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Quaternionic Monge-Ampbre Equations 
By Semyon Alesker 

ABSTRACT. The main result of this article is the existence and uniqueness of the solution of the Dirichlet 
problem for quaternionic Monge-Amp~re equations in quaternionic strictly pseudoconvex bounded do- 

mains in H n. We continue the study of the theory of plurisubharmonic functions of quaternionic variables 
started by the author at [2]. 

1. Introduction 

This article is a continuation of the author's previous article [2]. In [2] we have developed 
the necessary algebraic technique and we have introduced and studied the class of plurisub- 
harmonic functions of quatemionic variables (this class was independently introduced also by 
G. Henkin [36]). The main result of the present article is the existence of a generalized solu- 
tion of the Dirichlet problem for quaternionic Monge-Amp~re equations in quaternionic strictly 
pseudoconvex bounded domains in EI n. The uniqueness of solution was established in [2]. 

The versions of this result for real and complex Monge-Amp~re equations were established 
in classical articles by A.D. Aleksandrov [1] (the real case) and E. Bedford and B. Taylor [10] 
(the complex case). We prove also a result on the regularity of solution in the Euclidean ball. 
For real Monge-Amp~re equations this result was proved by L. Caffarelli, L. Nirenberg, and 
J. Spruck [ 14] for arbitrary strictly convex bounded domains, and for complex Monge-Amprre 
equations by L. Caffarelli, J. Kohn, L. Nirenberg, and J. Spruck [ 15] and N. Krylov [42] for 
arbitrary strictly pseudoconvex bounded domains. 

The real Monge-Amp~re equations appear in various geometric problems such as the 
Minkowski problem (see A. Pogorelov [52]). The Dirichlet problem has received considerable 
study. The interior regularity of the solution of the Dirichlet problem was proved by A. Pogorelov, 
and the proof was briefly described in [49]-[51]. The complete proof was published in [52] 
and [ 16, 17]. In [ 17] Cheng and Yau gave a different proof of interior regularity; they also studied 
some related geometric problems on fiat manifolds. Another motivation of studying of the real 
Monge-Amprre equations is the Monge-Kantorovich problem on the measure transportation (see 
e.g., [21] and [54]). 

The complex Monge-Ampr~re equations were studied in particular in the connection to 
K~ihler geometry. Good references are the books by T. Aubin [8], A. Besse [11], D. Joyce [40]. 
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There is a general philosophy (promoted especially by V. Arnold, see e.g., [4]) that some 
mathematical theories should have three versions which are analogous to each other in certain 
sense: real, complex, and quaternionic. However they should reflect different phenomena. In 
this article we present the theory of plurisubharmonic functions of quaternionic variables and the 
theory of quaternionic Monge-Amp&e equations whose study we have started in [2]. Their real 
and complex analogs are well known (the real analog of the theory of plurisubharmonic functions 
is the theory of convex functions). 

We are going to formulate our main result more precisely and recall the main notions from [2]. 
Let H denote the (non-commutative) field of quaternions. Let H n denote the space of n-tuples of 
quaternions (ql, q2 . . . . .  qn). We consider H n as right H-module (we call it right H-vector space). 
An n x n quaternionic matrix A = ( a i j )  is called hyperhermitian if A* = A, i.e., aij = { t j i  for 
all i, j .  

In order to write the classical (real or complex) Monge-Amp&e equations one has to use the 
notion of determinant of matrices. By now there is no construction of determinant of matrices 
with non-commuting (even quaternionic) entries which would have all the properties of the usual 
(commutative) determinant. The most general theory of non-commutative determinants is due 
to Gelfand and Retakh (see [27]-[28], also [29, 30]). However, it turns out that on the class 
of quaternionic hyperhermitian matrices there is a notion of the Moore determinant which has 
all the properties of the usual determinant of complex (resp. real) hermitian (resp. symmetric) 
matrices. Some of these properties are reviewed in Section 2, and we refer to [2] for further 
details and references. Here we mention only that the Moore determinant depends polynomially 
on the entries of a hyperhermitian matrix, and the Moore determinant of any complex hermitian 
matrix A considered as quaternionic hyperhermitian coincides with the usual determinant of A. 
We denote the Moore determinant of A by det A. 

The quaternionic Monge-Amp~re equation is written in terms of this determinant. We have 
to also recall the notion of plurisubharmonic function of quaternionic variables and the definition 
of quaternionic strictly pseudoconvex domain following [2]. Let ~2 be a domain in H n. 

Def in i t i on  1.1. A real valued function u : f2 ) • is called quaternionic plurisubharmonic 
(psh) if it is upper semi-continuous and its restriction to any right quaternionic line is subharmonic. 

Recall that upper semi-continuity means that f ( x o )  > lim sup f ( x )  for any x0 6 S2. 
X----~ Xo 

Moreover, we will call a C2-smooth function u : ~ > R to be strictly plurisubharmonic 
if its restriction to any right quaternionic line is strictly harmonic (i.e., the Laplacian is strictly 
positive). 

Def in i t ion  1.2. An open-bounded domain g2 C H n with a smooth boundary 0~2 is called 
strictly pseudoconvex if for every point z0 6 0f2 there exists a neighborhood (.9 and a smooth 
strictly psh function h on (..9 such that f2 f) (.9 = {h < 0}, h(zo) = 0, and Vh(z0) # 0. 

We will write a quaternion q in the usual form 

q = t + x . i + y . j + z . k ,  

where t, x, y, z are real numbers, and i, j ,  k satisfy the usual relations 

i 2 = j 2  = k 2 : _ 1, i j  = - - j i  = k, j k  = - k j  = i, ki = - i k  = j .  



Quaternionic Monge-Amp~re Equations 

3̀ The Dirac-Weyl operator ~ is defined as follows. For any H-valued function f 

O Of . Of 
-~qq f := --~ + i OCx + J-ff-fy + k Tz �9 

Let us also define the operator 3̀ �9 

0_.0._f := 0__0_f_ Of Of 
Oq O(I -~ ~xi -~yJ ~z k" 
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R e m a r k s .  (a) The operator fl- is sometimes called the Cauchy-Riemann-Moisil-Fueter op- 
�9 . d q  

erator since it was introduced by Moisil in [45] and used by Fueter [22, 23] to define the no- 
tion of quatemionic analyticity. For further results on quaternionic analyticity we refer e.g., 
to [ 12, 47, 48, 58], and for applications to mathematical physics to [34]. Another name used for 
this operator is the Dirac-Weyl operator. But in fact it was used earlier by J.C. Maxwell in [44], 
Vol. II, 570-576, where he has applied the quaternions to electromagnetism. 

(b) Note that 
0 0 

+ V ,  
oO ot 

where V = i ~-~̀3x + J~ '  + k~ 3̀z" The operator V was first introduced by W.R. Hamilton in [35]. 

�9 ,3 (c) In quaternionic analysis one considers a right version of the operators ~ and ~ which 
4 - -  <--- ~ <" -  

3̀ ~ 3̀ is related to 3̀ are denoted, respectively, by ~ and _ "  The operator ~ ~-~ by the same formula as 
,<_- 

3̀ is related to 3̀ 3̀ 3̀-'~ ~7~, and i-~ is defined as 

'ff Of Of . ~-~f := -~- + Of i + + Of k 

Now we can write the quaternionic Monge-Amp6re equation with respect to C 2- smooth 
psh function u on Q: 

det ~SqiOOJ] = f ,  

t `32u ~ is quaternionic hyperhermitian (since u where f is a given function�9 Note that the matrix , ~ ,  

is real valued), det means the Moore determinant of this matrix. Note also that since the function 

~2u ~ is non-negative definite, and hence its Moore determinant is non- u is psh, the matrix , ~ ,  

negative (the notion of positive definiteness of a hyperhermitian matrix is recalled in Section 2, 
Definition 2.4)�9 

One of the main results of Section 2 of [2] was the definition of non-negative measure also 
. 2  

denoted by d e t ( ~ )  for any continuous psh function u (which is not necessarily smooth). That 
' / t  " / I  

construction generalizes to the quaternionic situation the well-known constructions in the real 
and complex cases due, respectively, to A.D. Aleksandrov [ l] and Chern-Levine-Nirenberg [ 18]. 
Now we can formulate the main results of this article. 
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Theorem 1.3. Let f2 C H n be a bounded quaternionic strictly pseudoconvex domain. Let 
f ~ C(~2), f >_ O. Letqb ~ C(O~2). Then there exists unique function u E C(~2) which is psh 
in ~2 such that 

d e t (  O2u ~ 
\ OqiOqj ] = f in f2, 

ul~ =~.  

Note that the uniqueness was proved in [2]. Theorem 1.3 claims existence of a solution in a 
generalized sense (e.g., the function u does not have to be smooth). It is of interest to prove the 
regularity of solution u under assumptions of regularity of the initial data f ,  4~. We can prove it 
when the domain f2 is the Euclidean ball B in H n. In Section 7 we prove the following result 
(called Theorem 7.1). 

Theorem 1.4. Let f ~ C~ f > O. Let dp E Coo(OB). There exists unique psh function 
u ~ C~176 which is a solution of  the Dirichlet problem 

det \ OqiOOj ] = f ' 

The real version of this result was proved for arbitrary strictly convex bounded domains in 
]i~ n by Caffarelli, Nirenberg, and Spruck [ 14]. The complex version of it was proved for arbitrary 
strictly pseudoconvex bounded domains in C n by Caffarelli, Kohn, Nirenberg, and Spruck [ 15] 
and Krylov [42]. Our method is a modification of the method of the last article [ 15]. Also note 
that in the case n = 1, the problem is reduced to the classical Dirichlet problem for the Laplacian 
in/R 4 (which is a linear problem); it was solved in XIX century. 

Let us make a few comments why the method of [ 15] cannot be generalized immediately to 
arbitrary strictly pseudoconvex bounded domain in H n. The main difficulty is that in the complex 
case one uses the holomorphic transformations to make the domain to be (locally) close to the 
Euclidean ball. In the quaternionic situation it does not work. Indeed in the complex case the 
class of diffeomorphisms of a domain which are either holomorphic or anti-holomorphic can 
be characterized as the class of diffeomorphisms preserving the class of psh functions. In the 
quaternionic situation the class of diffeomorphisms preserving psh functions is very small: all of 
them must be affine transformations, more precisely modulo translations the corresponding group 
is equal to GLn(H)Sp(I ) .  The last fact is proved in Section 3.2. 

