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Abstract. Usingthesetoftrialspinors~N~(Ui~^ , i =  I ..... N}and the Dirac-Coutomb 
( \ ~-,ul/ 

Hamiltonian (H~) we discuss the role of the minimax theorem in relativistic Hartree-Fock 
calculations. In principle, the minimax theorem guarantees the occurrence of an upper bound. 
We also consider a scaling of the functions u~ and discuss the condition to derive the relativistic 
hypervirial theorem; the variational procedure represented by the condition serves as an 
example of the minimax technique. Single zeta calculations on H~-, H 2 and He are analysed. 
The effect of enlarging the basis is investigated for the He atom. The "upper bound" obtained 
by using coherent basis spinors differs from the result of the (random) linear variation using the 
kinetically balanced basis set by an amount which is at most of order c-'*. Use of the coherent 
basis set is advocated. 
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I. Introduction 

Many  methods  of quan tum chemistry are based on the use of the variat ional  principle 
for solving a wave equation. These methods  work  whenever the eigenvalue that  is 
sought is the absolute min imum of the expectat ion value of some opera to r  as a 
functional of trial functions of a certain class. But, as the Dirac  Hami l ton ian  (Ho) has 
negative-energy eigenfunctions, the min imum of the expectat ion value ( H o )  may  not 
be an upper  bound  to the lowest posit ive-energy eigenvalue (Eo). It is quite possible that  
an upper  bound is obta ined from variat ion in a restricted domain;  however,  the bound 
will be in error  unless the negative-energy functions are opt imal ly  removed from the 
trial spinor. Early investigators of  relativistic a toms  were aware  of this fact (Kim 1967; 
Desclaux 1973). However,  since the angular  form of an a tomic  spinor is exactly known 
and the radial componen t s  can be easily estimated, this difficulty was not serious. A 
molecular  spinor is devoid of these simplifying features (Oreg and Malli 1976; Da t t a  
and Ewig 1982; Lee and McLean  1982). Therefore,  the need of a method  for separat ing 
the negative energy states from the trial molecular  spinors was felt (Dat ta  1980). Such a 
method must  have two impor tan t  features: {i) it must  apply to systems beyond the non- 
relativistic limit, and (ii) calculations using even a small basis set should give a good 
est imate of the relativistic corrections. In the non-relativistic limit, relativistic 
corrections can be calculated by using the Pauli equation.  

M a n y  authors  have a t tempted  to find a safe me thod  of relativistic calculations 
(Rosicky and Mark  1975; Da t t a  1980, 1984; Morr i son  and Moss  1980: Drake  and 
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Goldman 1981; Datta and Ewig 1982; Lee and McLean 1982; Mark and Schwarz 1982; 
Schwarz and Wallmeier 1982; Schwarz and Wechsel-Trakowski 1982; Gazdy 1983; 
Ishikawa et al 1983; Ketley and Moss 1983; Ladik et al 1983; Datta and Jagannathan 
1984; Dyall et al 1984; Gazdy and Ladanyi 1984; Laaksonen and Grant 1984a, b; 
Stanton and Havriliak 1984; Sepp and Fricke 1985; Wood et al 1985; Datta and 
Devaiah 1986; Grant 1986; Rutkowsky 1986). Here we focus our attention only on the 
approaches which utilize the standard variational principle (that is, extremization of 
( H o ) ) in order to exclude the negative-energy states. 

The Dirac equation, Ho~b = ~@ has four-component solutions (spinors). Here, Ho = 
/ \ 

c2fl+ c ~ ' p + V , V  being an external potential. Atr ial  spinor is written as N ( ~ )  
\ - - /  

where the upper (u) and the lower (l) components themselves are two-component 
spinors. We assume that l = ~u  and study the variation of ( H o )  with respect to ~. If 
6( Ho )  = 0 for all variations 6~ and arbitrary u, then ~ = ~o = c(~O + c 2 _ V)- la 'p 
where e ° is the stationary value and a's are the Pauli spin matrices. Rosicky and Mark 
(1975) pointed out that t~ ° gives an adequate representation of the lower component. 
The two components, Nu and N(t°u, are said to be kinetically balanced. Lee and 
McLean (1982) as well as Ishikawa etal  (1983) used D = ~ a = ( 2 c ) - l a ' p  to form 
approximately balanced basis spinors and contended that the final kinetic balance can 
be achieved by using a large basis set. A "kinetically balanced" basis set consists of the 
set of upper component functions {u} and the set of lower component functions {Z~} 
where 2' = a . p u Y ,  Y being an orthonormalizing factor (Mark and Schwarz 1982; 
Schwarz and Wallmeier 1982; Schwarz and Wechsel-Trakowski 1982). Stanton and 
Havriliak (1984) have shown that if the basis set is "kinetically balanced", the 
variational calculation is stable with the converged matrix eigenvalue correct through 
order c- 2. Wood et aI (I 985) investigated the variational properties associated with the 
partitioning of the Dirac equation in matrix representation and prescribed a set of 
separation theorems. A rigorous theorem on the eigenvalue distribution has been 
presented by Grant (1986). 

