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ABSTRACT. The Blaschke-Lebesgue Theorem states that among all planar convex domains of  given 

constant width B the Reuleaux triangle has minimal area. It is the purpose of  this article to give a direct 

proof of  this theorem by analyzing the underlying variational problem. The advantages of  the proof are that 

it shows uniqueness (modulo rigid deformations such as rotation and translation) and leads analytically 

to the shape of  the area-minimizing domain. Most previous proofs have relied on foreknowledge of  the 

minimizing domain. Key parts of  the analysis extend to the higher-dimensional situation, where the convex 

body of  given constant width and minimal volume is unknown. 

1. Introduction 

A convex body in ~d is said to have constant width B if any two distinct parallel planes 
tangent to its boundary are separated by a distance B. For d = 2 such bodies are often called 
orbiforms, and for d = 3 they are called spheroforms. A well-known example is the Reuleaux 
triangle, whose boundary consists of three equally long circular arcs with curvature 1/B. The 
arcs meet at the comers of an equilateral triangle. Reuleaux polygons with any odd number of 
sides likewise enjoy the property of constant width. 

It has long been known that among all two-dimensional convex bodies of constant width, the 
Reuleaux triangle has the smallest area. W. Blaschke [2] and H. Lebesgue [14, 15] were the first to 
show this, and the succeeding decades have seen several other works on the problem of minimizing 
the area or volume of an object given a constant width; see [10, 4, 7, 1, 6, 19, 11], and [5]. Objects 
of constant width have several practical uses, and have been entertainingly discussed in [8, 13]. 
For instance, coins are sometimes designed with such shapes, because constant width allows their 
use in vending machines. 

The disadvantage of the arguments of Blaschke and Lebesgue and most subsequent proofs of 
the Blaschke-Lebesgue Theorem is that they are not sufficiently analytic to derive the minimality 
of the Reuleaux triangle without prior knowledge of the minimizer. No doubt this is one of the 
reasons that the higher-dimensional analog of the problem has remained open: What body (or 
bodies) of constant width in three or more dimensions has the smallest volume? 
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Another mason may be the rigidity of the condition of constant width. The Reuleaux triangle 
is only about 10% smaller than the disk of the same width, and the not quite tetrahedrally symmetric 
Meissner bodies [4, Section 67], which are the best-known conjectured minimizers in the three- 
dimensional case, are less than 20% smaller than the ball. 

It is my purpose here to prove the Blaschke-Lebesgue Theorem in a directly analytic way, 
and to frame the problem in higher dimensions as a step toward answering the question just posed. 

Two previous attempts to give analytical proofs can be cited. Fujiwara [10] expressed the 
area in terms of r(O) and showed through a lengthy calculation that in general the area of an 
orbiform exceeds that of the Reuleaux triangle of the same width. His proof gives little indication 
how to find the optimal geometry from first principles. More recently Ghandehari [1 l] gave an 
argument via optimal control theory and Pontryagin's maximum principle, which resembles the 
one of this article in a few respects. 

2. O n  the minimal volume of a convex body of constant width 

A body K of constant width is strictly convex, and therefore OK may be expressed as a 
continuous image of the sphere S d-1 via the mapping F(oJ) which associates to any unit vector 
to the point of OK with supporting plane perpendicular to to. (At smooth points of OK, F is the 
inverse of the Gauss map.) 

If x denotes a point on the boundary, then the support function of K will be defined in the 
usual manner as h(~o) := x �9 w, where x = F(r Notice that h(r is the distance from the 
origin of a plane in contact with 0 K, provided that the origin is within K, which may always be 
assumed. Given the support function h(oJ) of a convex set, the set itself can be reconstructed as 
the envelope of its supporting planes. Choosing the independent variable as to will be convenient 
for several reasons, among them the simple form of the formula for the width of K: 

h(o~) + h (~o a) = 8 ,  (Z l )  

where to a designates the point on S 1 antipodal to to: for S 1 one could identify w as the usual 
angular variable and write w a = w -4- Jr, but dimension-independent notation will be preferred as 
far as possible. 

A simple exercise using the divergence theorem shows that the volume can be written in 
terms of the support function: 

I f h(oJ)dS= l fs h(oa) dw V o l ( K ) = ~  K d d-, -I-Ijxj 

In this formula Kj are the principal curvatures of OK. Here and elsewhere, it will be more 

l (or zero, at non- convenient to express quantities in terms of the radii of curvature Rj :-- ~-j 

smooth points of OK). Hence 1( 1) 
Vol(K) = ~ h, 1--I Rj (2.2) 

j= l  sd-i  

The brackets here designate the inner product on LZ(sd-1). Because (2.2) is expressed in terms 
of Rj rather than x j, there is no difficulty when OK fails to be smooth. The set-up described to 
this stage is classical; for instance see [4], [3]. 