Let us make a few comments on the method of the proof of Theorem 1.3. It uses the 
solution of the Dirichlet problem in the unit ball given by Theorem 1.4. The method to deduce 
the general case from this one follows the lines of the article [ 10] by Bedford and Taylor. It 
was necessary to generalize to the quaternionic situation many results from the usual (complex) 
theory of plurisubharmonic functions (this investigation was started in [2]). Sections 5 and 6 of 
this article follow very closely the complex case [ 10]. 

This article is organized as follows. In Section 2 we review the necessary facts from the 
theory on non-commutative determinants; the exposition follows [2]. In Section 3 we review 
the theory of plurisubharmonic functions of quaternionic variables as it was developed in [2]. 

( ~2u ~ for any (finite) psh function u In Section 4 we construct the matrix valued measure \ ~ ]  

on Q. This construction is a quaternionic version of the well-known analogous construction in 
the complex case (see [43], p. 70). This construction will be used in the proof of Theorem 1.3. 
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In Section 5 we construct for any finite psh function u an operator ~(u)  which is essentially 
1 

a2u ] ;  (following Section 5 of the article [10] by Bedford and Taylor). This operator det ~ }  

plays an important technical role in the proof of Theorem 1.3. In Section 6 we establish several 
facts on the envelopes of functions from the Perron-Bremermann families following closely 
again the technique developed in the complex case in [ 10]. In Section 7 we prove Theorem 1.4 on 
the existence of C~-regular solution of the Dirichlet problem in the unit ball under appropriate 
assumptions on the regularity of the initial data. In Section 8 we prove Theorem 1.3; the proof 
uses the results of all previous sections. In Section 9 we discuss further the notion of strictly 
pseudoconvex domain in the quaternionic space. Thus we introduce the quatemionic analogue 
of the Levi form and consider some examples. In Section 9.3 we state some open questions. 

2. Background from non-commutative linear algebra 

In this section we review some material on non-commutative determinants. More precisely 
we will recall some facts on the Dieudonn6 and Moore determinants of quaternionic matrices 
following [2]. 

The Dieudonn6 determinant of quaternionic matrices behaves exactly like the absolute value 
of the usual determinant of real or complex matrices from all points of view (algebraic and 
analytic). Let us denote by Mn(H) the set of all quaternionic (n x n)- matrices. The Dieudonn6 
determinant D is defined on this set and takes values in non-negative real numbers: 

D : Mn(H) > ~>_o. 

Then one has the following (known) results. 

Theorem 2,1. (i) For any complex (n x n)-  matrix X considered as quaternionic matrix, the 
Dieudonn6 determinant D(  X )  is equal to the absolute value o f  the usual determinant o f  X.  

(ii) For any quatemionic matrix X 

D(X) = O (X t) = O (g*) , 

where X t and X* denote the transposed and quaternionic conjugate matrices o f  X,  respectively. 

(iii) V ( X .  Y) = D(X)D(Y) .  

The following result is a weak version of the decomposition of the determinant in row 
(column). 

I all ... aln 1 Theorem 2.2. Let  A . . . . . . . . . . . . . .  be a quaternionic matrix. Then 

an I �9 �9 �9 ann 

n 
D ( A )  < E la l i [D(Mt i ) .  

i=1 
Similar inequalities hold tbr any other row or column. 

(In this theorem ]a I denotes the absolute value of a quaternion a, and Mpq denotes the minor 
of the matrix A obtained from it by deleting the p-th row and q-th column). 
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In a sense, the Dieudonn6 determinant provides the theory of absolute value of determinant. 
However it is not always sufficient and we lose many of the algebraic properties of the usual 
determinant. The notion of Moore determinant provides such a theory, but only on the class of 
quaternionic hyperhermitian matrices. Remember that a square quaternionic matrix A is called 
hyperhermitian if its quaternionic conjugate A* is equal to A. The Moore determinant denoted 
by det is defined on the class of all hyperhermitian matrices and takes real values. For the 
construction of the Moore determinant we refer to [2], Section 1.1, where one can also find the 
references to the original articles. The important advantage of the Moore determinant with respect 
to the Dieudonn6 determinant is that it depends polynomially on the entries of a matrix; it has 
already all the algebraic and analytic properties of the usual determinant of real symmetric and 
complex hermitian matrices. Let us state some of them. 

Theorem 2.3. (i) The Moore determinant of  any complex hermitian matrix considered as 
quaternionic hyperhermitian matr/x is equal to its usual determinant. 

(ii) For any hyperhermitian matr/x A and any quaternionic matrix C 

det (C*AC) = det A-de t  (C'C)  . 

Examples. 

(a) Let A = diag(Lt . . . . .  ~.n) be a diagonal matrix with real hi 's. Then A is hyperhermitian 
and its Moore determinant det A = I- I i  h i .  

(b) A general hyperhermitian 2 x 2 matrix A has the form 

a=[q q] 
where a, b ~ IR, q ~ N. Then its Moore determinant is equal to det A = ab - qgl. 

Let us remind the definition of positive definiteness of hyperhermitian quaternionic matrix 
following [2]. 

Definition 2.4. Let A = (aij)n.j=l be a hyperhermitian quaternionic matrix. A is called 

non-negative definite if for every n-column of quaternions ~ = (~i)i=ln one has 

~*Z~ = ~ ~ai . i~j  ~ O . 
i . j  

Similarly, A is called positive definite if the above expression is strictly positive once ~ ~ O. 

In terms of the Moore determinant one can prove the generalization of the classical Sylvester 
criterion of positive definiteness of hyperhermitian matrices (Theorem 1.1.13 in [2]). In terms 
of the Moore determinant one can introduce the notion of the mixed discriminant and to prove 
the analogs of Alexandrov's inequalities for mixed discriminants (Theorem 1.1.15 and Corol- 
lary 1.1.16 in [2]). 

The (well-known) relation between the DieudonnE and Moore determinants is as follows: 
for any hyperhermitian matrix X 

D(X) = I detXI �9 

Note that the Dieudonn6 determinant was introduced originally by J. Dieudonn6 in [20] 
(see also [5] for his theory). It can be defined for arbitrary (non-commutative) field. On more 



Quaternionic Monge-Ampbre Equations 21 1 

modern language this result can be formulated as a computation of the Kl-group of a non- 
commutative field (see e.g., [57]). Note also that there is a more recent, very general theory of non- 
commutative determinants (or quasideterminants) due to I. Gelfand and V. Retakh generalizing 
in certain direction the theory of the Dieudonn6 determinant and many other known theories of 
non-commutative determinants. It was first introduced in [27], see also [28, 30] and references 
therein for further developments and applications. In a recent article [29] the connection of the 
Moore and Dieudonn6 determinants of quaternionic matrices to the theory of quasideterminants 
was made very explicit and well understood. 

We would also like to mention a different direction of a development of the quaternionic linear 
algebra started by D. Joyce [39] and applied by himself to hypercomplex algebraic geometry. We 
refer also to D. Quillen's article [53] for further investigations in that direction. Another attempt 
to understand the quaternionic linear algebra from the topological point of view was done by the 
author in [3]. 

3. Review of the theory of psh functions of quaternionic variables 

3.1. Some results from [2] 

We recall the basic facts from the theory of plurisubharmonic (psh) functions of quaternionic 
variables established by the author in [2] (see Definition l. 1 in this article). The operators ~ and 

;! were defined in the introduction. Oq 

First one has the following simple fact (see Proposition 2.1.6 in [2]). 

Proposition 3.1. A real-valued, twice continuously differentiable function f on the domain 
�9 i}2 t" 

~2 C ~n is quatemionic plurisubharmonic i f  and only i f  at every pointq ~ ~2 the matrlx ( ~ )(q ) 

is non-negative definite. 

Note that the matrix in the statement of proposition is quaternionic hyperhermitian (since the 
function f is real valued). The more important thing is that in analogy to the real and complex 
cases one can define for any continuous quaternionic plurisubharmonic function f a non-negative 

3 2 ~  
measure d e t ( ~ ) ,  where det denotes the Moore determinant (this measure is obviously defined 

for smooth f ) .  One has the following continuity result. 

Theorem 3.2. Let { f s } be a sequence o f  continuous quaternionic plurisubharmonic functions 
in a domain g2 C H n. Assume that this sequence converges unitbrmly on compact subsets to 
a function f .  Then f is continuous quaternionic plurisubharmonic function. Moreover, the 

i t 2 ~ .  �9 ~ . 
of  measures d e t ( ~ )  weakly converges to the measure d e t ( ~ ) .  sequence 

o q i  o q j  " " 

The proofs of analogous results in real and complex cases can be found in [8], where the expo- 
sition of this topic follows the approach of Chern-Levine-Nirenberg [ 18] and Rauch-Taylor [55]. 
For the complex case we refer also to the classical book by P. Lelong [43]. 

The next result is called the minimum principle (Theorem 2.2.1 in [2]). 

Theorem 3.3. Let f2 be a bounded open set in H n. Let u, v be continuous functions on ~2 
which are plurisubharmonic in f2. Assume that 

-- \ Oqi Oq.i ] 
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Then 

Semyon Alesker 

min { u ( z ) -  v(z)lz ~ ~} = m i n { u ( z ) -  v(z)lz ~ 0[2} . 

3.2. Diffeomorphisms preserving psh functions 

In this section we prove the following proposition. 

P r o p o s i t i o n  3.4. Let [2 C H n be a domain. Let F : [2 ~ [2 be a diffeomorphism such that 
for every open set 0 C [2 and for any psh function f on 0 the function F* f is psh on F -  l (0) .  
Then F is an afline transformation which can be written as a composition o f  a translation and a 
linear transtbrmation from the group G L n (H) Sp ( l ). 

In the statement of  the theorem the group GLn (H)Sp(I)  is defined as follows. On the right 
quaternionic space EI n there is a left action of  the group of  H-linear invertible transformations 
GLn(H). Also the group Sp( l )  of  norm one quaternions acts on H n from the right. Both 
actions commute and the group they generate is denoted by GLn(H)Sp(I) .  Note that it is 
isomorphic to (GLn(1HI) x Sp( l ) ) / {+ld} .  Now let us prove the proposition. Note also that all 
such affine transformations preserving the domain f2 must preserve the class of psh functions 
(see [2], Section 2.1). 

