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A family of minimum quantile distance estimators for the 
thr:..- parameter Weibull distribution 
T.J. Carmody, R. L. Eubank and V. N. LaRiccia 

A family of minimum quantile distance estimators, 
based on a subset of the sample quantiles, is proposed 
for the parameters of the three-parameter Weibull dis- 
tribution. The estimation procedure is applicable to 
either complete or censored samples and, through use 
of the associated distance measure, provides a goodness- 
of-fit test for the Weibull model. The proposed esti- 
mators are both consistent and asymptotically normal 
and, in a particular instance, are optimal over the 
class of all estimators based on the same quantile 
subset. The problem of optimal quantile selection is 
also considered. 

i. Introduction 

Let X(1),...,X(n ) denote an ordered random sample 

from the three-parameter Weibull distribution having 

cumulative distribution function (c.d.f.) 

G(x;@) = i - xp - , x > ~, (i.i) 

where O = (~,o,c)' with o, c > 0 and -~ < > < =. In 

this paper we consider the problem of simultaneous 

estimation of the elements of @. 

The three-parameter Weibull distribution has occu- 

pied an important role in areas such as reliability, 

biological modeling and queueing theory. Consequently, 

there is an extensive literature on the estimation of 
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its parameters. Many of the important references are 

provided in Johnson and Kotz (1970), KUbler (1979) and 

Mann, Schafer and Singpurwalla (1974). In contrast to 

previous work, however, we propose the use of a minimum 

quantile distance estimator of !. Minimum distance 

estimators have been extensively studied in recent 

years and have been found to possess commendable 

efficiency and robustness properties in many instances. 

The reader is referred to Parr and Schucany (1980) for 

an excellent discussion of minimum distance estimation 

using the empirical c.d.f, and to LaRiccia (1982) for 

a quantile domain approach. 

The estimators of e considered in this paper can 

be described as follows. Let 

Q(u) = -in(l-u) , 0 < u < i, (1.2) 

and observe that the quantile function corresponding to 

G(x;e_) is 

Q(u;e_) ~ inf{x:G(x;0) > u} = ~ + oQ(u) I/c. (1.3) 
x 

Define the sample quantile function by 

X(j) j-i < u < ~ j=l .,n (1.4) 
Q(u) = ' n -n ' ''" ' 

and, for a given set of k < n percentile points 

U = {ul,...,u k} satisfying 0 < u I <...< u k < I, let ~u 

and QU(O) denote the k • i vectors 

~ 

and 

QU(~) = (Q(Ul;~),...,Q(Uk;_0))'. 

Then, we propose estimating 9 by any vector that mini- 

mizes the quadratic form 

E ( i )  = (Q-u - Q - U ( - 0 I ) ' W ( 0 ) ( Q . u  - -0u( -0 ) )  ' ( i . 5 )  
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as a function of _0, where W(_6) is a user defined 

k x k matrix of weights that may be chosen to depend 

on e. Thus, (1.5) provides an entire family of esti- 

~T(W), indexed by both U and W. The matrix manors, 

W(_0) may be selected to provide specific types of 

protection or efficiency properties. An optimal 

choice for W (in a sense to be defined) that is easy 

to use is 

W*(c) = Fu(C)~IFu(C), (1.6) 

where R U = min(ui'uj)-u'u'1 3 and Fu(C) is the k x k 

diagonal matrix having ith diagonal element 

c(l-ui)Q(ui )(c-l)/c. Since ~ is well known to have a 

tridiagonal inverse, whose typical row has nonzero 

entries 
- 1  

- (Ui-Ui-1) (Ui+l-Ui-1) / { (Ui+l-Ui)(Ul-Ui- 1 ) } 

_ (Ui+l_Ui)-I, 

the elements of (1.6) can be simply and efficiently 

evaluated. 
^ 

Although in general ~u(W) will not have a closed 

form, the estimator is readily computed using any stan- 

dard minimization routine such as the IMSL routine 

ZXMIN or a linearization type procedure (see LaRiccia 

and Wehrly 1981). It should also be noted that, 

provided the Q(ui)'s are selected from the uncensored 

portions of the data, this estimation technique requires 

no modifications for use with left, right or both left 

and right censored samples. This is in contrast to most 

other estimation procedures such as maximum likelihood. 
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As with all minimum distance estimation procedures, 