As part of the ongoing study in our laboratory, we had proposed a projection 
operator technique to compensate for variational collapse (Datta 1980) and found by 
using the relativistic orbital notation suggested by Oreg and Malli (1976) that 
contamination from the ~ -  2c 2 atomic positronic spinors is small for the Be 2 
molecule (Datta and Ewig 1982). Actually, the process of finding the optimum ~ makes 
the electronic spinor consistent with a trial ,~ - 2 c  2 positronic spinor (Oatta and 
Jagannathan 1984). In order to illustrate the constrained-component variation we 
chose f~ = f~t = Aa'p where A is a variational parameter (Datta and Jagannathan 1984) 
and used it to discuss the one-electron virial theorem (Datta 1984) and to point out 
calculational ambiguities associated with the relativistic density functional treatment 
(Datta 1987). The use of ~t can be described as the method of kinetically balanced trial 
spinors. In fact, the method of"kinetically balanced" basis set involves a random linear 
variation (subject to the constraint of orthogonality) using the set of positive-energy 
basis spinors 
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and the set of negative-energy basis spinors 

still, if the system is not too relativistic the positive-energy eigenvectors will not differ 
much from the coherent form 

where 

U -~ T .  CiUi 
T 

and A ° is an optimized parameter. Besides, the use of the coherent trial spinors gives 
rise to the viewpoint of the minimax technique in relativistic Hartree-Fock (HF) 
calculations. 

There is a nice compact discussion on the variational collapse problem of the Dirac 
Hamiltonian in a recent contribution by Schwarz (1987). This is particularly relevant 
since Schwarz discusses alternative approaches to stationarity. Of course, the exact 
u - l  coupling can be achieved by the numerical integration techniques. Other 
approaches are: (i) application of the appropriate boundary conditions, (ii) the use of a 
basis set which guarantees the coupling to a high degree of accuracy, and (iii) the choice 
of ~t specific formulation of the Hamiltonian (Mark and Schwarz 1982; Kutzelnigg 
1984) where the coupling is insensitive to basis set truncation errors. In all these 
analytical methods, matrix eigenvalues can be converged towards the exact values by 
extending finite basis sets in an appropriate manner but the bound is not well specified, 
and the convergence may even occur from below (Hegarty 1986). That the energies 
calculated with the appropriate boundary conditions are rigorous upper bounds "has 
not been substantiated" (Schwarz 1987) except for a special case (Drake and Goldman 
1981; Goldman 1985). In the main part of this paper we will show, using very simple 
mathematics, that for any upper-component basis set the correct u - I coupling ensures 
that the variational energy is an upper bound. In the light of the minimax theorem which 
we discuss in the next section, the variational energy is seen to be an upper bound if the 
step of maximization is exactly performed. 

The detailed objectives of this paper are: 

(i) to show that if both ~ and u of a trial spinor 

are treated as variational parameters, the minimax theorem holds, and to prescribe 
the minimax theorem for the average value of the Dirac-Coulomb Hamiltonian 
(HDc) when the many-electron function is written as a Siater determinant, 

(ii) to find the sufficient condition for the relativistic virial theorem for atomic 
electrons and the relativistic hypervirial theorem (for molecular electrons), 
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(iii) to illustrate the effect of contamination from the negative-energy basis spinors 

(0opt) 
and 

(iv) to show that for a numerical test case (the He atom) the difference between the 
result of the coherent linear variation (that is, linear variation using coherent trial 
spinors) and that of the (random) linear variation using a "kinetically balanced" 
basis set is truly insignificant. 

The first objective leads to the second one. From the second objective we see that if 
the relativistic virial theorem (hypervirial theorem in the molecular case) is satisfied, the 
Slater determinant lies almost in the subspace spanned by the (positive-energy) 
eigenfunctions of the Dirac-Hartree-Fock (DHF) Hamiltonian. The third objective is 
not trivial since in some cases the use of A as a variable parameter will lead to a result 
which is visibly superior to the result obtainable from A = (2c)- 1. The fourth objective 
indicates that the (random) linear variation using a kinetically balanced basis set can be 
effectively substituted by the coherent linear variation method. 

A substantial part of the work (the one related to the minimax treatment and one- 
electron calculations) was completed in 1984. The reports of Stanton and Havriliak 
(1984) on finite basis calculations and of Wood et al (1985) and Grant (1986) on the 
partitioning of the Dirac equation in matrix representation convince us of the merit of 
our approach which relies on the partitioning technique applied for each spinor 
individually so that the minimax viewpoint can be presented. The second part of this 
work (the part related to the many-electron treatment) was orally presented by one of 
us (SND) at the Adriatico Research Conference on relativistic many-body problems 
(Datta and Devaiah 1986). This paper is written in an integrated format. In § 2 we derive 
the minimax theorem, at first for one spinor only and then for a Slater determinant. In 
§ 3 we obtain a sufficient condition for the validity of the relativistic virial theorem (or 
the relativistic hypervirial theorem). Numerical results indicating the superiority of the 
A-optimization procedure and the efficiency of the coherent linear variation method 
are discussed in § 4. Finally we have summarized the limitations of the present work. 

2. The minimax theorem 

2.1 The one-electron case 

2.1a Maximization: We describe a one-electron system by the normalized four- 
component trial spinor 

O=N l '  

where u is a normalized two-component function, I= ~u and 

N = (u, [1 + f i*f i ]u) -  
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We write 

~(u, [ l  + fi*fi]u) = (u, I-(c ~ + v )  + c,~'t, f i  + f i*c~.p  + f i t ( _  c" + v)f i ]u) ,  
(1) 

where e = ( H o ) ,  and study the variational properties of e. 
Firstly, if we write ~ = cF~+ + cz4Y- where 

then fi  = ( c 2 / c O N ' d ) .  The linear variation method  gives two eigenvalues, ~+ and e_; ~_ 
< - c 2 + (V)~ u and e+ > c 2 + (V)u. The abbreviat ion (X)v denotes (v, v ) -  1 (v, Xv).  Now, 
e_ is the minimum of e; since the two basis spinors are or thogonal  to each other, it is not  
difficult to see that  ~+ is a maximum. 

