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Abstract Bone tissue defects cause a significant socioeconomic problem, and bone is the most frequently transplanted tissue beside 

blood. Autografting is considered the gold standard treatment for bone defects, but its utility is limited due to donor site mor-

bidity. Hence, much research has focused on bone tissue engineering as a promising alternative method for repair of bone 

defects. Marrow stromal cells (MSCs) are considered to be potential cell sources for bone tissue engineering. In bone tissue 

engineering using MSCs, bone is formed through intramembranous and endochondral ossification in response to osteo-

genic inducers. Angiogenesis is a complex process mediated by multiple growth factors and is crucial for bone regeneration. 

Vascular endothelial growth factor plays important roles in bone tissue regeneration by promoting the migration and differen-

tiation of osteoblasts, and by inducing angiogenesis. Scaffold materials used for bone tissue engineering include natural 

components of bone, such as calcium phosphate and collagen I, and biodegradable polymers such as poly(lactide-co-

glycolide). However, ideal scaffolds for bone tissue engineering have yet to be found. Bone tissue engineering has been 

successfully used to treat bone defects in several human clinical trials to regenerate bone defects. Through investigation of 

MSC biology and the development of novel scaffolds, we will be able to develop advanced bone tissue engineering tech-

niques in the future. © KSBB 
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Lack of new bone tissue for use in restoration of damaged 
or lost bones poses a major clinical and socioeconomic prob-
lem [1]. Currently, autologous bone grafting is the treatment 
of choice for bone defects, but it is restricted by donor site 
morbidity and limited availability [2]. Allografts have also 
been used, but are in limited supply and increase the risk of 
disease transmission. Calcium phosphates such as tricalcium 
phosphate (TCP) and hydroxyapatite (HA) have been re-
ported to act as osteoconductive synthetic bone substitutes, 
but the clinical applications of these substances are limited 
by their insufficient mechanical properties [3]. Bone tissue 
engineering is a promising alternative approach to bone re-
generation. Marrow stromal cells (MSCs) represent a poten-
tial source of multipotent cells for autologous bone-tissue 
engineering [4-8], as they can be isolated through minimally 
invasive bone marrow aspiration and culture-expanded ex 
vivo. Nevertheless, MSCs by themselves do not seem to be 
sufficient to generate bone tissues [8]. Other factors required 
for bone formation in addition to MSCs include osteogenic  
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inducers for MSCs, scaffolds for delivery and retention of 
MSCs in the tissue engineering sites, and angiogenic factors 
for vascularization of the bone tissue. In this review, we dis-
cuss several aspects of bone tissue engineering using MSCs. 
 

Marrow Stromal Cells 
 

Friedenstein and his colleagues first described the pres-
ence of plastic, adherent stromal cells from bone marrow 
[9,10]. The authors placed whole bone marrow in culture 
dishes and, after 4 h, discarded the nonadherent cells, includ-
ing hematopoietic stem cells (HSCs) and hematopoietic 
progeny. They reported that a small number of heterogene-
ous adherent cells proliferated rapidly, forming colonies of 
various shapes and sizes after 2 to 4 days of initial latency. 
These cells were able to differentiate into colonies resem-
bling bone or cartilage after several passages. Whether these 
cells were multipotent or were actually a mixture of several 
kinds of progenitor cells, including osteoblast and chondro-
cyte progenitors, was unknown until Pittenger et al. reported 
the multipotency of a single MSC [11]. The generally ac-
cepted method for isolation of MSCs from the bone marrow 
exploits their tight adherence to culture dishes, as initially 
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described by Friedenstein et al. 
The heterogeneous nature of MSCs, which was initially 

reported by Friedenstein et al., was demonstrated directly by 
Kuznetsov et al., who reported that only 20 of 34 (59%) sin-
gle-colony derived MSC colonies were able to form bone 
tissue when they were implanted into subcutaneous areas 
together with HA-TCP ceramics [12]. In addition, when 
Muraglia et al. investigated the differentiation potential of 
185 non-immortalized human MSC clones in vitro, only 
about one third of the clones was tripotent, exhibiting the 
ability to differentiate into osteo-, chondro-, and adipogenic 
lineages [13]. They suggested a hierarchical model in which 
tripotent MSCs give rise to osteochondral progenitors, which, 
in turn, generate osteogenic precursors. Furthermore, cells 
within a single colony derived from a single cell, can re-
spond differently to identical osteogenic conditions [14]. 
Although MSCs are heterogeneous and tend to lose their 
multipotency as they are passaged, the last of the differentia-
tion potentials to be lost before senescence is the osteogenic 
potential [13,15]. 