the distance measure provides a natural measure of 

goodness-of-fit. Under the assumptions of Theorem i, 

in the next section, it is easily shown that nE(O_u(W*)) 

has an asymptotic central chi-squared distribution 

under the null hypothesis that the data derive from the 

model (i.i). Thus the goodness-of-fit measure 

nE(OqT(W*)) could be combined with plots of, for example, 
^ 

(u, Q(u)-Q(u;O_u(W*))) to ascertain the adequacy of 

and/or suggest modifications to the Weibull model. 

estimator ~I(W) utilizes only a subset of the The 

entire set of n sample quantiles. Such estimators have 

received considerable attention in the statistical lit- 

erature as illustrated by numerous techniques suggested 

for location and scale parameter estimation (see Harter 

1971 and Cheng 1975 for references). This is un- 

doubtedly due, in part, to the fact that they incorpor- 

ate data compression into the estimation scheme 

(Eisenberger and Posner 1965) and can provide cost 

savings when the actual collection of, or reading taken 

from, an observation is expensive. In addition, using 

a quantile subset can be advantageous when, for privacy 

or other reasons, only specific percentiles of the data 

have been made available for study or, as a further ex- 

ample, in life testing where the savings in time or 

fraction of items destroyed can be quite large. In some 

cases, it may be possible to choose the set of percen- 

tiles U and, consequently, a technique for the optimal 

selection of U would be desirable. We consider this 

problem, and derive an approximate method for its solu- 

tion, in Section 3. 
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The next section contains a brief summary of the 
^ 

asymptotic behavior and distribution theory of 9_u(W ). 

In Section 3 a technique is presented for selecting U 

along with consideration of some of the asymptotic 
^ 

efficiency properties of 9u(W* ). 

2. Asymptotic - Properties of the Estimator 

In this section the asymptotic properties of the 

k-quantile estimator of O obtained using (1.5) will be 

presented. Since these results follow from the general 

theory of k-quantile minimum quantile distance esti- 

mators developed by LaRiccia and Wehrly (1982) proofs 

are omitted. The interested reader is referred to 

LaRiccia and Wehrly (1982) for the necessary details. 

Define the functions 

fl(u;c) = c(l-u)Q(u)(C-l)/c (2.1) 

f2(u;c) = fl(u;c)Q(u) I/c (2.2) 

f3(u;c) = -c-2fl(u;c)Q(u)i/clnQ(u) (2.3) 

and let BU(C) denote the k • 3 matrix 

Bu(C) -- {fj(ui;c)}. (2.4) 

Also let D(o) denote the 3 • 3 diagonal matrix 

D(o) = diag (i,i,o) (2.5) 

and observe that, using this notation, Fu(C) in (1.6) 

can be written as 

Fu(C ) = diag(fl(Ul;C),...,fl(~k;C)). (2.6) 

We then have the following result concerning the asymp- 

behavior and distribution of _gU(W)" totic 

Theorem i. Let ~ = (p0,o0,Co)' denote the true unknown 

value of _9 and assume that W(_8) is positive definite 

and has elements which possess continuous second par- 
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tial derivatives, with respect to _e, for all _e in some 

open neighborhood of ~. Then, 

i) as n-~o there exists, with probability one, a 
^ 

unique estimator _eu(W) that locally minimizes 

E(e), 
^ 

ii) 8u(W) is a consistent estimator of ~0 and 
^ 

vrn(0_u(W)-~) converges in distribution to a 

3-variate normal distribution with zero mean 

and variance - covariance matrix 

VU(~ ) = %(~)~%(80) ,/ 2 (2.7) 

where ~ is defined as in (1.6), 

~(eo ) : [Bu(eo),W(~)Bu(~ )]-I 
-i 

x BU (CO) 'W(~) ' FU (c0) 

and 

BU(OO) = Fu(C0)-IBu(CoID(o0 ). 