Secondly, in (1), if 6e = 0 for all variations fi~t and arbi t rary u, then fi  = f i 0 =  
(eo + c 2 _ V ) -  l c~" p and (1) reduces to 

(u, [~o _ c 2 _ V]u) = c2(u, o'p[~ ° + c 2 - V] - lo 'pu) ,  (2) 

where e ° is the stat ionary value. Equat ion (2) was first derived by Rosicky and Mark  
(1975). The latter authors  showed that in the free particle case (2) gives two decoupled 
equat ions for the positive- and negative-energy states separately, but  they used Pauli 
approximat ion  to treat  the problem of one electron in a central field. Here 
we consider the case of an attractive potential,  V < 0 and assume that  (V)~ > 
- 2c 2. Then (2) can have real roots e ° > c 2 + (V),; in addition, real roots e ° < - c 2 may 
exist. It is easy to prove that  for a specific u there can be one and only one positive- 
energy root. One can also show, by reductio ad absurdum, that  for a well-behaved and 
normalizable u a real negative-energy root  does not  exist. Let the roots  e°+ and e °_ 
coexist and let the ro-surface be defined by e °_ + c 2 - V(ro) = 0. If a 'pu  is well behaved 
then 

C2(o . .pu ,  [~O + C2 __ V ]  - 1 [ g o  + C 2 __ V ]  - l a ' p u )  = - -  1 .  (2a) 

The integral on the left hand side of (2a) does not  exist since the integrand has a 
singularity at r = ro; the Cauchy principal value, if it exists, is in general a complex 
number  with a non-vanishing imaginary part. Hence (2a) does not  hold good. 
Simultaneous negative- and positive-energy solutions are possible if V = 0. 

F rom (1), it is easy to show that  

~Z~l~=~o < 0, 

that  is, the expectat ion value ~o is clearly a maximum. Besides, e+ = co+ when cb = ~o+ 
= (~o + c 2 _ V ) -  l ca 'p .  

2.1b Minimiza t ion:  Now, a change re°+ is created by changing u to u + 6u in (2). If 
re°+ = 0 for all variations 6u t then co+ = %i, u = u ° and I = l ° where, apar t  from the 
normalizat ion constant ,  u ° and l ° are the upper  and lower components  of qJi ° which is 
one of the positive-energy eigenfunctions of H o ,  and eoi is the corresponding 
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eigenvalue. At this point 

l ° = C(~oi + c 2 - V ) -  l o ' p u °  

and 
u ° -- c(% i - c z - V ) -  la 'p l ° .  

When 6u* is not arbitrary, one usually obtains the upper component of an impure state. 
However, one can expand any u as a linear combination of the u°'s assuming that the 
latter form a complete set of upper-component functions; [u °'s may not be orthogonal 
to each other, but ~b°'s form an orthonormal set]. However, the corresponding linear 
combination of the I/°'s does not give the exact I. Still, from (2), one can show that 

0.0¢e°+ I-u-I I.=.oo > 0 

where uo ° is the upper component of the ground state. This inequality depends upon 
the observation that ~o [6u] > % where % is the ground state energy. Thus we have 
the variational principle 

mine ° [u] >/Co, (all variations 6t~) 
U 

and in particular, the minimax theorem 

min max (Ho  > >1%, (all variations 6(2). (3) 

If the trial spinor 

is chosen, variation of ( H  o> with respect to A is equivalent to a linear variation 
involving the basis spinors 4) + and q~_. Therefore, one obtains two stationary points--  
a minimum (e_) and a maximum (e+). The optimized parameter (corresponding to ~+) 
is given by 

A ° = c[e+ + c 2 - ~ ' ] -  1, 

where 
= ( v ) ° , ~  

and 
~+ = c ~ + (pZ)d2 + (v ) .  

+ [ (p2) . /4c  2] I v  - (v ) .  - (pZ)J2] + O(c-4).  

We find that ~+ [u] does not  differ from ~o [u] up to  order c -2, but it can be in error 
by an amount of order c-4. We write, to order c-2, 

max < H o  > >1%. 
A 

If e + [u] is minimized by varying u, then, to order c-2, 

min max ( H a > t> e o. (4) 
u A 
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The minimax technique creates an upper bound which can be in error by an amount of 
order c- 4. 

For more than one upper component function, the minimax technique can be 
practised by writing the trial positive-energy spinors in the coherent form and 
preserving the mutual orthogonality of these spinors. The coherent linear variation 
may be viewed as the first step of the (random) linear variation using the "kinetically 
balanced" basis set. In the second step the (positive-energy) coherent spinors 
(eigenvectors from the first step) are mixed with the corresponding negative-energy 
vectors. The final positive-energy eigenvectors differ from the coherent solutions by 
coefficients of order c- 2~ the final eigenvalues can differ from the eigenvalues of the first 
step by amounts of order c - 4 which is anyway the order of error of the same values for a 
given set of upper component basis functions. 