MSCs have a limited lifespan and progressively lose their 
bone-forming ability and stem cell properties during ex vivo 
expansion. Ectopic expression of human telomerase in hu-
man MSCs by transduction enhanced the bone-forming abil-
ity and lifespan of the MSCs [16,17]. One of the possible 
mechanisms for increased bone-forming capability caused 
by telomerase transfection is the upregulation of important 
osteogenic genes, such as those for CBFA1, osterix, and 
osteocalcin [18]. Another method for maximizing the multi-
potentiality of MSCs after extensive proliferation is plating 
the cells at low densities (3 to 10 cells/cm2) [19-21]. Since 
human MSCs proliferate rapidly when they are plated at low 
densities, a considerable number of cells can be obtained 
within a short time using this approach [19-21]. 
 
Osteogenic Differentiation of MSCs 
 

MSCs need to undergo osteogenic differentiation in order 
to form bone tissues. By themselves, MSCs form little bone 
tissue in non-osteogenic environments, such as those pro-
vided by subcutaneous bioinert poly(lactide-co-glycolide) 
(PLGA) scaffolds (Fig. 1) [8]. Dexamethasone, either alone 
or in combination with ascorbate-2-phosphate, and bone 
morphogenetic proteins (BMPs) have been used as osteo-
genic inducers for MSCs [22-26]. 

The in vivo osteogenic potential of human MSCs is en-
hanced by prior cultivation in vitro in the presence of dexa-
methasone and ascorbate-2-phosphate [12]. Nonetheless, 
MSCs expanded in the absence of osteogenic inducers can 
form bone tissues in vivo when they are induced to undergo 
differentiation into osteoblasts by dexamethasone and ascor-
bate-2-phosphate in the tissue-engineering sites in vivo (Fig. 
1) [8]. Furthermore, without osteogenic commitment in vitro, 
MSCs can form bone tissues in vivo when they are exposed 
to an osteoconductive or osteoinductive environment in vivo, 
such as coral or HA-TCP scaffolding used in repair of bone 
defects [6,27].  

A 6-day period of BMP-2 expression by C9 cells derived  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Osteogenic differentiation of MSCs by released dexa-

methasone and ascorbate-2-phosphate in vivo. Human 

MSCs were mixed with osteogenic and control scaffolds 

and implanted into subcutaneous areas of athymic mice. 

Nine weeks after implantation of the cell-scaffold complex, 

histologic sections were obtained and subjected to von 

Kossa staining. Scale bar = 50 µm. Magnification = 100 ×. 

 
 
from the murine embryonic mesenchymal progenitor cell 
line C3H10T1/2 suffices to irreversibly induce bone forma-
tion by these cells in vivo [28]. This suggests that a short 
period of BMP-2 expression is enough to induce differentia-
tion of murine mesenchymal stem cells to form hypertrophic 
cartilage and bone. However, since this study used an im-
mortalized murine cell line, it cannot be readily extrapolated 
to bone-tissue engineering using human MSCs. Furthermore, 
BMPs are not as effective in humans as they are in rodents 
[29,30] and similar studies using murine or human MSCs 
from primary culture have not been reported yet. 
 
Ossification Mechanisms in Tissue-engineered Bone 
Formation 
 

In normal development, osteogenesis occurs via two dis-
tinct mechanisms [31-33]. In both mechanisms, condensa-
tion of the mesenchymal cells is the first step. Then, in in-
tramembranous bone formation, the condensed cells directly 
undergo differentiation into osteoblasts, which secrete and 
deposit bone matrix to be mineralized later. Alternatively, in 
endochondral bone formation, the condensed cells differenti-
ate into chondrocytes that form a cartilage mold, and the 
mold is later replaced by bone and bone marrow. Both of 
these mechanisms are involved in postnatal bone-regen-
eration processes, such as fracture healing and distraction 
osteogenesis [33-35]. 