Proof.  Let U be any domain in H l and let m : U ~ [2 be any H-linear map. Let 
p : [2 ~ EIl be any H-linear projection. Cons ider thecompos i t ionpoFom : U ~ H I. I t is  
easy to see that this map preserves the class of  psh functions which is one-dimensional case means 
just that it preserves the class of  subharmonic functions. Hence p o F o m preserves the class 
of  harmonic functions (i.e., it is so called harmonic morphism, see e.g., [9] for more details and 
references). However there is a general result of  B. Fuglede [24] which says the following. Let 
g : M ~ N be a smooth map between Riemannian manifolds of  the same dimension greater 
than 2 which preserves the class of  harmonic functions (in the above sense). Then g is a conformal 
mapping with the constant coefficient of  conformality. When M and N are linear vector spaces 
with Euclidean metrics this result together with the classical Liuville theorem imply that g is a 
composition of  homothety, translation, and orthogonal transformation. 

It easily follows that our original map F is an affine transformation. Also it is easy to see 
that F is a composition of  a translation and a transformation from GLn(H)Sp(I) .  [ ]  

02 u 
4. T h e  d i s t r i b u t i o n  \ Oqi O~j / 

( ~2u "~ for any (finite) psh function In this section we will define the matrix-valued measure \ ~ /  

u on [2. This construction is a quaternionic version of  the well-known analogous construction in 
the complex case (see [43], p. 70). 

Let us denote by 7~n the (real) linear space of  n x n quaternionic hyperhermitian matrices. 
Let 

r :=  {~ ~ 7- t . l t  _> 0 } .  

On the space Hn one has the bilinear symmetric form (-, -) : Thus C is a closed convex cone. 
~n  x ~n  ~ R defined by 

(A, B) = ReTr(A �9 B ) ,  
n where for any n • n quaternionic matrix X = (xij), ReTr(X) :=  )--~i=l Rexii .  Note also that for 

any quaternionic matrices X and C with C invertible, one has ReTr(CXC - t )  = ReTr X. 
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We easily have the following. 
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C l a i m  4.1. (i) (., .) is a perfect pairing on 7-G. 

(ii) For any matrices A,  B ~ C one has (A, B) _> 0. 

(iii) The dual cone C ~ :=  {~ ~ 7-/n[(~, 17) _> 0u ~ C} coincides withC. 

Def in i t ion  4.2. One says that an Hn-valued distribution r on the domain fl  is non-negative 
( ~  > 0) if for any smooth compactly supported function f on fl  with values in the cone C one 
has r  > 0. One can call such a ~ C-valued. 

As in the usual scalar valued case one has the following result. (For the scalar valued case 
see [25].) 

Proposition 4.3. A n y  C-valued distribution on f2 is o f  zero order, i.e., (non-negative) 7-In- 
valued measure. 

We also have the following result (which easily follows from the scalar valued case). 

L e m m a  4.4. A n y  locally bounded sequence Of~n-valued  measures on ~2 has a weakly con- 
vergent subsequence. 

Note also that for any Hn-valued distribution (resp. measure) /z  on f2 one can define in the 
obvious way its trace Tr/1.(= ReTr/x),  which is a real valued distribution (resp. measure). 

Proposition 4.5. The sequence o f  C-valued m e a s u r e s  {/z j}  is (locally) bounded i f f  the se- 
quence o f  real valued measures {Tr/zj } is  ( loca l ly )  bounded. 

P r o o f  It immediately follows form the fact that a subset X C C is bounded iff the set 
{Trxl x ~ X} is bounded. [ ]  

Let us now define for any quaternionic psh function u on f2 the C-valued measure r ;~2u ilqi il~j i 
which has the usual meaning for C 2- smooth function u. Let u be an arbitrary (finite) quaternioqic 
psh function on Q. By [2], Section 2.1, u is subharmonic. But every finite subharmonic function 
is locally integrable (see e.g., [56], Chapter 1, Section 1.4). Hence we can define 

tie. :=  u # xe  , 

where X~(z) = ,-~L;x ({)  > 0 is the usual smoothing kernel (like as in the complex situation, see 
/" ~12U~: " 1  e.g., [37], p. 45). Then u~. are C ~176 smooth psh functions. Hence , ~ ,  > 0 for all e > 0. 

Proposition-Definition 4.6. For any quatemionic psh function u on f2 the Hn-  valued mea- 
~2u~ 

sures ( ~ ) converge weakly to a non-negative Hn - valued measure as e ~ O. This measure 

will he denoted oy t ~ ). 

It is easy to see that if u ~ C2(~"2) then the limit measure has its usual meaning. 

~)2u~ 
P r o o f  First let us show that the measures ~ are locally bounded. By Proposition 4.5 it is 
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sufficient to show that their traces are locally bounded. But Tr( ) = Au~. > O. Let K C f~ 

be any compact subset. Let y _> 0 be a smooth function with compact support on ~ which is 
equal to 1 on K. Then 

f K A U e d v o l < L A u e ' y d v o l = L u e , ' A y d v o l  

_< I I A ~ ' I I c ( . ) " / -  u~dvol  _< I IAvlIc( . )"  [ ]uldvol 
dsu pp y Jsupp(y)+e B 

= I I A Y l l c ( ~ ) ' l l u l l L , ( ~ u p p ( r ) + ~ B ) ,  

where B denotes the unit Euclidean ball in H n. This proves the local boundedness of the sequence 
, 2  

o f m e a s u r e s ( ~ ) .  HencebyLemma4.4foranysequence{eN} ~ 0thesequenceofmeasures 
' t  ,,/j 

02Ut~N 
( ~ )  has a weakly convergent subsequence. It remains to show that the limit does not depend 

on the choice of subsequence. 

Fix an arbitrary ~ ~ C~(f2).  We easily get for any i, j 

fo fo .'o fo ,'o O2ge" d vol = u~ - - -  d vol ~ u �9 - -  d vol . 
4 " Oqi O(t-----f Oqi Oqj Oqi 0{t/ 

Namely for smooth t~ the limit does not depend on the choice of subsequence. This implies the 
statement. [ ]  

Theorem 4.7. (i) Let  {U N } be, a sequence o f  quaternionic psh functions on a domain f2 C H n 
which is uniformly bounded from above on every compact subset off2. Then either U N > --oo 
uniformly on compact subsets o f f2 ,  or else there is a subsequence {UN~ } which converges in 
L~oc(f2). I f  uN # --00 tbr all N and uN converge in the sense o f  distributions to a distribution 

U, then U is defined by a psh function u and u N ~ u in Lit c (f2). 

(ii) Assume that a sequence {uN} o f  quaternionic psh functions on f2 converges in L~oc(~2) 
to a quaternionic psh function u. Then one has a weak convergence o f  measures 

aq~ a,~; / \ aqi a,~i / 

To prove this theorem we will need a lemma which is a quaternionic analog of the corre- 
sponding complex result (see [38], Theorem 4.1.7). 

Lemma 4.8. Let  u be a function defined on a domain f2 C H n. Assume  that u a (z) := u( Az)  
is subharmonic in ~'~a :~-- {Z[ AZ ~ f2} for every invertible linear quaternionic transformation A 
(i.e., VA ~ GLn(H)) .  Then u is quatemionic psh. 

Assuming this lemma let us prove Theorem 4.7. 

P r o o f  o f  T h e o r e m  4. 7. (i) This part of  the theorem is known to be true if one replaces in 
its statement the word "psh" by the word "subharmonic'" (see [38], Theorem 3.2.12). In order to 
deduce part (i) of the theorem from that result it remains to show that the limit function u is psh 
(and not just subharmonic). But this immediately follows from Lemma 4.8. 

( I)2UN ~ (ii) First note that the measures , ~ , ,  N > l are uniformly locally bounded in f2. This 

is proved exactly as in Proposition 4.6. 
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Hence choosing a subsequence if necessary we may assume that this sequence of measures 

a2u To see it converges weakly to an ~n-valued measure (vii). We have to prove that vij -- Oqiaflj" 

fix an arbitrary function q~ ~ C ~ ( ~ ) .  Then 

fo :* f. f : .  02uN - ~ b d v o l =  u N ' ~ d v o l  > u - - - d v o l =  - - ~ b - d v o l  , 
Oqi 0~I./ 8qi Oar / Oqi Oq j Oqi 8~I i 

where the first and the last equalities can be easily deduced from the assumptions. The result 
follows. [ ]  

It remains to prove Lemma 4.8. 

P r o o f  o f  L e m m a  4.8. The proof is an easy modification of the proof of Theorem 4.1.7 in [38]. 
Fix z ~ f2. The function u (z l + w l, z2 + ew2 . . . . .  Zn + eton) is subharmonic in w by hypothesis, 
0 < e <  l. Hence 

u(z) < f u(Zl + r( t ,  Z2 + re(2 . . . . .  Zn + re(n)dco(() 
Jlr I=1 

where co(() is the normalized Lebesgue measure on the unit sphere. Since u is upper semi- 
continuous and locally bounded above, the Fatou lemma implies as e ) 0 that 

u(Z) <_ f U(Zl + r( l ,  Z2 . . . . .  zn)dco(() i 

Jlr I=1 

The last inequality and Theorem 3.2.3 in [38] imply that the function zl ~ u(zl,  z2 . . . . .  zn) is 
subharmonic. The subharmonicity of the restrictions to other quaternionic lines follows form the 
invariance under quaternionic linear transformations. [ ]  

5. The operator q)(u) 

f :u  In the rest of the paper we will denote sometimes for brevity the matrix \ ~ / b y  (82u). 

Following Section 5 of the article [10] by Bedford and Taylor we will define for any finite psh 

function u an operator q~(u) which is essentially (det O2u)~. It is closely related to the operator 
det(OZu), but it is defined for arbitrary finite psh function u. 

As in the previous section we will denote by C the cone of non-negative definite quaternionic 
hyperhermitian n x n matrices. Consider the function 

1 
qJ(~) = (det(~e))~, ~ ~ C.  

P ropos i t i on  5.1. The tbnction qJ is a continuous, nonnegative, concave function which is 
homogeneous o f  degree I on the cone C. 

Proof. Concavity follows from Theorem 1.1.17 (ii) of [2]. The other properties are trivial. [ ]  

Let/z be a vector valued Borel measure on f2 C EI n with values in the cone C. Let us define 
a nonnegative Borel measure kO(#) on ~ as follows. Choose a scalar valued nonnegative Borei 
measure ~. on f2 so that/z is absolutely continuous with respect to L. Then by the Radon-Nikodim 
theorem dlz = h - dL where h is a Borel measurable function on ~ with values in C. 
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De f in i t ion  5.2. ',P0z) :=  q,(h)L. 