2.2 The Dirac-Hartree-Fock theory 

Although the Dirac-Coloumb Hamiltonian 

N 

Hoc = ~ Hotk) + Y~ UCk, k't 
k = l  k < k '  

has no normalizable eigenfunctions corresponding to bound states, it has been shown 
that the numerical HF calculation using the Hamiltonian Hoc is equivalent to the HF 
calculations using the more correct projected Hamiltonians which can be derived 
within the framework of quantum electrodynamics (Sucher 1980; 1985; Mittleman 
1981). Further, excellent numerical results have been obtained by using a projected 
Hamiltonian (Hess 1986)• These observations indicate that the DHF theory can be 
formulated in an unambiguous way. In fact it has been suggested that a finite basis 
computation using kinetic balance may not suffer from catastrophic variational 
collapse (Mark and Schwarz 1982; Schwarz and Wallmeier 1982: Schwarz and 
Wechsel-Trakowski 1982). Here we give a formulation of the closed-shell DHF theory 
in steps representing a minimax procedure. 

We use the set of orthonormal spinors: 

, i - - N i ( -  . . . . .  N .  
\ fli.i /" 

The average value calculated with the corresponding Slater determinant is: 

N N 

<ttD~> = Z Ho. +iI /2)~(J , j - -Ki j l  
i = l  t. 3 

where Jij and K u are the direct and exchange integrals respectively. At first, we consider 
• . A .  I. 

variation of (Hoc)  with respect to the ~fs. If 6 ( HDc ) = 0 for all variations ~ i  subject 
to the constraint that the orbitals remain orthonormal, then 

N 

h~(~u3 + ca.pu~ = c 2 Z y~j(f~u~) (5) 
j = l  
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for i =  1,..., N. In (5), 

N 
h t = - c 2 + V +  E (JJ--/(j)" 

j = l  

and ?~/s are Lagrange's undetermined multipliers. The operators Jj  and / ( j  are defined 
by 

Jill) = N~(uj{2), [U(I, 2) + f~(2)U(1, 2)fij(2)]u#(2)), 

/(j(1)u~(1) = N2(uj(2), [U(1, 2) + f~(2)U(l, 2)~(2)]u~(2))uj(1), 
and 

£~(l)fi~(1)u~(1) = N](u~(2),  [U(1,2) + i~/~(2)U(1,2)~(2)]u,(2))fi~(l)u~(l). 

We consider a unitary transformation of the orbitals such that for the transformed 
operator h z the transformed matrix 7 is diagonal with elements ~, = c-2e,  i for i = 

1, 2 . . . . .  N. Then, 

h'( f i°ui)  + c a ' p u ,  = e,.(fi°u,) (i = 1, 2 . . . .  , N) ,  (6) 

where ~o has been written in lieu of the operator fi~, and u~ is the upper component of 
the ith transformed orbital. Equation (6) is the HF equation in terms of the lower 
components, and has the solution 

f i 0  = c(~ i  - h i )  - ~ a ' p  

for i =  1, 2 . . . . .  N. The operator ~o is the HF equivalent of the ideal one-electron 
operator rio and gives a kinetically balanced orbital. The apparent pseudoeigenvalue 
ei[u] has to be determined from the equation 

c*(rti, [ , e i -  hi] - lrti) = (ui, [el --  h"]ui) (i = 1,2 . . . . .  N), (7) 

where r/, = tr .pu i and h u = c 2 + V+ ~ = l ( j ~ -  Kj). The operators Jr and/~j  are now 
defined in terms of the transformed spinors. The stationary value of (HDC) is a 
functional of the upper components, written as E[ { u } ]. Again, we assume that (V)u, > 
- 2c 2 for every i. Also, (hU),, > c 2 + (V)~,. Hence for well-behaved and normalizable ui's, 
ei > (h")~. Considering that 

v + E {JJ-gJ)) < 0  
A # i) (6fl,)u, 

we find: 

~ , ~ l  (/-/t,c)In, =,~,o < 0 

for every i. Therefore, for a fixed set of upper component functions the stationary point 
E[{u}] is a local maximum, and we write 

max ( H D c ) =  E[{u}], (all variations 6~i, i =  I , . . . ,N).  
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In the second step, one works with the set of orbitals 

and extremizes < ttDC > (that is, E) by varying the upper component functions subject to 
the constraint that the orbitals remain orthonormal. If 6E = 0 for all variations 6u~, 
then, using kinetic balance, 

hUu ° + ca'p(f i°u °) = e°u ° (for i = I, 2, . . . ,  N), (8a) 

where ~o = (co _ i f ) - Jca .p  and u ° is the optimal trial upper component function. Of 
course, (8a) can be directly obtained from (7) when gei = 0 for all variations 
6u~, i =  1 . . . .  , N. Now, (6) is rewritten as 

c, .pu o + h,(fiOu o) o o = ei (f~i ui ) (i = 1, 2 . . . . .  N). (8b) 

Equations (8a) and (8b) together represent the complete Dirac-Hartree-Fock equation 
for a closed-shell system. The Fock operator 

o 
F---no+ J \ o J j - g j )  

has the pseudoeigenvalues e ° corresponding to the eigenfunctions 

o u° 0o  (oo.o) 
The optimized energy is written a s  EDH F (the Dirac-Hartree-Fock value). By making E 
stationary for all variations of ui, i = 1 . . . . .  N, we have really made E stationary with 
respect to all variations in the kineticall? balanced Slater determinant q~. This does not 
tell us whether E is maximized or minimized by varying ~. Normally, however, the 
stationary point will be a minimum: 

min El{u}] = EDrlF (all variations 6~). 
® 

But Eon ~ > E o where E o is the correct ground state energy (minimum of the expectation 
value of the configuration-space Hamiltonian which was derived by Mittleman (1981)). 
Therefore, 

min max <HDc> = EDHF > Eo (all variations 6~i, i = 1 . . . . .  N)  
® lfil (all variations 60)  (9) 