Regarding the choice (1.6) for W(_e) it is possible 

to show the following optimality property. 

Theorem 2. Let W*(c) be defined as in (1.6) and let 
^ 

~(W*) denote the corresponding estimator of ~0 obtained 
^ 

from (1.5). Then, 0u(W*) has asymptotic variance - co- 

variance matrix 

V~(OO ) = [D(o0)Bu(Co)'~IBu(C0)D(o0)]-I/o 2 (2.8) 

and is optimal in the sense that, for c > 2, 

i/det(V*(8_~)) is the Fisher information for e_n in the 
U ~ 

case that only the order statistics QU are observed. 

3. Selection of U 
^ 

While the estimator _eu(W* ) is optimal for any given 

U, its variance - covariance matrix is a function of the 

specific quantiles selected. In fact, as we shall demon- 
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strate, the placement of the percentile points, ui, can 

have a drastic effect on the estimator's efficiency. 

Consequently, in this section an approximate technique 

is provided for selecting U. Throughout we take W to 

be W* defined in (1.6) and, therefore, adopt the nota- 
^ ^ 

tion _0u(W*) = e_~. Since the results in this section 

require the use of the Fisher information matrix for 

the Weibull we need also assume that c > 2. 

Let I(e) denote the Fisher information matrix for 

the three parameter Weibull distribution which, by 

reference to KUbler (1979), is seen to be 

I(~) = D(o)I(c)D(o)/o 2 (3. I) 

I(c) = 

where 

I 
(c-l)2F(h 2) c(c-l)F(h I) 

(c-l)r (hl) c 2 

(c-l)F (hl)H2/c -~(2) 

- (c-l) F (hl)H 2/c] 

J 
-~(2) 

H I/c 2 

and 

H 2 = ~(hl) + i. 

Thus, one method of evaluating the asymptotic relative 
^ 

efficiency of _6~, for a given U, is to examine the ratio 

det(l(~) -I) det(Bu(C 0)'~IBU(cO)) 
DARE (~) - = 

det (V~ %) ) det (I (c01) 

(3.3) 

(3.2) 

F and ~ are, respectively, the gamma and digamma func- 

tions, h. = 1 - i/c, i=1,2, 
I 

H 1 = ~'(i) + ~(2) 2 
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This is seen to be a function of c o alone and hence, for 

a given value of Co, could be maximized as a function of 

U to determine optimal percentile points. Of course 

c o is unknown so that, in practice, it is not possible 

to obtain a U that maximizes (3.3). However, this 

does suggest an approximate procedure for selecting 

U, namely, utilize a priori information to provide an 

initial guess regarding the value of Co, r say, and then 

maximize 

(Bu(~) ' ~IBu (~) )/det (I (~)) (3. det 4) 

with respect to U. It will be seen that, if the U's 

are chosen as outlinedin this section, considerable 

freedom is allowed in the specification of ~ with little 

difference in DARE compared to that obtained using c o . 

Consequently, this approach will usually work quite well 

if the experimenter can merely specify a range of possi- 

ble values for c o . Alternatively, one could utilize a 

simple initial estimate for Co, e.g., the one proposed 

by Dubey (1967), in situations where such a two-stage 

procedure is feasible. 