Whether the intramembranous or chondrogenic osteo-
genesis occurs in bone tissue engineering using MSCs de-
pends on the particular types of osteogenic signals present. 
Bone tissue engineering in vivo in the presence of BMP-2, 
BMP-7, and transforming growth factor (TGF)-β3 appears to 
cause formation of bone tissue predominantly through endo-
chondral ossification [36-38] whereas dexamethasone in-
duces intramembranous ossification in vivo [8]. These dif-
ferent bone-forming mechanisms may be ascribed to the 
facts that both BMP and TGF-β3 can induce chondrogenic 
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differentiation [39,40] of human MSCs, as well as osteo-
genic differentiation [38] and that dexamethasone is a strong 
osteogenic inducer [41], while the chondrogenic potential of 
dexamethasone is weak [40]. This discrepancy might be 
attributable to differences between the signaling mechanisms 
triggered by dexamethasone and by the TGF-β superfamily 
members including BMPs and TGF-β [42,43]. 
 
Angiogenesis and Bone-tissue Engineering  
 

Angiogenesis, the growth of blood vessels, is crucial for 
organ growth and regeneration of vascularized tissues. Bone 
is a vascularized living tissue and insufficient blood circula-
tion to the bone tissue results in necrosis and loss of preexist-
ing bone tissue [44] as well as failure of tissue-engineered 
bone regeneration. Angiogenesis is involved in normal de-
velopment of bone, fracture healing, and distraction osteo-
genesis [45-48]. It comprises complexly regulated processes 
such as sprouting, branching, differential growth of vessels, 
and recruitment of supporting mural cells to form a mature 
vascular system [49]. 

Vascular endothelial growth factor (VEGF) is the most 
critical driver of angiogenesis [50,51]. VEGF initiates blood 
vessel formation but by itself leads to unstable, leaky vessels, 
which can be stabilized by angiopoietin-1 [50]. VEGF is 
essential for appropriate callus formation and mineralization 
in both endochondral and intramembranous ossification in 
response to bone injury [52] and it enhances tissue-engineered 
bone regeneration using MSCs [53-55] via several possible 
mechanisms, which are discussed below. 

First, as a prototype angiogenesis activator, VEGF in-
creases angiogenesis [50,51]. Thus, VEGF-induced angio-
genesis may increase survival of implanted MSCs due to 
increased oxygen and nutrient availability. The growth and 
differentiation of endothelial cells in vitro is increased by 
VEGF secretion of human MSCs [56]. Second, VEGF di-
rectly stimulates migration of human osteobalsts [57] and 
increases the activity of osteoblasts in both intramembranous 
and endochondral bones [58]. Finally, VEGF upregulates 
BMP-2, a strong osteogenic factor, in endothelial cells [59]. 
In contrast to VEGF, little is known about the role of angio-
poietins in bone tissue regeneration using MSCs. 
 
Scaffolds 
 

Scaffolds are three-dimensional vehicles for cell delivery 
and tissue regeneration. An “ideal” scaffold for bone tissue 
engineering would have certain characteristics. First, it 
would be biocompatible. Second, it would be biodegradable. 
PLGA is an example of a biodegradable and biocompatible 
scaffold material, as approved by the US Food and Drug 
Administration. Third, it would be comprised of osteoinduc-
tive (actively inducing bone formation) or osteoconductive 
(guiding and supporting bone regeneration) materials. Bio-
glass and calcium phosphate ceramics are typical osteocon-
ductive materials [60]. An example of an osteoinductive 
scaffold is the PLGA scaffold that releases osteoinductive 
factors such as BMP-2 [61]. The fourth characteristic of the 

ideal scaffold would be an ability to induce angiogenesis, 
which is essential for the regeneration of vascularized bone 
tissue. Scaffolds delivering VEGF leads to a prominent in-
crease in blood vessel formation, as compared to control 
scaffolds [53,54] and enhances bone regeneration as well as 
angiogenesis in osseous defects where surrounding vascular 
supply has been compromised by previous irradiation [54]. 
Combined delivery of VEGF, MSCs, and BMP-4 results in 
significantly increased bone formation relative to any factor 
alone or any two factors combined [53]. Although human 
MSCs secrete VEGF [56], the amount of intrinsic VEGF 
secreted by transplanted MSCs does not appear to be suffi-
cient for bone regeneration [53]. Finally, scaffolds of suffi-
cient mechanical strength for easy handling are preferred.  