which is the relevant minimax theorem. 
The preceding analysis reveals the two-step nature of the D H F  method. We now 

discuss the implication of using the trial operators ~,i's. It is easily seen that (for the 
same set of upper component functions) orbital energies and the one- and two-electron 
integrals calculated with A°'s do not differ, up to order c-2, from the corresponding 
quantities obtained from the use of ~°'s. Therefore, the maximum value (E) will be 
correct through order c-  2. This conclusion compares well with that drawn by Stanton 
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and Havriliak (1984) on the HF calculation using a "kinetically balanced" basis set. We 
write: 

max (HDc) = E[{u}]. (10) 
{̂ } 

The Slater determinant corresponding to the maximum point is written as ~. If 6b: = 0 
for all variations .6u~, i =  1 . . . . .  N, then 

min max (HDc) = EAnF, (11) 
$ {A) 

where (EAnF -- EDnV) is at most of order c-4. 

3. The relativistic virial theorem 

The non-relativistic HF treatment yields the virial theorem when the expectation value 
of the Hamiltonian is extremized through variation with respect to a scale factor. For 
example, the Eckart-Kellner function for the He atom (Z = 2) gives the virial 
relationship if ~ ( H ) / ~  = 0 where ( is the exponent of the 1 s orbital. The optimum 
value of ( is (Z - 5/16). In the relativistic case, scaling of an orbital involves the scaling 
of not only the upper component but also the lower one. Therefore, within the one- 
electron approximation, the relativistic virial theorem may not be obtained from 
arguments based on the scaling of the upper component functions only. 

Rosicky and Mark (1975) presented the derivation of the relativistic virial theorem 
for' one electron. Later, we have investigated conditions for the validity of the 
generalized relativistic virial theorem for the electron in a central field (Datta 1984). 
Here, we show that the derivation of the virial theorem (the hypervirial theorem in the 
molecular case) within the framework of the DHF theory requires that (HDc) is also 
stationary for variation of the scale factor in ~i, i = 1,.. . ,  N. Thus the derivation of the 
relativistic virial theorem for electrons can serve as an example of the minimax 
technique. 

A scaling ui(r)~ 23/2ui(2r) is performed for all i and as suggested by Fock (1978) we 
require that 

0 (Hoc) l~a)l/t~2 = 0 

at 2 = 1. This gives 

where 

nucle i  

( T ) + ( V T ) +  ~ R. ' (V .VT)+ ~.(O,IO,)- '  
n i 

(u,, [ { t~l(1/2)/02}z=, {ca T -- (F,, -- h')fii} + h.c.]u,) = 0 (12) 

N 

T = c ~ Otk 'pk  , 
k = 1  

N N 

VT= Z V(k)+ Z U(k,k')+ V~.({R}) 
k = l  k < k '  

and Fii is the diagonal element of the Fock matrix. The third term on the left hand side 
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of (12) is absent for an atomic system and appears for a molecular system when the 
latter is treated within Born-Oppenheimer approximation; {R} represents the set of 
nuclear coordinates and V,.({R}) is the potential energy of internuclear repulsion. 
From the form of(t2) it is obvious that the relativistic (molecular) hypervirial theorem 

(T)  + (VT) + ~ R.'(V.VT) = 0 (13) 
n 

is obtained ift~i = ~o for every i, i = 1,2 . . . .  , N. For a specific form of the ~[s, the fourth 
term in the left hand side of (12) vanishes if f i i l ! (HDc)=0,  i =  1 . . . . .  N, while the 

variation 6 ~  is represented by the change -62[c~(1 /2) /~2]  a = 1. Thus the variation of 
(Hoc)/.~)~ with respect to the scale factor 2 need not necessarily give (13). However, if 

[d (Hoc)fi,,/al/~2]z = 1 = 0 for i = 1 . . . . .  N, 

then the condition 

[¢q < HDc >l.~alt/O2]~ = a = 0 

is sufficient for the validity of (13). 
If 6(HDc) = 0 for all variations 6t~, i =  1 . . . . .  N, then t~ i = ~o for every i and (12) 

reduces to (13). If ~i = t~ti = Aia'P then (13) will be obtained [from (12)] if (HDc) is 
stationary for variation of the A/'s. Actually, one can directly derive (13) from variation 
of (HDc)/ut~ll with respect to 2. The trick is to assume that A.-= 2-1Aol where Aol is 
independent of 2 such that c~,(1/2)/t~2 = 0. However, the optimal trial function is not 
obtained unless (HDc)  is extremised by varying the Ao~'S. 

The above discussion can be easily exemplified. We use the ls STO (with exponent 0 
and form the upper component function of the Is+ ~,2 spinors of a two-electron atom 
(nuclear charge = Zle[). 

Case (i). fll~ = Aa.p. 
In this case the variation of (HDc)  with respect to A gives the maximum: 

= 2c2(1 + c-2(2) t/2 - 2(Z - 5/16)(, 

and the optimized parameter: 

A ° = _ c (  - 2  -,~ C(- 2(1 + C - 2 ( 2 )  1/2. 

At this point, 

< T)  + (Vr)  = 2(2(1 + c-2(2) - 1/2 _ 2(Z - 5/16)(, 

which vanishes if 

( = ( Z  - 5/16)/7, 
where 

), = [! - c-2(Z - 5/16)2] 1/2. 

In fact the virial theorem is obtained when/~ is minimized by varying (: 

min/~ = 2C27. 
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However, the direct minimization of (HDc) by varying ~ does not give ( T )  + ( V r )  = 0 
unless A = A °. 

