsic 
neuroplasticity, in response to external noxious 
stimuli, may be mediated though endogen- 
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ous factors. At the same time, microenviron- 
mental  cues may also carry restrictive signals 
directed to neurons. The ability to alter the 
responses of neuronal  cells to such extrinsic 
influences will formulate a powerful  means for 
modulat ing the neuroplastic behaviors of these 
cells--a critical consideration for promoting 
regeneration and repair processes in the brain. 
As we have discussed in this article, gangli- 
o s i d e s u a  class of natural ly occurring glyco- 
sphingol ipids--have been shown in many  
studies to have the capacity to reduce and even 
reverse the consequences of damage  to the 
nervous system induced  by toxic, traumatic, 
ischemic, or metabolic causes. 

Disruption of this finely tuned balance of 
extracellular influences by axotomy or dis- 
ruption of the blood supply are probably the 
two major causes of neuronal  death in the 
CNS; in some instances, both sequelae may be 
operative. Functional repai r / recovery  of the 
damaged  CNS will require, at least in part, 
interventions that are directed at manipulat ing 
the brain's own plastic reactions. The evidence 
regarding the effectiveness of monosialo- 
ganglioside administrat ion on the outcome fol- 
lowing different paradigms of experimentally- 
induced acute brain damage  has led to studies 
on the potential use of GM1 in the pharmacoth- 
erapy following acute brain injury, especially 
stroke, in humans.  Prel iminary clinical studies 
have shown that GM1 has a favorable effect on 
the rehabilitation of patients following ischemia 
or cerebral hemorrhage  (Argentino et al., 1989; 
Bassi et al., 1984,1986; Battistin et al., 1985). 
Ganglioside GM1 has also been reported to 
have a favorable effect on the recovery of neuro- 
logical and neuropsychological  deficits during 
the rehabilitation of patients following closed 
traumatic head injury (H6rmann, 1988). Fur- 
thermore, gangliosides have found application 
in the treatment of a number  of peripheral neu- 
ropathies (cf., Massarotti, 1986). 

The information discussed here supports the 
potential pharmacological  action of gangli- 
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osides in improving the recovery of nerve cell 
distress or impai rment  due  to insufficiencies of 
neuronotrophic influences or excesses of neu- 
ronotoxic activities. These two aspects are not 
necessarily mutual ly  exclusive: conceivably, 
neuronal  cell viability and  fi.mction will ulti- 
mately depend  on the balance be tween these 
two types of extracellular signals. Clearly, 
much work  remains to be done.  It is hoped  that 
this article will provide a s t imulus for further 
studies to define the cellular and  molecular  me- 
chanisms under ly ing  the ganglioside effects in 
vivo, as well as their action in therapeutic settings. 
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