It is easy to see that this definition is independent of  the choice of  the measure ~. The 
following proposition is trivial. 

P r o p o s i t i o n  5.3. / f / z  and v are Borel measures on s with values in C then 

(1) qJ(ot/z) = aqJ(/z) it'a >_ O. 

(2) It'Iz, v are mutually singular then qJ(Iz + v) = ~P(Iz) + qJ(v). 

(3) qJ(/z) is absolutely continuous with respect to #.  

(4) qJ(t/z + (1 - t )v)  > tqJ(lz) + (1 - t ) ~ ( v ) ,  0 < t < 1. 

Proposition 5.4. I f  x >_ 0 is a continuous function with compact support then 

~(P,* X) >- ~'(/~)* X 

on any compact set f2 r with ~ '  + support(x) C f2. 

P r o o f  The proof  is exactly the same as in the complex case (see Proposition 5.4 in [ 10]). It is 
essentially based on Proposition 5.3 and general measure theoretic construction of  Goffman and 
Serrin [32]. We do not reproduce it here. [ ]  

Proposition 5.5.  Let  IX j be a sequence o f  Borel measures on f2 with values in C which 
converges weakly to a Borel measure #.  Suppose also that Borel measures ~P (ix j )  converge 
weakly. Then 

qJ(/z) > lim ~ ( / z j ) .  
j----~oo 

P r o o f  Again the proof  is exactly the same as in the complex case (see Proposition 5.6 of  [ 10]). 
Note that in turn this is a special case of  [32], Theorem 3, p. 165 with slight modifications. [ ]  

To define the operator O(u)  for any psh function u note that by Proposition-Definition 4.6 

[ azu ~ takes values in the cone C. the matrix of  Borel measures \ ~ ]  

Definition 5.6. 
02U 

T h e o r e m  5.7. Let  u, v, u j be finite psh on f2 C H n. Then 

(1) O(otu) = u O ( u ) ,  ot > O, 

(2) O(tu  + (1 - t )v)  > tO(u)  + (1 - t )O(v) ,  0 < t < 1, 

(3) I f  x >_ 0 is a continuous function with compact support then 

O(u * x )  >- O(u)  , x 

on any open set g2' with ~T + support(x) C ~2; 

(4) i f  u j  ~ u as distributions on ~2 and i f  the sequence o f  measures O(u i )  converges 
weakly then 

O ( u ) >  lim O ( u j ) .  
j----~ oo 
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(5) I f  us = u ,  X~. where XE(z) = t z X (7.) > 0 is the usual smoothing kernel (like in the 
complex situation, see e.g., [37], p. 45) then 

lim ~(ue,) = ~ (u) .  
e---~0 

(6) ~(max{u, v}) > min{q~(u), q~(v)}. 

P r o o f  Assertions (1), (2) follow from Proposition 5.3. Assertion (3) follows from Proposi- 
tion 5.4. Let us prove (4). By Theorem 4.7 (02u j )  ~ (82u) in the weak topology on the space 
of 7-Ln-valued measures on ft. This and Proposition 5.5 imply assertion (4). The assertions (5), 
(6) are proved exactly as in the complex case, and we refer to the proof of Theorem 5.7 in [ 10]. 

[ ]  

TheoremS.8.  Let  u be a linite psh function on ~2 such that the regularizations o f  u, u~. = u * x~. , 
have the property that det(02u~.) is a bounded family o f  Borel measures on each compact subset 
off2.  Then 

(l)  ~(u)  is absolutely continuous with respect to the Lebesgue measure, and i f  ~ ( u )  = 
g �9 d vol then g E L~oc(f2), i.e., gn is locally integrable; 

(2) i f  u is continuous and i f  det(O2u) = f . d vol +de  is the Lebesgue decomposition o f  the 
non-negative measure det(O2u) into its absolutely continuous and singular parts then gn <_ f ;  

~)2u il2u 
(3) i f  ~qii~t j -- f i ]  + dvi] is the Lebesgue decomposition o f  the Borel measures ~ then 

I 
g = (det(f/]))~. 

P r o o f  The proof of this theorem is exactly as in the complex case, and we refer to the proof 
of Theorem 5.8 in [10]. [ ]  

R e m a r k  5.9. The assumptions of Theorem 5.8 are satisfied when u is a continuous psh function. 

6. On upper envelopes 

Let ~ C H n be a domain. For functions f > 0 on g2, and q~ ~ C(0~)  let us denote by 

/3(q~, f )  := Iv is finite psh on ~21 ~(v)  > f .  vol, lim v(q) < 4~(()u e 0 ~ /  �9 
I q----,( / 

The main result of this section is the following result which is a quaternionic analog of Theorem 6.2 
from [ 10]. 

Theorem 6.1. Let  g2 be a strictly pseudoconvex hounded domain with smooth boundary. Let  

qb E C(Of2), f E C((2), f > O. Let  

u(z) := sup v(z) . 
v~t3(4~, f)  

Then u E C((2), u is psh in f2, and ul i~ -- c~. Moreover, u E B(c~, f ) .  

The proof of this theorem closely follows [10] and [13]; we are going to present it. As 
in [ 10], we will need two lemmas. Throughout this section f2 will denote a strictly pseudoconvex 
bounded domain in 7-Ln. 
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Lemma 6.2. 

L e m m a  6.3. 
such that 

Semyon Alesker 

Fix e > O. Then for every ( ~ Of 2 there exists v~ ~ B(4~, f )  r~ C((2) such that 

r  < vr _<r  

Fix s > O. Then for every ( e 0~2 there exists h~ 6 C((2) which is psh in f2 

1) he(z)  < ~b(z) forallz ~ Of 2. 

2) h e ( ( )  >_ 4~(() - e. 

First let us show that Lemma 6.3 implies Lemma 6.2. Choose a large constant K >> 0 such 
that ~ ( g l z l  2) ----- K~( I z l  2) > f .  Let ~(z) := q~(z) - g ( Iz l  2 - ]~" 12). Let he be as in Lemma  6.3 

applied for the function r instead of  4~. Then the function re(z)  :=  he(z) + K(Izl 2 - I(I =) 
satisfies Lemma 6.2. 

P r o o f  o f  L e m m a  6.3. By assumption (at least locally in a neighborhood of ( )  f2 = {F < 0} 
where F is twice continuously differentiable function on H n which is strictly psh and V F I ; ~  ~ 0. 
Let G(z) :=  F(Z) - 81z - (I 2. For small 8 the function G is psh in a neighborhood O of ( .  
Clearly 

Take small ~. > 0 and consider 

It is clear that 

G ( ( )  = 0, Gl(fi_{r < 0 .  

F*(z) :=  max{G, -~ .} .  

1) F* is psh in g2 and continuous in (2; 

2) F * ( ( )  = O; 

3) F*lxs_r < 0. 

For given e > 0 there exists a constant C >> 0 such that 

C.  F*(z) + r  < r  + e  for a l l z  6 0f2.  

Let he(z) :=  C .  F*(z) + r  - e. Then 

he(z) < r  for all z ~ 0f2,  

hr = r162  - e .  

This proves Lemma 6.3. 

Proof of  Theorem 6.1. 

[ ]  

Let us define the upper regularization of u in (2 as usual: 

u*(z) := l imsupu  (z') . 
Zt-......~ Z 

It is easy to see that u* is psh in fl (e.g., using Lemma 4.8 and the analogous classical result for 
subharmonic functions, see [56] Chapter 1, Section 1.5). Clearly u < u*. 

It follows from Lemma 6.2 that 

u(z) >_ 4,(z)Vz ~ 0 ~ .  

In order to prove that u coincides with 4~ on 0 f2 let us prove the converse inequality (following [ 13]). 
Fix ( ~ 0~ .  As in the proof o f L e m m a  6.3 construct F*. Let F** := - F * .  Then 
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l) F** is super-harmonic; 

2) F**(()  = 0; 

3) F**(Z) > 0 for z ~ ~2 - ( .  
In the classical potential theory F** is called barrier, and hence the classical Dirichlet problem 
for harmonic functions is solvable on ft. Hence there exists a harmonic in [2 function h ~ C ( ~ )  
such that hla~ ~- ~b. Since every function from B(~,  f )  is subharmonic we obtain that u(z) < 
h(z) Vz ~ ~2. Since h is continuous we get 

u*(z) < h(z) on ~ ,  

hence u*(z) < ep(z) on 8[2.  

Finally we deduce 
u(z) = u*(z) = ~(z),  Vz e ~f2.  

By H. Cartan's theorem (see e.g., [56]) u = u* almost everywhere in f2. Since B(tp, f )  is 
closed under taking finite maximums [Theorem 5.7 (6)] Choquet 's lemma (see e.g., [56]) implies 
that one can choose an increasing sequence of  functions uj ~ B(q~, f )  which converges to u almost 
everywhere in ~ .  But then uj > u* in L~oc(f2). Hence by Theorem 4.7 (ii) 82uj > O2u* 
weakly. Hence by Proposition 5.5 

�9 ( u * ) >  lim ~ ( u j ) > l _ t : = f . v o l = / z .  
j - - - - . ~  

Hence u* ~ B(qL f ) .  Since u < u* in ~ we conclude 

/ l  ~--. t / *  . 

Hence u is psh and u ~ B(qL f ) .  Hence to finish the proof of  Theorem 6.1 it remains to prove 
the continuity of  u in ~ .  

First we will prove the following 

C l a i m  6.4. u is continuous at all points o f t  he boundary 8f2. 

Proof. Fix any e > 0 and any ( ~ 8f2. By Lemma 6.2 there exists a function vr 
B(~, f )  n C(~2) such that 4~(() - e < vr (().  Since vr is continuous, in a small neighborhood U 
of  ( in (2 

re(z) > q ~ ( ( ) -  2e .  