Case (ii). ~1~ = Ao(-la'P • 
This is essentially the previous choice, and yields the compact expression 

where 

and 

(/-/DC) = 2{C271 + ((Zaf -- Z)} + 5U8 

= (1 - Ao )/(1 + Ao 

Zoff = 2cA0/(1 + Ao2). 

The virial theorem is obtained with Z e f  f = Z - 5/16 irrespective of the value of ~. Indeed, 
this result is obtained from ~(Hoc)/8~=O. However, a unique value of ~ is not 
obtained unless (HDc) is stationary with respect to Ao: 

0 (Hoc)/t~Ao = 0 ~ A o = (A ° 

such that ( = Z e f f / "  ~. 

If the Hellman-Feynman theorem holds, the hypervirial theorem reduces to 

( T )  + (VT) + ~ R,,'V,,Etot = 0, (14) 
n 

which is the relativistic virial theorem in the molecular case .  Eto t is the calculated total 
energy, (Hoc)  + Ii"... If the set of trial functions is invariant to rotation, translation and 
inversion of the electrons, Eto t c a n  depend only on the bond lengths ~ and bond angles 
0. Finally, one can rewrite (14) as (Epstein 1974) 

(T)  + (Vr)  + ~ ~(dEtot/d~ ) = 0. 

At the minimum point of the potential energy surface, 

and 
( T )  + ( V r ) = O  

N 

e,o, = c 2  E 
i = 1  

The virial theorem is traditionally used for checking the quality of wavefunctions. 
From arguments based on quantum electrodynamics, Mittleman (1981) derived the 
configuration-space Hamiltonian 

N 

n u  = ~ m+(k)nD(k)m+(k) 
k = l  

N 

+ ~, m+(k)rn+(k')U(k,k')m+(k)m+(k'), 
k < k '  

where m+ is the projection operator onto the subspace SF spanned by the positive- 
energy eigenfunctions of the Fock operator. The Mittleman Hamiltonian clearly 
describes the DHF calculation. But somehow one has to bring trial spinors inside the 
subspace SF (Datta 1980), a task which is exactly performed when (Hoc)  is made 
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stationary for variation of all occupied orbitals, that is, when 6 ( H ~ )  = 0 for all 
variations 65i, i = 1 . . . . .  N, subject to the orthogonality constraint. However, if (HDc)  
is maximized by varying fli for every i, then the relativistic orbitals are brought almost 
in St, that is, the portions lying outside Sr can be represented by coefficients (of linear 
expansion) which are at most of order c -  2. This inference supports Kim's suggestion 
(Kim 1967) that the virial theorem value may be used in finding the correct solution of 
the Dirac-Hartree-Fock-Roothaan treatment. 

4. Results and discussion 

4.1 Illustration of  the minimax technique 

The minimax technique can be easily illustrated by the results of a single-zeta 
calculation on H~-. We have used the non-relativistic ls STO's (with exponent () to 
write the upper component function of the lsa molecular spinor as 

u =  [2(i + S~b)]-1/2( ls"+0 lsb) '  (16a) 

where Sub is the overlap integral, Sd3r lsa(r) lSb(r ). We choose 

where 

and 

= A a ' p  =- ~- 1Aoa" p 

A o = [(1 - 7)/(1 + 7)] 1/2 

7=(1 --C-2/£-2Z2) 1/2. 

(16b) 

e+ - e ° = - (1/8)c-*(u, u)-x(a 'pu,  {V  - V}2a'pu) + O(c- 6). 

Since e + is the maximum obtained from variation of ( H o )  with respect to A, A ° gives 
the closest approximation to the kinetically balanced spinor. The bounds obtainable 
from A = A ° and A = (2c)- 1 differ from each other by an amount that increases very 
rapidly as Z increases. The trial ls upper component function leads to the correct 
ground state energy of a one-electron atom when A = A °, whereas for A = (2c)- 1 the 
"bound" (ca) is in error by the a m o u n t - - ( 1 / 3 2 ) c - 4 Z  6 + .... For Z = 68, this error is 

With this spinor, the previously obtained atomic results (Datta 1984) are reproduced in 
the united atom and the separated atom limits. 

The electronic energy of H~- is calculated using the trial spinor. Partial variation of 
( H a )  with respect to x leads to the maximum value e+. As shown in figure 1, the trial 
state for each ( collapses on both sides of the stationary point and variation of e+(0 
with respect to ( leads to a saddle point. For R = 2-0 a.u. the saddle point corresponds 
to ( =  1"23873, x = 0.80731 and e~ = - 1-08651435 a.u. The difference between es and 
the (nonrelativistic) LCAO energy (enrel) equals --0"835 x 10 -5 a.u. The accurate 
relativistic correction is -0"736 x 10 -5 a.u. (Laaksonen and Grant 1984; Mark and 
Schwarz 1982). This shows that a minimal basis calculation may not be sufficient for 
computing relativistic corrections in the molecular case. To see the advantage of the 
minimax technique using ~t over the direct minimization of energy while the fixed 
operator f~a is in use, we note that 
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Figure 1. Energy of the lso spinor versus K: the H~ molecule ion at R = 2.0a.u.; ( = ( a )  
1.2410, (b) 1"2405, (e) 1.2400, (d) 1.2395, (e) 1.2390, (f) 1.2385, (g) 1.2380, (h) 1.2375, (i) 1-2370, (J) 
1-2365. 

about 6% of the relativistic Correction to the ls orbital energy. In order to reduce the 
error, one must selectively mix other basis functions and discard the spurious solutions. 
Thus for systems which are considerably relativistic, the use of A ° will give better 
economy of basis functions. The same argument holds for the molecular spinors. A 
test calculation of the lsa orbital energy of the (hypothetical) molecular ion K~-37 at 
R = 2.0 a.u. yields es - ea = 0"004335 a.u. (figure 2). 