Obtaining a value (or values) of U that maximizes 

(3.4) is a nonlinear optimization problem that is quite 

difficult in general. However, a value of U that works 

well in practice can be obtained by first observing 

that [Bu(-d)'~IBu(~)]-I__ is also the variance - covari- 

ance matrix for the best linear unbiased estimator of 

the parameters of the regression model 

Y(u i) = 61f l(ui;~)+62f 2(ui;~)+63f3(ui;~)+X(ui) , i=l,...,k, 

where the X(u i)'s are zero mean random variables satis- 

fying 
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E[X(ui)X(uj)] = min(ui,u.j) - uiu j. 

Thus, the theory of regression design in the presence 

of correlated errors can be applied to the problem of 

maximizing det(Bu(C)'~iBu(~))-i and, hence, (3.4). From 

results in Sacks and Ylvisaker (1968) (c.f. the Corol- 

lary on pg. 62) we obtain an approximate procedure 

applicable to the DARE criterion wherein the elements 

of U are chosen as the (k+l)-tiles of the density 

-1 1/3 
h(u;-c) = [@(u;-d)'l (-6)~(u;~)] 

-: f i ~(s ;~) ' I- 1 (~)~_(s ;~) ] 1/3ds, (3.5) 

0 

and ~(u;~) denotes the vector with ith component 
d2 -- 

fi(u;c) i=1,2,3 (see also Eubank 1981 for another 
du 2 
application of this method of percentile selection). 

This approach is easily implemented by first using a 

Gaussian quadrature rule to tabulate the c.d.f, cor- 

responding to h(u;-c) and then obtaining the values of 

the u.'s by interpolation. Such a program is available 
1 

upon request. 

To ascertain the sensitivity of our procedure for 

selecting U to the specification of-d we have computed 

the ratios DARE(_0~(~)Ic0) = det(Bu(_6)(c0)~IBu(_s ) 

" det(I(c0)),where U(-c) is the set of percentile points 

obtained from (3.5), for various values of ~ and c o �9 

This is tantamount to examining the behavior of the 

asymptotic relative Fisher efficiency of our estimator 

based on the percentile points U(r) when c o is the true 

value for the shape parameter. Table 1 provides a 

summary of these comparisons for a typical case, k=9, 
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and for c0,~=2.5(.5)I0. As can be seen from examination 

of the table, the asymptotic efficiencies exhibit no 

appreciable change for ~ reasonably close to c o provided 

both are sufficiently removed from two, e.g., c0,~ > 3. 

Consequently, the precise choice of ~- is not critical 

provided it is in the vicinity of c o . One must be 

cautious in interpreting the results of Table i, however. 
^ 

They indicate that DARE(_e~) is somewhat insensitive to 

the choice of U provided U is chosen as one of the sets 

obtained using (3.5). Such statements may or may not 

be valid for U's obtained in some other manner and, in 

fact, it is easy to construct U's for which the converse 

holds. To illustrate this point we have computed the 

DARE values for the naive choice of uniformly spaced 

u.'s when k=9 and c=2.5(.5)i0. These DARE's are pre- 
i 

sented in Table 2 and are seen to be quite low thereby 

illustrating the improvement to be obtained by using 

(3.5) in the selection of U. 

Table 2. Values of DARE (e~) for U={i/10; i=1, 9} __[j �9 . �9 , 

and Various Values of c. 
^ 

C 

2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

i0.0 

DARE (O_~ 
0409 
0692 
0887 
1028 
1132 
1212 
1274 
1325 
1366 
1401 
1430 
1455 
1476 
1495 
1512 
1526 
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To conclude it should be noted that, although this 

paper has concentrated on parameter estimation for the 

three-parameter Weibull distribution, the techniques 

developed here can be extended to other distributions 

and parameter estimation situations as well (provided 

they satisfy the general conditions presented in 

LaRiccia and Wehrly (1981) for consistency and asympto- 

tic normality of the minimum quantile distance estima- 

tor). For example, it can be shown that analogous 

statements to those in Sections 1 and 2 hold for the 

three-parameter lognormal distribution. Thus, one 

would have little difficulty in obtaining results, 

such as those in Section 3, for the case of a lognormal 

mode i. 
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