But u(z) > vr Hence u(z) > q~(() - 2e for z ~ U. Hence l iminfu(z)  > q~((). But u 
z-- - -~(  

is upper semi-continuous in ~ (since u ---- u*), hence l imsupu(z) < u ( ( )  = q~((). Hence u is 
z -----~ ~" 

continuous at ( .  This proves the claim. [ ]  

Now let us continue proving Theorem 6.1. Fix e > 0. Let o~(e) > 0 be such that 

e 
sup I f ( z ) -  f (z')l < - and sup l u ( z ) -  u (z')l < e ,  

z.z'~fz 2 z.z'E~2.dist(z.i}~)<3m(e) 
[=-zq<~or I:-z'l<~or 

where dist(z, 8~2) denotes the shortest distance from z to 8~2. Existence of  such o~(e) follows 
from Claim 6.4 and the continuity of  f .  Let r s H n be any vector with Irl < to(e) (where I �9 I 
denotes the norm of the vector). Let 

o(z) :=  u(z + r)  q- e .  Izl 2 -- (L + l ) e ,  



220 Semyon Alesker 

where L be any constant satisfying L > Izl 2 for all z ~ ~ .  Let 

u(z), i f z ~ , z + r ~  
V(z ,  r)  :=  max{u(z), v(z)}, if z ~ f2, z + r ~ f2. 

L e m m a  6.5.  V(z ,  r )  e B(r  f ) .  

Let us postpone the proof of  this lemma and let us finish the proof of  Theorem 6.1. Lemma 6.5 
implies in particular that V(z ,  r)  < u(z)  for all z ~ f2. Hence for any z, z + r ~ f2 such that 
Irl < to(e) we have 

u(z  + r)  + e l z l  2 - (L + l)e < u(z)  . 

Hence for some constant C, 

Replacing r by - r  we get 

u(z + r ) - u ( z )  < C . e .  

l u ( z + r ) - u ( z ) l  < C . e .  

Hence u is continuous. 

Thus it remains to prove Lemma 6.5. 

P r o o f  o f  L e m m a  6.5. Let us check all the conditions in the definition of /3(r  f ) .  

C l a i m  6.6. V(z ,  r)  _< 4~(z) thral l  z ~ 0~2. 

Proo f .  Indeed, if z + r r [2 then V(z ,  r)  

V(z ,  r)  = u(z) = 4~(z) or 

V(z, r )  = 

[ ]  

= u(z)  = tp(z). I f z + r  ~ /2 then either 

u(z  + r) + e "  IZl 2 - -  (L + l ) e  < u(z + r )  - -  e 

= u(z)  + (u(z + r)  - u(z) )  -- e <_ u(z)  = ep(z).  [] 

Let us define the subset F :=  {z 6 f 2 l z + r  6 Of 2}. Note that for any po in tx  6 1-', 
dist(x, 0[2) < a~(e). Let A be the w(e)-neighborhood of  F. Then clearly for all x 6 A one has 
dist(x, 0Q) < 2~o(e). 

C l a i m  6.7, For all z ~ A one has V ( z, r)  = u ( z ). Hence V (z, r )  is upper semi-continuous in 
Of 2. 

Proo f .  Clearly it is sufficient to prove the first statement. We have to check that for z ~ A, 
v(z)  < u(z).  We have 

v(z)  = u(z  + r)  + e . IzI 2 -  ( t  + l)e < u(z  + r ) - e  

< u(z) + (u(z + r )  - u(z)) - e <_ u(z) 

where the last inequality follows from the fact that dist(z, 0Q) < 2oJ(e), Irl < w(e) and the 
definition of  ~o(e). [ ]  

Since the maximum of two psh functions is psh we can easily get the following from the last 
claim. 
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C l a i m  6.8. V ( z, r)  is psh in f2. 

To finish the proof of  Lemma 6.5 it remains to prove the following. 

C l a i m  6.9. ~ ( V ( z ,  r)  > / z ( =  f �9 d vol). 

Proof .  Let us denote by F0 :=  F tq ~2. By Claim 6.7 in a small neighborhood of  F0, or if 
z + r r f2, we have 

�9 (V(z, r))  = r >_ ~ .  

Now it remains to consider domain {z ~ f21 z + r  ~ ~ }. In this domain V(z,  r)  = max{u (z), o(z) }. 
Hence by Theorem 5.7 (6) we get 

r v}) > min{C,(u), r . 

Since ~(u)  > # let us prove that ~ ( o )  > / z .  Indeed 

�9 (o(z)) > ~ ( u ( z  + r))  + 4 e  >_ f ( z  + r)  + 4 e  > f ( z ) .  [] 

Thus Lemma 6.5 and hence Theorem 6.1 are proved. 

6.1. Other Perron-Bremermann families 

Let ~ be a domain in EI n. For brevity we will denote by P(~2) the class of  psh functions 
in ~ .  Given q~ e C ( 0 ~ )  and a non-negative measure/z  = f �9 d vol on f2, we define three 
Perron-Bremermann families of  subsolutions to the Monge-Amp~re equation (the first one was 
defined earlier in Section 5.1): 

B(q~, f )  :=  {v e P(~2)l~(v) > / x  and lim sup v(z) < q~(zo), for all z0 E 0~}; 
Z------~ ZO 

CB(~b, f )  :=  13(,/~, f )  M C(~) ;  

~-(q~,/z) :=  {o ~ P(f2) M C(~)I  det(02v) > / z  and v(zo) < qb(zo) for all z0 ~ 0f2}. 

I f / z  = f �9 dvol ,  f E L[oc(~) then let /z  n :=  f n  . dvo l .  If  o E P(f2) M C(~2) then by 
Theorem 5.8 (2) 

~ ( v )  n < det (O2v) , 

and consequently 
C/3(~, f )  C .T" ( r  n) . 

By Theorem 5.8 (l)  and Remark 5.9 if u is continuous then ~ (u )  is absolutely continuous with 
respect to the Lebesgue measure, ~ (u )  = g �9 d vol, and g ~ L~oc(~). 

Proposition 6.10. Let  f2 be a bounded domain in H n and suppose that u E P(f2) M C(~2) 
satisfies det(OEu) : ( ~ ( u ) )  n. [ f  CI3 : :  C/3(~, ~ (u ) )  and 3 r :=  5r(~, det(OEu)), where qb = 

ul;~,  then sup{vlv ~ .T'} = sup{vlv ~ CB} = u. 

Proof .  The remarks before this proposition and the assumption imply that C B  C .T'. Hence 
sup{rio E CB} < sup{vlv ~ .T'}. On the other hand obviously u ~ CB. Hence u < sup{rio E 
C13}. Thus it remains to show that sup{rio ~ .T'} < u. Fix any o e .T'. By the minimum principle, 
Theorem 3.3, u - v attains its minimum on 0f2. But since u > v on 0~2 we obtain that u > v in 
~.  The proposition is proved. [ ]  
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7. T h e  M o n g e - - A m p ~ r e  e q u a t i o n  in the  E u c l i d e a n  bal l  

In this section we prove the existence of the solution of the Dirichlet problem for the quater- 
nionic Monge-Amp~re equation for the unit Euclidean bail assuming sufficient regularity of the 
initial data f ,  ~b. First let us introduce some notation. 

Let B denote the open unit ball in H ' ,  

B := {Iql < 1}. 

Let/~ be its closure. The main result of this section is as follows. 

Theorem 7.1. Let f ~ C~176 f > O. Let 4~ ~ C~176 There exists unique psh function 
u ~ C ~ ( B )  which is a solution of  the Dirichletproblem 

{ O2U "~ 
det l _-----z-~__ l = f ,  

\ Oqi Oqj ] 

ulnas = ~ . 

This (smooth) case will be used in the proof of the general case (Theorem 1.3). The method 
of the proof of this case is a modification of that of the article by Caffarelli-Kohn-Nirenberg- 
Spruck [ 15]. 

In this section we will denote by I lgllk the C k- norm of a function g in B. 

The proof uses the continuity method. In Section 7.1 we prove the first order a priori 
estimates. In Section 7.2 we prove the second order a priori estimates. In Section 7.3 we obtain 
C 2"u a priori estimates as an easy consequence of the results from Sections 7. I and 7.2 and a 
general result from [ 15]. Then the higher smoothness results follow from these by the standard 
regularity theory of elliptic equations of second order (see e.g., [3 l, 41 ]). 

7.1. First-order estimates 

Proposition 7.2. Assume that a psh function u E C2(/~) satisfies the quaternionic Monge- 
AmpOre equation with f > 0 in B. Then 

Ilu[It ~ C ,  

with a constant C depending only on II f i l l ,  I1~ 112, and II f -  I E 10. 

Proof. Let L be the linearization of the operator v ~ log(det(02o)) at u. Explicitly this 
operator can be written 

Lv = n f  - l  .det (O2v, O2u[n - 1]) . 

Clearly Lu = n. Since u is strictly psh we have the following. 

C la im.  The operator L is elliptic. 

, where x i is one of the real Let D be a first order differential operator of the form D = 
coordinate axes in H n. First let us prove the following lemma. 

L e m m a  7.3. 
maxt~ [Dul <_ max~8 IDul + C ,  
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where C is a constant depending only on I I f i l l ,  114~111, and II f -  l llo 

Proof. We have 

L(Du) = n f  -1 . det (O2(Du), O2u[n - l ] ) =  f - l  D (det (O2u)) = D(log f )  . 

Consider the function w(q) :=  +Du + ,kiql 2, with L >> 0. Then we get 

= +O( log  f )  + ~.L ([q[2) . Lw 
k ! 

But 

L ( l q l 2 ) - ~ 8 n f - l ' d e t (  l'02un-ltimes02~l/ = 8 n f - l ' ~ ' ~ d e t ( M i i ( O 2 u ) )  

223 

C la im.  Let A be an invertible hyperhermitian matrix of  order n. For any i, 1 < i < n, 

A - l ) i  i = ~ det Mii(A) �9 
det A 

Thus using this claim we get 

L w = 4 - D ( I o g f ) + 8 n ~ . T r  02u . 

I Tr(C) > (detC)�88 Hence For any hyperhermitian positive definite (n x n) matrix C one has ~ _ 
we get 

1 

Lw > :kD(log f )  + 8n2~. �9 det 0Zu = +D( log  f )  + 8n-)~f-~ . 

Since f ~ C l(/~) and f is bounded from below by a positive constant, one can choose a large k 
such that the last expression will be positive. For such a ~. by the maximum principle the function 
w achieves its maximum on the boundary 0B. This proves Lemma 7.3. 