To see the immediate effect of the minimax technique on the orbital energies and 
total energy obtainable from a minimal basis calculation on a many-electron molecule, 
we choose the STO-3G basis and ~ = Atr.p for the relativistic lsa orbitals of the H2 
molecule. A scale parameter 22 is included in the exponents of the gaussian primitives 
such that the effective exponent (0 of the STO can be treated as a variational parameter. 
We have maximized ( H ~ )  by varying A while 2 is kept fixed, and minimized the 
maximum value/~(2) by varying the scale factor (2). The optimized parameter AI,, for 
Hz is slightly greater than that for H~- at the same bond length (1.4 a.u.). Even though 
we have used only two parameters (A and 4) the difference (Ere~ - E.rel) turns out to be 
rather good; the calculated value accounts for 90% of the accurate value (table 1). 
However, (er,t - ~.r*~) sharply differs from the corresponding quantity computed by the 
numerical integration technique (Laaksonen and Grant 1984). This difficulty is traced 
to the lack of the correct r --, 0 behaviour of the basis spinors chosen by us. One can 
always improve the energy values (e and E) by using a larger basis; however, the 
difference (e~a - enrel) may not improve, and can actually worsen, unless enlarging the 
basis improves the quality of the molecular spinor near the nuclei (table 1). 

4.2 The coherent linear variation 

Here we have chosen the He atom as the numerical test case. If total energy is calculated 
with the basis spinors lSl/2 and lS_l/2 which are built of the ls STO and ~t, the 
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Figure  2. E n e r g y  o f  the l s~r s p i n o r  versus  (cA)-  1: Z = 19 a n d  R = 2 '0a .u .  Values  o f  the  

e x p o n e n t  are  ind ica ted .  O p t i m u m  values: ( =  19.1853 a n d  cA = 0.497574.  

Table 1. D i r a c - H a r t r e e - F o c k  results for  the g r o u n d  s ta te  of  H 2 a t  R = 1-4a.u.  

Value  Value  

P r o p e r t y  M e t h o d  relat ivis t ic  non- re la t iv i s t i c  Difference 

To ta l  ene rgy  
(a.u.) 

O r b i t a l  ene rgy  
(a.u.) 

(a) P resen t  w o r k  - 1.119206 - 1.119193 - 1.3 x 10 -5  

(b) D H F R  - 1.129791 - 1.129777 - 1.3 x 10 -5  

(c) N u m e r i c a l  - 1.133644 - 1.133630 - 1.44 × 10 -5  

(a) P resen t  w o r k  - 0 '590271 - 0 .590284 + 1-3 × 10-  s 

(b) D H F R  - 0 .59418 - 0 .59458 

(c) N u m e r i c a l  - 0 .594662 - 0 .594658 - 0.4 x 10 -  s 

(a) Th i s  w o r k  (min imal  basis  ca l cu l a t i ons  us ing  the S T O - 3 G  basis  set): t~ (non - r e l a t i v i s t i c )=  1"19015; 

(relativistic) = 1 '19034 a n d  2cA = 0 '99999.  

(b) D i r a c - H a r t r e e - F o c k - R o o t h a a n  ca l cu l a t i on  by  M a t s u o k a  et al (1980). 

(c) L a a k s o n e n  a n d  G r a n t  (1984). 

minimax technique yields the optimum parameters A ° = 0.499981c- ~ and ~ = 1.68763 
(see § 3). For the non-relativistic calculation, the optimum value of ~ is 1.6875. The 
calculated value, ( E , ~ -  E , , a ) =  - 10"8 × 10 -s  a.u., is in qualitative agreement with 
the D H F  value, -12"5 × 10-Sa.u. Again, the lack of the appropriate boundary 
condition (for r ~ 0 )  gives a totally wrong estimate of (erel - %,~0: calculated value is 
- 1.4 × 10-5 a..u. whereas the D H F  value is - 3 . 4  × 10-5 a.u. 

The effect of increasing the basis size is investigated with ~ = 2'0. The upper 
component basis functions are built up from the Is, 2s, 3s and 4s STO's. We keep A fixed 
at the optimum value for the ls basis function (CAls = 0"4999734) and minimize ( Hoc ) 
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by varying the coefficients ci's. In principle, as the coefficients vary, the optimum value 
of A should change. Therefore, one expects that the coherent linear variation will yield 
different coefficients along with an optimized A different from Als. In reality, for any 
basis size, the minimal basis value (AM~) is very close to the optimum value of A as long 
as Z/c << 1. Therefore, fixation of A at AM~ is effectively equivalent to the optimization of 
A when Z/c is small. In the present case we have used Aco h = Als. For atoms with more 
electrons (but still in the nonrelativistic limit), one may assign: Acoh.l,=Al,, 
Acoh.2s = A2,, etc. The main point is that a judicious choice of A can save a lot of 
computational efforts. A better way (which is applicable to all systems) will be to design 
a set of coherent basis spinors and use these in the linear expansion technique. 