The question under consideration is the following. 
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P r o b l e m  2.1. Determine the minimal volume of a convex body K of fixed width B. 
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This problem will be recast with the benefit of  several observations, beginning with a useful 
formula, which results from a direct calculation: 

d-1 

V~d_,h = Z Rj - ( d -  1)h.  
j=l 

(2.3) 

Equation (2.3) was known to Weingarten [20] in the nineteenth century (see also [ 18]). Together 
with (2.1) it implies that 

Z Rj(o)) + Z Rj (o)") = (d - 1)B.  (2.4) 

J J 

Observe that d - 1 is the second eigenvalue of -Vs2d_ ~ , so the differential equation (2.3) is 
not uniquely solvable. However, according to the Fredholm alternative theorem, it is uniquely 
solvable with a reduced resolvent G : ~1 <---~, where 

~t~l :---- L 2 ( s d - 1 )  O s p a n [ Y ~ ]  , 

and y~n are the spherical harmonics [17] such that 

V2 ym - sd-I  1 = ( d - 1 ) Y ~  n 

(If d = 2, then y~n = sin co and cos co. The notation y~n will be used in any dimension.) 

Now, G is a bounded, smoothing operator. That is, 

Vol(K) = G Rj , N Rj (2.5) 

sd-I 

is a bounded quadratic form on L 2 (S d- 1), and the operator G maps L 2 (S d- 1 ) into W 2 (S d- 1) fq~l. 
Moreover, the condition of orthogonality to the span of the y~n is quite natural geometrically. For 
the support function, this restriction means that the Steiner point (centroid) has been moved to the 
center of  the coordinate system. Any given set of  nonzero coefficients of  y~n could be specified, 
and this would merely correspond to rigidly displacing the body K by a fixed vector with respect 
to the centroid. On the other hand, the condition that ~gd.-~ Rj be orthogonal to y~n is necessary 
for OK to be a closed boundary: I f  d = 2, it is the condition that the curve OK be closed. If  
d = 3, this condition is necessary and essentially sufficient for the Gauss curvature to determine 
an immersed closed surface OK (uniquely up to rigid motions) [16, p. 130]. 

When d = 2, there is only one curvature defined on the boundary, and V becomes a symmetric 
quadratic form 

1 
Vol(K) = ~(G[R] ,  R)sl . (2.6) 

When d ----- 3, a theorem of  Blaschke [2] [6, p. 66]) states that for objects of  constant width 
B, the volume and surface-area S are related by 

BS yr B 3 
Vol(K) -- 

2 3 
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It follows that the minimizers of the volume functional are identical to the minimizers of  the 
surface-area functional, which for d = 3 may be written as a symmetric quadratic form in 
R := Y~Rj: 

J 

1 
qSl[R] := d - 1 (G[R], R)Sd-I (2.7) 

[4, p. 63]. Recall that the support function enters through G[R] = h. The functional (2.7) will be 
considered here as the objective in any dimension, although its interpretation involves Quermass 
integrals and is not easily intuited when d > 3. 

With this notation, (2.4) is written: 

R(o)) -t- R (tO a) :-- (d - 1 ) B .  (2.8) 

This implies that admissible R must satisfy 

0 < R(o)) < (d - 1 )B ,  (2.9) 

and the averages of  R and h are both determined: It follows from (2.8) and (2.1) that 

( d -  1)B 
Rave - -  - - ,  have = BI2 .  (2.10) 

2 

Because of  (2.10) and the fact that G maps the set of  functions of  mean zero to itself, a 
simplification is achieved by subtracting the averages of  R and h, so R := R (d-OB and 2 

:---- h - ~-. In these terms, just as h = G[R], h = G[R]. There results an altemative to 
Problem 2.1. 

P rob lem 2.2. Minimize the functional 

for-R E ~-~1: { f E L2(Sd-1) : f -L span { r 'F }  , i(o>a) = - i ( o D ,  l i (oDI  <_ (d:~)____~, }. 
(2.11) 

Remarks .  

1. Functions in ~ are orthogonal to the lowest two eigenspaces of  - V  2. It follows that qb is 
a negative-definite quadratic form on ~ .  In particular, the function corresponding to the ball, 
R = 0, maximizes qb. Because of the concavity of  qb, the minimizers are extremals of 7-[. This 
statement is made somewhat more precise in Theorem 2.3 below. 

2. When d = 2, minimizing dp on ~ is equivalent to finding the convex region of smallest area for 
a given B. When d = 3, the theorem of Blaschke alluded to above ensures that minimizing dp is 
equivalent to minimizing the volume functional, but some elements of ~ may not correspond to 
embedded convex bodies. Hence Problem 2.2 is fully equivalent to Problem 2.1 only for d = 2. 

Now, the derivative of  q~ with respect to the variation R --+ R + 8( is simply 

d*od~ = 2 (G [R] , ()sd_l = 2 (h, ()  . (2.12) 

It is then possible to conclude the following. 