Thus it remains to estimate the gradient Vu on the boundary OB. First let ~ denote any C 2- 
smooth extension of  q~ inside the closed bali /~ such that its C2-norm can be estimated by the 
C2-norm of 4~. Consider the function q3 + K([ql 2 - 1) for large K. Let us denote this extension 
again by 4~. Note that on the boundary 0B it coincides with our original 4~. Note also that for 
large K the function 4~ is psh and moreover, 

det(02~b) > f = det (O2u) �9 

Hence by the minimum principle 4~ _< u in/}.  Next let h be a harmonic function in B which 
extends 4~. Then u _< h. Hence on the boundary IVul _< max{lVhl, [V4~[}. Thus Proposition 7.2 
is proved. [ ]  

where Mii (A) denotes the minor of  a matrix A obtained from A by deleting the i-th row and the 
i-th column. 
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7.2. Second-order estimates 

Let D be any real first-order differential operator with constant coefficients which are not 
greater than one. First we need the following result. 

L e m m a  7.4. For a constant C depending only on II f l12, II f -  1 II0 

max~ D2u < maxi~8 D2u + C.  

Proof We have 

(O(de t  O2u) 
D2( l~  D2(l~ = D \  -~et-O-~u ,1 

: f -Z{D2(de tO2u) .de t (O2u) - (D(de tO2u) )  2} 

= f -Z{D[n.de t (Oe(Du) ,OXu[n- l l ) ] .de t (O2u)-[n .de t (O2(Dul ,  O2u[n-l])]  2} 

= f - l n . d e t ( O 2 ( D 2 u ) , O 2 u [ n - l ] )  

+f -2{n(n- l )de t (O2(Du)[2] ,a2u[n-2] ) .de t (O2u)  

-- [n.det(O2(Du),O2u[n-1])]2} . 

We need the following. 

L e m m a  7.5. Let A, B be hyperhermitian (n x n)-matrices, A > O. Then 

n(n - 1) �9 det(B[2], A[n - 2]) �9 detA - (n.  det(B, A[n - 1])) 2 < 0 .  

Assuming this lemma let us finish the proof of Lemma 7.4. We get 

D2(logf) < f - ln .de t (O2 (D2u),O2u[n- l]) = L (D2u) . 

Hence we have 
L DZu+Llql 2 >DZ( log f )+8n  ~.f-~,  

where we have used the lower estimate on L(Iql 2) from the previous section. For sufficiently 
large ~. the last expression is positive. Hence by the maximum principle 

maxh(D2u+)~lql 2) <maxat~(D2u+Xlql2) . 

Thus Lemma 7.4 follows. [ ]  

Proof o f  Lemma 7.5. The function A ~ log(det A) is concave on the cone of positive 
definite hyperhermitian matrices [see [2], Theorem 1.1.17 (i)]. Hence 

d 2 
~-~(Iog.det(A + tB))lt=o < O . 

Computing explicitly this derivative we obtain the lemma. [ ]  
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Note now that in order to prove an estimate on the second derivatives of  u it is sufficient to 
prove an upper estimate on it. Indeed let ql = t + i �9 x + j .  y + k �9 z be one of  the quaternionic 
coordinates. Since u is psh we have utt + Uxx + Uyy -}- Uzz >_ O. This and the upper estimates on 
the second derivatives of  the form D2u imply the lower estimates on them. The estimates on the 
mixed derivatives also can be obtained easily since 

2Utx  • - ~  Jr- -~X U - -  Utt  - -  UXX . 

Hence we have to prove an upper estimate of  D2u on OB. Let us introduce additional 
notation. Let r(q)  = lql 2 - 1. Then 

B = {r < 0}. 

We will denote the quaternionic units as follows: 

e o =  1, el = i ,  e 2 = j ,  e3 = k .  

~'-~ 3 X e Fix a coordinate system (ql . . . . .  qn) on Hn; we will write qi = 2..,e=0 e e i  �9 Fix an arbitrary 
point P ~ 0B. We can choose such a coordinate system near this point that the inner normal to 

0 Also we will move the center of  coordinates to P ,  i.e., we 0B at P coincides with the axis x n. 
will assume that P coincides with 0. Let us denote the center of  the ball B by R. 

First we have the following trivial estimates: 

Ux;.x~(e) < C for (i, e), (j,  8) ~ (n, 0 ) .  

(Note that here we also use the first order estimates of  u and q~). Now let us prove the following 
estimate. 

L e m m a  7.6.  
UxF.x~(P) < C f o r ( i , e )  ~ (n ,O) ,  

where C depends only on ll f l l2,  Ilq~[[3, I l f - l l l0 .  

Proof .  Clearly one can construct a vector field T on EI n such that 

1) T ( P )  = ~ ;  

2) on the points o f 0 B ,  T is parallel to 0B; 

3) T has the form 

T = O x---f + a'ox--~n' 

where the function a is smooth with estimates on the derivatives depending only on n, and 
a ( P )  = 0 .  

Consider the function 

w(q)  : =  + T ( u  -ok )  + (Uxt ~ - ~ x 2 ) 2  + (Ux~ - q~x2)2-t - (Ux~ - ~bx3) 2 -  Ax  0 + Blq - RI 2 . 

We will show that for A, B sufficiently large 

(a) L w  > 0 �9 

(b) wl~B < O . 
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If we will prove it then by the maximum principle w < 0 in/~. Hence 

IT(u - ~b)l < ax~ in/~.  

Hence at the point P, I ~ T(u - 4~)1 < A. This will finish the proof of Lemma 7.6. Thus let us 

check the conditions (a) and (b). By a straightforward computation 

LT(u -4,) = T(log f ) -  (L (~bx~) +aL (dpx~,)) + (u -dP)x~,La 

+ nf  -! det ((a].(u - d~)xO,i)+ ((u - dp)x~.]-ai), 02u[n -1] )  , 

a__&g - -  e l  where we denote for brevity g i := ~ ,  g7 := ~ -  However ax~ ~ = g a - e2 ~ - e3 ~ .  
Hence 

LT(u-q~) = T(Iog f ) -  (L (~bx~)+aL (q~x~))) + (u-dp)xoLa 

+ n f  -1 (det((a](u-dp)~.i) + (a](u-r 02u[ n - 1 ] ) )  

3 

- n f - l  Z det ( (a]el(u - dp)xt.i) + (a]el(u - dp)xl.i)* , 02u[n - 1] ) .  
l - - I  

Note also that u~.i = Ui.K. Using first- and second-order estimates on a and ~b, and first-order 
estimates on f and u we get the following inequality: 

[LT(u - ~b)l < C + Cnf -1 det (I, 02u[n - 1]) 

+nf- l (det ( (a]ui .~)+(a]ui ,~)* ,O2u[n- l] ) )  
3 

+ nf- I  Z det ((a]el(u - q~)xt.i) + (a]el(u - dp)xti)*, 02u[n - 1] ) .  
l : l  

We have the following linear algebraic identity. 

Claim.  

det ((a]ui.~) + (a]ui.a)*, 02u[n - 1]) = 2 ( R e  a~)det (02u[n - l]) . 

It follows from Theorem 1.1.15 (i) of [2] that for a fixed n x n positive definite hyperhermitian 
matrix A the bilinear form det(XX*, A[n- l]) is non-negative definite on the space of quaternionic 
n-columns. Hence we get 

]de t (XY*+rX*,A[n-  1])1 <det(XX*,A[n - l ] )+det (YY*,A[n-  1]) . (7.1) 

Using this inequality and the last claim we obtain the following estimate: 

ILT(u - 4~)l < C + Cnf -! det (I, 02u[n - 11) + 2n IRe a~l 

3 

-k- Z n f  -1. (det (((u -~P)xt T(u -~)xlnj) , 02u[n - 1 ] ) + d e t ( ( a i a ] ) , O 2 u [ n -  1 ] ) ) .  
l = l  
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Using again the first-order estimates on a, we finally get 

ILT(u - 4~)1 < C + C n f  -1 det ( l ,  O2u[n - 1]) 

3 

+ n f - l y ~ d e t ( ( ( u - - q ~ ) x t S ( u - - d p ) x l j  ) , 0 2 u [ n -  l]) , 
l = l  

but now the value of the constant C might be different from the previous one. 

Now let us compute L ((Ux~ - qkx~)2). By a straightforward computation we have 

< 2 ) 

= 2 n f  - i  det (((u - Cp)xLT(u - dp)xLj) + (u - dp)x~ " �9 ((u - Cb)xLi]), 02u[ n - 1]) 

= 2n f - '  det ( ( (u  - dp)xtj(u - dp)xt j ) ,  02u[n - 1]) 

+ 2 ( u -  ~b)xl " �9 ((log f)x/" - n f  -1 d e t ( r  1 ] ) ) .  

Using this identity and (7.2) we obtain: 

L w  >_ - C  + (8B - C ) n f  -1 det (I ,  02u[n - 1]) 

3 

+ y ~ n f  -1 d e t ( ( ( u - C P ) x ~ . 7 ( u - d P ) x t j ) , O 2 u [ n -  1]) 
l = l  

3 

+ 2  Z ( u  - tp)x~- ((log f ) x l  - n f  -1 det ((~xtn.i], 02u[n -- 1 ] ) ) .  
1=1 

But the third summand is non-negative. Hence we get 

L w  > - C  + (8B - C ) n f  -1 det ( I ,  OZu[n - 1]) 

3 

+ 2  Z ( u  -- ~b)xt " - ((log f)x~ - - n f  -1 det ((bx~.i ], O2u[n - 1 ] ) ) .  
/ = 1  

Using the first-order estimates on u and f and third-order estimates on 4~ we finally obtain 

L w  > - C '  + ( 8 B - C ' ) n f - l d e t ( I ,  O2u[n - l l ) .  

As in the proof of Lemma 7.3 

Thus for large B we get 

d e t ( l ,  O2u[n-  1]) > nf"~. l . 

L w  > - C '  + (8B - C') n2 f -�88 > O . 

Thus the inequality (a) is proved. It remains to prove the inequality (b), namely 

(b) WlaB < 0 

227 

(7.2) 
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for large A, B. Note that T(u - ~)I~B ---- 0. Clearly it is sufficient to prove the inequality (b) 
only near the point P .  Since u - 4~ on igB, then using the first order estimates on u it is easy to 
see that for l = 1, 2, 3 

Ux~(q) - dpx~(q) < Clql, q E OB. 