At present we make three observations. First, the difference between the result of 
linear variation using A~s for the coherent spinors and that obtained from a (random) 
linear variation using the "kinetically balanced" basis set is negligible (table 2). 
Secondly, the calculated wavefunctions, both relativistic and nonrelativistic, improve 
with the increase in basis size; this is evidenced by the trends in orbital energies and 
total energy (table 3). Thirdly, the linear expansion technique quickly improves the 
difference (e~el - e~r~j) to a value ( -  3.1 x 10-5 a.u.) which is comparable to (but again 
greater than) the corresponding quantity ( -  3.4 x 10- 5 a.u.) found from the numerical 
integration technique. However, unless the relativistic wavefunction is correctly 
described near the nucleus, (E~,t- E,~,j) converges to a value ( -  13.8 x 10-5 a.u. for 
( =  2"0; - 10.1 x 10 -5 a.u. for ( =  !'6875) that can be quite different from the result 
( -  12.5 x 10- ~ a.u.) of the numerical DHF calculation. 

4.3 Reproducibility of the nonrelativistic results 

The nonrelativistic molecular results have been verified by using c =  137,032.5a.u. 
(instead of 137.0325 a.u.) in the relativistic calculations; (the optimum value of ~,,cl 
differs from that of ~rcl). 

4.4 Limitations of the present work 

The calculations reported here utilize very small basis sets and serve as test calculations 
only. The main import of these exemplary computations is that the smallest matrix 

T a b l e  2. C o m p a r i s o n  of the result  of the coherent  l inear  va r i a t ion  

with that  of the r a n d o m  l inear  var ia t ion  ~for Z = 2). 

--/~ls ) (Ecoh . . . . .  - -  Erandom) ( ~ o h  . . . . . . . .  dora 

Basis in lO-ga .u ,  in l o - g a . u .  

= 2.0, 2cA = 0.9999468 

l s  0.00 0.00 

ls,2s - !.61 1.11 

Is, 2s, 3s - 2.30 1.84 

1 s, 2s, 3s, 4s - 2.64 - 0.76 

= 1.6875, 2cA = 0.999962 

I s 0.00 0.00 

Is, 2s - 0.67 9.38 

Is, 2s, 3s - 1-01 8-05 

ls, 2s, 3s, 4s - 1.19 7.32 
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Table  3. Results of  the Coheren t  l inear var ia t ion  employ ing  STO ' s  in the upper  compo-  

nents  of  basis spinors: the H e  a tom.  

Is  ls  I s  
(erel - -  ~nr , l )  (EreJ - -  E . , e t )  ~rel Ere l  

Basis in 10-  5 a.u. in 10-  5 a.u. in a.u. in a.u. 

= 2"0, 2cA = 0"9999467(a) 

ls  - 10"65 

14 2s - 3.57 

ls,2s,3s - 3 . 2 7  

ls,2s,3s,4s - 3 " 1 6  

= 1'6875, 2 c A = 0 . 9 9 9 9 6 2 ( a )  

- 2 1 - 3 0  - 0 - 7 5 0 1 0 7  - 2 . 7 5 0 2 1 3  

- 1 4 " 9 3  - 0 " 9 0 3 8 5 8  - 2 - 8 4 2 9 3 6  

- 1 4 . 1 7  - 0 " 9 1 1 6 2 3  - 2.851673 

- 1 3 . 8 5  - 0 " 9 1 3 9 3 2  - 2 . 8 5 4 6 9 0  

ls  - 5-40 - 10'80 - 0"896538 - 2.847764 

Is, 2s - 3"43 - 10.17 - 0.914309 - 2.851017 

is, 2s, 3s - 3"13 - 10-11 - 0'915221 - 2"851104 

ls,2s,3s,4s - 3.00 - t0 '10  - 0 . 9 1 5 2 6 4  - 2 . 8 5 1 1 0 5  

Numer ica l  H F  

and  D H F  (b) - 3.4 - 6.5 - 0"917991 - 2.86175 

a. c = 137.0325 a.u.; b. Desclaux (1973).: Erel includes the energy of magne t i c  interact ion (6 x 10-  ~ a.u.). 

eigenvalue approaches the exact value from above. This suggests that a set of coherent 
basis spinors can be used without fear of variational collapse. 

The following limitations of the present work are identified: 

(i) The trial spinors chosen by us do not give an accurate description of the relativistic 
wavefunction near the nucleus. The situation can be rectified by using the multiple- 
zeta basis (Lee and McLean 1982) or the non-integral STO's (Pavlik and Blinder 
1967; Datta and Ewig 1982; Malli 1984), or even by considering a finite size of the 
nucleus (Ishikawa 1986). 

(ii) We have not illustrated the minimax technique for the excited state. It is well 
known that the influence of enlarging the space of linear variation upon the 
distribution of eigenvalues can be described by the separation theorem (Epstein 
1974). The minimax technique can be considered as the first step towards obtaining 
the separation theorem. For calculations based on the Dirac equation in the 
algebraic approximation the separation theorem has been discussed by Wood et al 
(1985) and by Grant (1986). 

(iii) Unless the wavefunction is the exact DHF solution, positive-energy eigenvectors 
of the Fock matrix may not be completely free from the negative-energy disease. 
For instance, an arbitrary spinor 

N u 

can be expanded as 

0 

where ~b°'s are the positive-energy eigenfunctions of the Fock operator. It is 
obvious that the residual part vanishes only if ~, is identical with one of the 
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~,°'s. Therefore, just because the virial theorem holds one cannot say with certainty 
that the calculated relativistic orbitals lie inside S r. It is equally obvious that 
the deviation from SF can be reduced by (a) relying on the appropriate boundary 
conditions, (b) enlarging the basis and (c) using a kinetically balanced basis set 
consisting of the coherent basis spinors and the associated negative-energy vectors. 
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