T h e o r e m  2.3. Minimizers of Problem 2.2 exist, and every minimizing -R has the properties 
that 
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(b) h > 0 ~ - -  (a-1)B2 ' ~ < 0 = ~ R =  (a-1)82 a.e. 
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Proof. The existence of a minimizer follows in a standard way from the compactness of the 
operator G, considered as an operator on the Hilbert space 

{ f e L 2 ( S a - 1 ) : f  -l-span{Y~',l}}. 

(Minimizers are non-unique at least by rotation.) 

Consider now admissible variations for q~, normalizing B temporarily for convenience so 
that (d-1)B 2 = l, and thus -1  < R <  1. 

Suppose that for some minimizing R and some E > 0, the set 

s ,  :=  > 0, _< 1 - ,  } 

is of positive measure. Then the antipodal set S a is also of positive measure, and any variation 
supported in SE must be extended to S a antisymmetrically by ~(co a) = -ff(oJ). Observe here 

that it is unnecessary to restrict ~ to be orthogonal to y~n, as any such component is orthogonal 

to h and hence will not contribute to (2.12). 

Let r run through a basis for L2[&] 0 Xs, consisting of bounded functions fin, extended 
antisymmetrically to S a as mentioned above. (Boundedness, together with e > 0, ensures 
admissibility. The case ff proportional to Xs, will be considered separately below.) From (2.11), 
with h (r := G[R] the first variation (2.12) is proportional to 

(h, ~} = f h(oJ)~ (og)dw+ f-h(og)~ (o9)do9 
& s a 

= fn( )c (og)dw+ f ( - h  (o~))(-~" (~0)) dw 
& & 

= 2 f h (co) ~ (r dw. 
t l  

& 

Optimality implies that this vanishes and hence that h = constant a.e. on &. 

Next consider (2.11) subjected to the variation ~ = -X& + Xs, ~. 

If/z(SE) > 0, then 

dqbdS = - 2 f & h + 2 f s  , h < 0 ,  (2.13) 

which contradicts optimality. This concludes the proof of (a). 

For (b), observe from (a) that either h = 0 a.e., which corresponds to the sphere, i. e., the 
maximizing shape, or else there is a set of positive measure for which h > 0 and R = - 1 or + I. 
But if R = +1, then the variation leading to (2.13) is still admissible for 8 >_ 0, so (2.13) yields 
a contradiction. Similarly, h < 0 if R = - 1. [ ]  

Corollary 2.4 (The Blaschke-Lebesgue Theorem). Among all two-~h'mensional convex 
regions of a given constant width B, the Reuleaux triangle has the smallest area. 
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Proof. Here o~ is treated as the angular variable for S 1, and it will be assumed that B = 1. As 
the circle is not the minimizer, statement (b) of Theorem 2.3 implies that m := maxh  > 0. By 
performing a rotation, it may be assumed that h(0) = m, and by continuity there is an interval 
around 0 such that, when rewritten in terms of h and specialized to one variable, (2.3) becomes 

1 (2.14) h"= - h -  5'  

yielding 

( ~) 1 (2.15) h =  m +  c o s w -  ~ 

1 m .  on that interval. The endpoints of the interval correspond to h = 0, i. e., w = 4- arccos 2m+l - - "  

q-a. At these points, h'  ~ 0. Since standard regularity theory implies that h has an absolutely 
continuous derivative [12, p. 158], +or cannot abut an interval on which h = 0. The only 
possibility is that h becomes negative and on the next interval the differential equation has a 
solution antisymmetric about a,  i. e., 

( ,) 1 
= -  m + ~  c o s ( 2 a - o g ) + ~ .  (2.16) 

The function h switches between the two forms (2.15) and (2.16), as shown in the figure. 

m ~ > r 

FIGURE 1 The minimizing support function minus 1/2. 

The support function is also subject to periodicity (~o + 2Jr ~- w) and antisymmetry (h(w + ~r) = 
-h(w)) .  The only candidates for optimality thus correspond to the odd-sided regular Reuleaux 
polygons with B = 1. A calculation [9] shows that the area of any such figure of given width is 
an increasing function of the number of sides. [ ]  
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R e m a r k s  a b o u t  three  or  m o r e  d i m e n s i o n s .  

There are two barriers to extending the proof of the Blaschke-Lebesgue Theorem to higher 
dimensions. One of these is connected with the ability to extend solutions of ordinary differential 
equations uniquely across a boundary; this needs to be replaced by a PDE analysis. 

The other, probably more substantial, barrier is the gap between the conditions of Problem 2.2 
and Problem 2.1. As remarked already, if the dimension d > 2, then the analytic conditions 
of Problem 2.2 differ from the geometric conditions which would guarantee that the curvature 
function R defines a convex body as naturally embedded in 11~ d. Numerical calculations indicate 
that the simplest generalization of the Reuleaux triangle, viz., the solution of (2.3) with R = 
2Xs, S = S 2 N {XIX2X3 > 0},  is not the support function of an embedded convex body. If, as is 
plausible, this minimizes Problem 2.2, then additional conditions will have to be imposed for a 
solution to Problem 2.1. 
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