An ideal scaffold for bone tissue engineering has yet to be 
developed, but various scaffolds have been proven useful for 
this purpose. The major inorganic and organic components 
of bone are calcium phosphate and collagen I, respectively, 
and both have been used as scaffold materials for bone tissue 
engineering [62]. The most widely used forms of calcium 
phosphate ceramic are TCP (Ca3[PO4]) and HA (Ca10[PO4]6 

[OH]2) [60]. The biodegradable and biocompatible polymer 
PLGA has also been used as a scaffold material [8,61]. The 
advantage in using PLGA and other synthetic polymers as 
scaffold material is that the rate of degradation and the kinet-
ics of bioactive factor release can be altered by changing the 
molecular weight and composition of the polymers [62]. 
 
Human Clinical Trials 
 

The first clinical report of bone tissue engineering pub-
lished in the New England Journal of Medicine (NEJM) de-
scribed the use of cell-scaffold complexes in the treatment of 
three patients with segmental long bone defects: a 4-cm de-
fect in the tibia resulting from the failure of bone lengthening, 
traumatic loss of 4 cm of ulnar, and a 7-cm defect in the hu-
merus. Autologous MSCs were isolated from the patients, 
culture-expanded ex vivo, and mixed with macroporous HA 
scaffolds. These scaffolds were manufactured of a size and 
shape to match the defects. Whereas traditional bone-graft 
treatment would have required external fixation periods of 
12 to 18 months, the external fixations were removed 6.5, 6, 
and 13 months after surgery, respectively. In addition to the 
shortening of the regeneration period, no adverse effect re-
lated to the implants was reported. Other successful cases of 
tissue-engineered bone regeneration have been reported for 
distraction osteogenesis of long bone [63] and maxillary 
sinus augmentation [64]. 

In another case reported in the NEJM [65], in contrast to 
the other studies, Vacanti et al. attempted to produce a new 
bone rather than to aid the regeneration of a segmental bone 
defect. The patient was a 36-year-old man who had lost his 
distal phalanx of his left thumb in a machine accident. 
Autologous periosteal cells that had been expanded ex vivo 
for 9 weeks were mixed with alginate and a coral scaffold, 
and then implanted in the thumb. The result of this approach 
was not very successful. A biopsy of the implant 10 months 
after surgery showed that only 5% of the implant was new 
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bone. Moreover, the patient had weaker pinch strength than 
that he would have had with traditional autograft transplanta-
tion. 
 
Conclusions and Future Directions  
 

Tissue engineering is a promising approach that can pro-
vide novel treatment method for bone tissue defects. MSCs 
are attractive sources of cells for this purpose. However, 
MSCs are not well characterized, as compared with HSCs, 
other adult stem cells from the bone marrow. As in normal 
bone development and postnatal bone regeneration, tissue-
engineered bone is formed through endochondral and in-
tramembranous ossification in response to osteogenic induc-
ers. Angiogenesis, a crucial step in bone tissue engineering, 
is increased by VEGF, which also plays an important role in 
bone tissue engineering by inducing differentiation and mi-
gration of osteoblasts. Further study should reveal the roles 
of other angiogenic factors, such as angiopoietins, in bone 
tissue engineering and develop appropriate bone regenera-
tion methods using these factors. Various scaffolds have 
been used for bone tissue engineering, but an ideal scaffold 
has not been identified. Materials used for bone tissue-
engineering scaffolds include natural components of bone 
tissue, such as calcium phosphate ceramics and collagen I, 
and synthetic polymers, such as PLGA. Further research 
may give rise to the development of novel scaffolds that 
come close to the ideal. 

Several approaches to bone tissue engineering have been 
successful in regeneration and repair of damaged parts of a 
bone, but none have succeeded in generating an entire, fully 
functional bone. Postnatal human bone tissue tends to regen-
erate after damage and tissue engineering using MSCs can 
assist or accelerate this natural regeneration process. Further 
study should allow generation of entire bones as well as re-
generation of bone in large-volume bone defects. 
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