But for q ~ 0 B we have [q I <  K(x O) �89 Hence [Ux~ (q) -  dpx~ (q)l 2 < K ' - x  O. Thus Lemma 7.6 

is proved. [ ]  

Thus to obtain an estimate on all second order derivatives of u it remains to prove 

UxO.x~(P) < C. 

We have proven that lu ~. a(P)l < C for (i, e), (j,  8) ~ (n, 0) and 
X i ,X j  

Uxbx~(P) < C for I r O. (7.3) 

It suffices to show that 

I.n. (e)l < c .  

However by (7.3) it is sufficient to show that for the (n - 1) x (n - 1)- matrix 

( ) > c . l  (7.4) u~,~(P) ~.l~<n 

for some positive constant c. After subtracting a linear functional we may assume that q~x~ (P)  = 0 

for (j ,  l) r (n, 0). In order to prove (7.4) it is sufficient to prove that 

~u~(P)~a > cl~l 2 . 
0 f . ~ < n  

Let us prove it for e = (I ,  0 . . . . .  0). Namely, u l i  > c. 

Let us write on the boundary 19B the coordinate x ~ as a function of  other coordinates: 

0 ((/)(i.F.)~(n.0)) " X n : p X ~" 

Let fi :=  u -- )~x ~ with Z so chosen that 

x ~ ((x~)(i.e)~(n.O))) = Oat P ,  A lti ( (  i ) ( i . ~ . , ~ ( n . O ) , P  

3 it 2 where A 1 = Y'~-e=0 ~ "  Since the first derivatives o fp  vanish at P,  the last equality is equivalent 

to 

t i l j (P  ) + ?tx~pli(P) = 0 .  (7.5) 

Consider the following Taylor decomposition: 

uli, B = (quadratic terms inx~ # x 0)  + (3-order  t e r m s ) +  O ([ql 4) 

=E + F-t-O (2<_j<_n y~ Iq/'2) +O(Iql4) ' 
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where 

:= ( quadratic terms in x~ # x ~  E 

F := ( 3-order terms in x[) . 

First let us consider the term E. We can estimate all the monomials which do not contain x~ by 
C' Y~2<j<_n IqJl 2" Thus 

3 ( Z  / 

-~ aF..8,jXIX j + Q (x~) + 0 Iqjl 2 
e.8=0 j # l  \2<j<n J 

(j.3)#(n,O) 

where Q is a quadratic polynomial in x~ which satisfies A 1 Q = 0. 

Now let us consider the expression F. It is well-known (see e.g., [59]) that for any homo- 
geneous polynomial F of degree 3 on a Euclidean space R u there exists a unique decomposition 
F ( x )  = Fo(x )  + l ( x )  �9 Ixl 2, where F0 is a harmonic polynomial, and l is a homogeneous poly- 
nomial of degree 1. Hence in our case (N = 4) we can write 

with A 1 FO = O. 

Thus 

Hence 

b~. x ~. F = F 0 +  l Iqll 2, 

On the boundary of the unit Euclidean ball 0 B we have 

3 

2x~ ~ IqJlZ+Y~.lx~lZ+O(Iql3) �9 
2<j<n-I ~=1 

( 3) 
[q l l2=2xO--  ~ I q j l 2 + E  [xn~[2 + O ( I q l 3 )  . 

2< j <n-  1 ~ = 1 

( )((  3) )) 
F = Fo + L b ~ x ~  2x~ - ~< IqJ l2+~lxn~[  2 + O ( , q , 3  

e=0 2<j_n -- 1 ~= 1 

( / ( )  =Fo+~__2b'x i 'xn+O ~ Iqjl 2 + 0  Iql 4 . 
~.=0 2<_j<n 

Thus we get an estimate 

3 

~,,~=o . i#t  
(j.~)#(n.0) 

( 3 / 
+ Fo(x~)+~_.Zb~x~x~ +C ~ 

e=0 ! 2<j<n 

Iq ,12+o( ,q14)  , 
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where A l F0 = A t Q = 0. If  we denote G : =  F0 + Q then the last estimate can be rewritten 

3 

-- a~""jXlXj+GWC Z [qjl2+O(Iql4) " 
e.8=0 j # l  2<j<n 

Let us define 
f i : = f i - G .  

Since G depends only on ql and A I G  = 0 then 

fig =fii] for I < i, j < n .  

We have 
3 

ulitB <-- ~ Eae,a,jx~x~+C E Iqj[2 +O([q]4) . 
&8=0 j # 1 2<j<n 

Now let us consider the following function 

1 Dx~ 2 h : :  -o tx  0 +/31ql 2 + ~ Z Z a~',a.J xei + 
~.,~ j # l  

= --~ +/31qt2 + ZZa*'.a,JffixJ + D E Z  xJ 2 +  0 ,  

~,3 jT~l ~,~ j ~ l  

where or, /3, and D wil l  be chosen later, and 

1 12 0 : =  ~--~ y~. ~7_, la~.,~,jx~i >_0. 
e,a j# l  

Hence, 
2 n 

h aB >_--otx 0+/3 ql +EEae ' ;L j x~x~+4D~Iq j ]  2. 
e.,~ j # l  j=2  

Hence, by the minimum principle 

Since h(P) = fi(P) = 0 we obtain 

det(hi]) < f inB. 

t] < h in /~ .  

fix~(P) < hx~(P ) = -or. 

It is easy to see that fix',' (P)  = fix', ~ (P).  Substituting this equality and the last inequality to (7.5) 
we get 

f i l i (P)  > olpl i(P)  = c > 0 .  

But u I i (P)  = fili (P)" Thus the second-order estimate is proved. 

It is easy to see that for appropriate choices of  large D and small or, 15 such that -o tx  ~ + 15 t q 12 -> 0 
one can obtain that h is psh and 

hl~B >_ filas �9 

Now it is easy to see that the smallest eigenvalue of  the matrix (hi]) is equal to 4/3. Clearly all 
the elements of  this matrix are bounded independently of small/3; hence all the other eigenvalues 
are bounded. Thus choosing sufficiently small/3 we may assume that 
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7.3. C 2'a- est imates  

In this section we prove a priori C 2"~- estimates on solutions of the Dirichlet problem for 
the quatemionic Monge-Amp~re equation. As previously we denote by u the solution of this 
problem. The main result of this section is the following. 

Theorem 7.7. Let  f2 be strictly pseudoconvex bounded domain in •n with smooth boundary. 
Le t  u be a smooth psh solution o f  the Dirichlet problem for the quaternionic M o n g e - A m l ~ r e  
equation with f > O, and f ,  qb be C ~176 Then 

[U [2+or <-- K for some 0 < ot < 1 , 

where K depends only on f2 and norms o f f  and dp. 

This theorem is an immediate consequence of the following general result due to Caffarelli, 
Kohn, Nirenberg, and Spruck [ 15] and the second-order estimates obtained in the previous section. 

Theorem 7.8. Let  ~ be a bounded domain in ~ N  with the smooth boundary Of 2. Let  u be a 
smooth solution o f  the elliptic equation 

F (x ,  u, Du, D2u)  = 0 i n  ~2, 

u -- 4~ on Of2 , 

qb is smooth. Assume  that F is concave in the second derivatives uij. Assume  that u satisfies an 
estimate 

lul2 < C ' .  

Then 
lu12+,~ <_ K forsomeO < ot < 1, 

where K depends only on f2, F, kbl4, C'. 

Note that this theorem implies Theorem 7.7 if one takes F ( x ,  u, Du, D2u) = log(det u i . j )  - 

log f .  

Thus Theorem 7.1 is proved as well. 

8. Proof of Theorem 1.3 

In this section we will finish the proof of our main result about existence of solution of the 
Dirichlet problem for quaternionic Monge-Amp~re equation (Theorem 1.3). But first we will 
need the following result. 

Theorem 8.1. Suppose ~2 = B is the unit Euclidean hall in H n , q~ ~ C (8 B), f E C ([~), f >_ 
1 

O. Let  d tz -- f ~ d vol. Then the upper envelopes o f  the families/3(q~,/z), C B( d~ , /z ) , 3v(q~,/z n) 
coincide. I f  u denotes the upper envelope, then u E C ( [~ ) and satisfies 

I 
�9 (u) = f ~  dvol  in B , 

det (O2u) = f d vol in B , 

u = ~ b i n O B .  
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P r o o f  Remind that the Perron-Bremermann families from the theorem were defined in Sec- 
tion 6.1. The argument follows very closely the proof of Theorem 8.2 of [ 10]. Choose a sequence 
of functions f j  > 0 with f j  ~ C~176 decreasing to f uniformly on B. Choose also a sequence 
of functions dpj ~ C~(OB) such that 4~j increases to 4~ uniformly on OB. By Theorem 7.1 there 
exist unique psh functions uj ~ C(B) which are solutions of the Dirichlet problem 

det(O2uj)  = f j  in B, uj =d~j inOB.  

By the minimum principle (Theorem 3.3) the sequence uj is increasing. We can choose positive 
numbers Oj tending to zero so that qbj + Oj >_ c~ on OB. Since 

det (02 ( ,k  + s  (IZl 2 -  l ) ) ) >  det(O2uk)+endet(O21zl2 ) = fk + en det (021zl2) , 

and since fk ~ f uniformly we can choose positive numbers sj  > 0 such that 

d e t ( 0 2 ( u t ~ + e j ( [ z [ 2 - 1 ) ) )  >de t (O2u j )  f o r k > j .  

By the minimum principle (Theorem 3.3) we get 

u k + s j ( I z [  2 - 1 )  < u j ( z ) + 0 j  f o r k > j , z  

But uj(z)  < uk(z). Hence uj > u uniformly on/~. By Theorem 3.2 u is psh and det(02uj) 

det(02u) weakly. Hence det(02u) = f .  Further, by Theorem 5.7 (4) O(u) > f ~  d vol, and 

by Theorem 5.8 and Remark 5 .90 (u )  n < det(02u). Hence O(u) = f t  d vol. 

It follows from Proposition 6.10 that the upper envelopes of C/3(q~, f .  d vol) and .T'(4~, f n .  
d vol) coincide with u. By Theorem 6.1 the upper envelopes of~(4~, f . d  vol) and C/3(4~, f -d vol) 
coincide. [ ]  

T h e o r e m  8.2. Letf2 beaboundedopense t inH n. Letqb E C(0~2) anddtx = f ~  -dvol  with 
f >_ O, f ~ C(~2). Suppose that 

(i)/3(q~,/z) is nonempty, and 

(ii) the upper envelope u = sup{v : v E/3(q~,/x)} is continuous on (2 with u = dp on Og2. 
Then u is psh and it is the solution to the Dirichlet problem 

det (O2u) = f in f2, u = c~ on O~2 . 

1 
Also ~(u)  = f ~  �9 dvol. 

P r o o f  Let us checkthat det(02u) = f - d v o l i n  ft. First let us show thatdet(02u) > f - d v o l  
in ~. By Choquet's lemma there exists an increasing sequence uj ~ 13(q~, ~) which converges 

to u almost everywhere, and hence in L~oc(f2). Then by Theorem 5.7 (4) O(u) _> f�88 Let us 
write the Lebesgue decomposition 

det(O2u) = f . d v o l + d v .  

By Theorem 5.8 (2) 

( f = f  <__f. 
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Hence det(O2u) > f -  dvol .  

To prove the opposite inequality let us fix z0 ~ ~ ,  and choose e > 0 so small that the closure 
of  the ball B(zo, e) = {Iz - z01 < e} is contained in ~.  By the previous theorem there is a psh 
function v(z) ~ C(B(zo, e)) such that 

v(z) = u(z) on OB(zo, t)  ; 
1 

dp(v) = f ~  . d v o l  on B(zo, e) ; 

det(O2v) = f .dvo l  onB(zo,  e ) .  

Since fl = det(02v) < det(O2u) on B(zo, e), by the minimum principle we have v > u in 
B(zo, e). Set U (z) = v(z) if z ~ B(z0, e), and U (z) = u(z) if z ~ ~2 - B(zo, e). Then clearly 

I 
U is continuous and psh, and U = q~ on Of 2. We also have ~ ( U )  > f ~  �9 dvol .  Therefore 

l 
U ~ /3(q~,f~ . dvo l ) .  Hence U < u. Hence U -- u. In particular in B(zo, e) we have 

det(O2u) = f and ~ (u )  : f t  . d vol. [ ]  

Finally let us prove Theorem 1.3. 

Proof. By Theorem 8.2 we have to verify that/~(tp,/z) is not empty and its upper envelope 
u ~ C(~) ,  and u = ~b on 0f2. When f2 is strictly pseudoconvex this is consequence of  Theorem 
6.1. Thus u = sup{v : v ~/3(~, /z)}  is the solution of  the Dirichlet problem. [ ]  

9. Quaternionic Levi form 

In this section we discuss some additional properties of quaternionic strictly pseudoconvex 
domains. In Section 9.1 we introduce a quaternionic version of  the Levi form of a domain with 
smooth boundary and prove that such a domain is strictly pseudoconvex if and only if its Levi 
form is positive definite. In Section 9.2 we consider some examples and some other analogies 
with the real and complex cases. In Section 9.3 we state some open questions. 

9.1. The quaternionic Levi form 

In this section we introduce the quaternionic version of  the Levi form. For the classical 
complex case we refer to [38] and [ 19]. The main result of  this section is Proposition 9.2. 

Let ~ be a domain in EI n with C2-smooth boundary 0~2. For any z E 19f2 let Taf2.z denote the 
tangent space at z to the boundary 0f2. The quaternionic tangent space to 0 ~  at z is by definition 
the maximal quatemionic subspace contained in Ta~,z: 

hT~f2.z := T.,~.z n T.,~.zl O T ~ . z J  n Ta~.zK . 

Let p ~ C 2 be a defining function of ~ ,  i.e., 

p < 0 o n  f2, p = 0 anddp  r  Of 2. 

The Levi form L~f2.z on h Ti~f~ z is defined as the restriction of  the hyperhermitian quadratic 

[ ~)2P(Z) ) toh T/~fZ,z divided by [Vp(z)[. form ~ 

C l a i m  9.1. The Levi lbrm does not depend on the choice of  p. 
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Proof. Let pr be another defining function of  f2. Then in a small neighborhood of  z there 
exists a smooth function f ,  f ( z )  > 0, such that p '  ---- up.  But 

02(fp)  02p Of Op Op Of 02f 
- f ~ + - + - -  + P ~ ( ,)  

8qiO~lj OqiOqj 8~lj Oqi O~li Oqi 8qiO~lj 

Now let us choose the coordinate system such that z is at the origin, and h/~JfZ,z is spanned by the 
first n - I coordinates q I . . . . .  qn- I. If  we evaluate this expression at z we obtain for i, j < n - 1: 

O2p'(z) 02p(z) 
- - - - f  [ ]  
Oqi Oqj Oqi O~lj 

P r o p o s i t i o n  9.2. A C 2-smooth domain f2 is strictly pseudoconvex iff the Levi form if positive 
definite at each point z ~ 8 f2. 

Proof. If  ~2 is strictly pseudoconvex then there is nothing to prove. Let us prove the opposite 
statement. Let us fix a point z ~ 8f2 and let us assume that La~.z is positive definite. Let us fix 
any defining function p of  f2 in a neighborhood of  z. Let us also fix a coordinate system on H n 
so that again z is at the origin andh TafLz is spanned by the first n - 1 coordinates ql . . . . .  qn-l. 
From (*) we obtain for any real valued smooth function f :  

0 2 ( f p ) .  , 02p(z) Oaf(z) Op(Z) Op(z) Of(Z) 
~ z )  = f(z):----::-,_ + - -  + - -  

oqioqj Oqj ~ Oqj Oqi 

NOW let us choose f such that f ( z )  = 1 + l(qn), where l is JR-linear real valued functional 
depending only on qn. Then if either i < n or j < n we get 

For i ---.--- j = n we get 

02(otp)(z) 

OqnOqn 

O2(fp)(z) 82p(z) 

Oqi O~j Oqi O~j 

O2p(z) Ol(z)  8p(z) 8p(z) Ol(z) 

: OqnOqn + + a#----7 Oqn 
I" OI(z) Op(z) ) 

= An(p)+ 2Re~  ~qn �9 Oq n �9 

If  we choose l appropriately we can make the last expression arbitrarily large, and then the matrix 

(a2(ap) ~ will be positive definite at z, and hence in some neighborhood of  z, and hence the function 

f p  will be strictly psh. But f p  is also a defining functional of  f2 near z. [ ]  

9 . 2 .  S o m e  e x a m p l e s  

In this section we present a general construction of  quaternionic strictly pseudoconvex do- 
mains. It was suggested by M. Gromov [33] in an analogy to the complex case. Then we discuss 
some differences of  the quaternionic situation with the real and complex cases. This part depends 
very much on discussions with M. Sodin. 

Definition 9.3. 
real if 

Let S be a real 3n-dimensional linear subspace of  H n. Then S is called totally 

S f3 (S .  I )  fq (S .  J )  fq (S-  K) = {0}. 
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Note that a generic real 3n-dimensional linear subspace is totally real. Note also that S is 
totally real if and only if its orthogonal complement S • C (EI n)* satisfies 

S •  •  l - + K . s  • (Hn) * . 

Def in i t ion  9.4. A smooth 3n-dimensional submanifold o f H  n is called totally real if the tangent 
space at every point of it is totally real. 

Cla im 9.5. Let  M be a 3n-dimensional totally real compact submanifoM o f H  n . Let  f2 := M~, 
be the e-neighborhood o f  M. Then for small e > 0 the domain f2 is strictly pseudoconvex. 

Now let us remind the following characterizations of convex (resp. pseudoconvex) domains 
in R n (resp. C n) (see e,g,, [38]). 

Cla im 9.6, Let  ~2 be a bounded domain in R n (resp. cn  ). Then [2 is convex (resp. pseudocon- 
vex) i f  and only i f  the function x ~ - log dist(x, 0f2) is convex (resp. plurisubharmonic). 

Unfortunately this criterion is not true in the quaternionic situation already in H 1 . Indeed 
by Proposition 9.2 any bounded domain with smooth boundary is strictly pseudoconvex in the 
quaternionic sense. It is not difficult to construct a domain f2 C H 1 such that the function 
x ~ - logdist(x, 0~2) will be not subharmonic (in the usual sense). 

9.3. Questions and comments 

We would like to state few questions closely related to the material of this article. 

Question 1. Find a geometric (or any other) interpretation of the quaternionic Monge- 
Ampere equation (or of an appropriate modification of it). 

Remind that the (modified) real Monge-Amp&e equations appear in construction of convex 
hypersurfaces in R n with the prescribed conditions on curvature. For this material we refer 
to [8, 52]. One of the main applications of (modified) complex Monge-Amp~re equations is 
the construction of K~ihler metrics on complex manifolds. After the proof of the Calabi-Yau 
theorem [60, 6l] and the Aubin-Yau theorem [7, 61] they became the key tool in complex 
differential geometry, see e.g., [8, l l, 40] for further discussion. 

Question 2. (due to L. Polterovich.) Find a geometric characterization of quaternionic 
strictly pseudoconvex domains. (Note that we have not defined the notion of quaternionic pseu- 
doconvex domain in the non-strict sense.) 

Question 3. (due to G. Henkin.) This question is closely related to the previous one. Let 
f2 C H n be a domain which admits an exhaustion by level sets of a plurisubharmonic function; 
in other words there exists a plurisubharmonic function h : f2 ) R such that for any number c 
the set {h < c} is compact. (Note that in the classical complex situation this property is one of the 
equivalent definitions of a pseudoconvex domain.) It was observed by G. Henkin [36] that if h 
is strictly plurisubharmonic Morse function then ~ admits a homotopy retraction onto a compact 
subset of dimension at most 3 dim~ f2 = 3n (indeed the Morse index of every critical point of 
such a function is bounded from above by 3n). This implies that the boundary 0f2 is connected 
provided n > l. These properties are analogous to the corresponding properties of pseudoconvex 
domains in the complex spaces (where the constant 43- is replaced by �89 It would be of interest to 
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understand the relation between the class of domains with this property and the class of strictly 
pseudoconvex domains in the sense of this article. 

Question 4. Generalize Theorem 7.1 on the existence of the regular solution (under suitable 
assumptions on regularity of the initial data) to arbitrary strictly pseudoconvex bounded domains 
with smooth boundary (and not only for the Euclidean ball). 

Note that the real analog of this result was proved by Caffarelli, Nirenberg, Spruck in [ 14], 
and the complex analog was proved by Caffarelli, Kohn, Nirenberg, and Spruck in [ 15] and Krylov 
in [42]. 
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