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Abstract 

We study two new omnibus goodness of fit tests for exponentiality, each based 

on a characterization of the exponential distribution via the mean residual life 

function. The limiting null distributions of the test statistics are the same as the 

limiting null distributions of the Kolmogorov-Smirnov and Cram6r-von Mises 
statistics proposed when testing the simple hypothesis that the distribution of 
the sample variables is uniform on the interval [0,1J. 
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1 I n t r o d u c t i o n  

As evidenced by the recent papers of E1 Aroui (1996), Gupta and Richards (1997), 

Gwanyama (1997), glefsjoe and Westberg (1996) and Nikitin (1996), there is a contin- 

ued interest in the problem of testing that a random sample comes from an exponential 

distribution. For an overview of goodness of fit tests for exponentiality, see Ascher 

(1990), D'Agostino and Stephens (1986), Doksum and Yandell (1984), or Spurrier 

(1984). 

This paper takes a new approach to the problem of testing for exponentiality. This 

approach is based on a characterization of the exponential distribution via the mean 

residual life function. To be specific, let X1, . . . ,  X ,  be independent copies of a non- 

negative random variable X with unknown distribution function F(x) = P(X <_ 
x),x >_ O. It is well-known that if X has finite positive mean the distribution of X 

is exponential, i.e. 

F(x) = 1 - e x p ( - A x ) ,  x > 0 ,  

for some A > 0, if and only if the mean residual life function is constant, i.e., if 

E ( X - z l X > z )  = E(X) for each z > 0 .  (1) 

Now, (1) is easily seen to be equivalent to 

E(min(X,z)) -- E(X)F(z) for each z > 0. (2) 

Since under the assumptions X >_ 0 and 0 < E(X) < 0% (2) is a characteristic 

property of the class {Ezp(A) : A > O} of exponential distributions, there is the 

following natural approach to assess exponentiality. Put X- = n -1 ~ = ~  Xk and Uk = 

Xk/-X, k = 1,...,rib If the distribution of X is Exp(A) for some A, the distribution 

of n-a(U~,... ,Un) is the (singular) Dirichlet distribution D(1 , . . . ,  1) on the simplex, 

see Gupta and Richaxds (1997). Moreover, for large n the random variables U1,.. . ,  U~ 

behave approximately like n independent exponential variables with mean 1. In view of 

(2), the latter observation motivates the use of the Kolmogorov-Smirnov type statistic 

I - -~ z) L, = vrn sup n ~ min(Uk, z) -- I l(Uk < (3) 
z>0 k=l  n k=l  

and the Cram6r-von Mises type statistic 

Gn = n min(Uk, Z ) - n  l (Uk<z) e -zdz. (4) 
0 k=l  = 
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Clearly, when the hypothesis 

H0 : the law of X is Exp(A)  for some A > 0 

is true, the distributions of Ln and Gn do not depend on the unknown parameter A. 

Denoting by UI:~ _< . . .  _< Un.n the order statistics of the variables U 1, . . . ,  [In introduced 

above, and defining a sum over an empty index set as zero, the statistic L~ can be 

written in the form 

U,.,, <_z<U,+v, t n 

= v~max(ks=0,,,...,n_,max [ ~ ( U t . n + . . . + U s . . n ) + U ~ + , : n ( 1 - s ) - ~ ]  , (5) 

1 U  . . . .  ( 1 -  . 

$ Similarly, putting A0 = 0 and As = ~ L~_,j=I(Uj: n - 1) for s = 1, . . .  ,n gives 

Ua+l'n 

G~ -- n ~_, U t : n + . . . + U ~ : n ) §  1 -  - e - Z d z  
s=o u~.,~ 

n--].[ 
= n ~ A] (exp(-U~:~) - exp(-U~+l:~)) 

8=0 

+ 2A~ ( 1 -  n s-) (exp(-Us:~)(i + Us:,,)-exp(-U~+l:,)(1 + U~+I:,)) 

+ 1 - + 2u .. + 

- ( 1 -  S)2exp(-U,+l.~)(2+2Us+l:,+ U~+,.,)]. (6) 

The distributions of the statistics L,, and G~ only depend on that of the random vec- 

tor (Uv~,..., U,.~). Interestingly, the distribution of (Ut:~,..., Un:~) is the same for all 

random vectors (X~,.. . ,Xn) having a multivariate Liouville distribution, see Gupta 

and Richards (1997). Therefore changing from a sample X1, . . . ,X~ of independent 

and identically distributed exponential variables to jointly multivariate Liouville dis- 

tributed variables X t , . . . , X n  does not change the distributions of the statistics L, 

and Gn. As was observed by Gupta and Richards this invariance property is shared by 

various other goodness of fit statistics for exponentiality. 



228 

The representation 

1 
Gn = n k,~_l [2-- 3e -mi"(vk'vl) -- 2min(Uk, Ut)(e -vk +e-VO + 2e-ma~(Uk'Ul)] , 

which may be obtained directly from (4), shows that G,  is a V-statistic with an es- 

timated parameter, the estimator being 1/X. The asymptotic distribution theory of 

statistics of this type was treated by De Wet and Randles (1987). We shall not use 

their results, but exploit the fact that under H0 the transformed variables 

Ts = ~ n -k+l (uk: , , -Uk_ , : , ) ,  s = l , . . . , n - 1 ,  (7) 
k = l  n 

behave like the order statistics of n - 1 independent [0,1] uniform variables. In that 

way, the asymptotic null distributions of Ln and Gn may be obtained from the limit 

theorems of the classical Kolmogorov-Smirnov and Cramdr-von Mises statistics pro- 

posed when testing the simple hypothesis that the underlying distribution is uniform 

over the interval [0, 1]. The behavior of the transformed variables T1,. . . ,  Tn-x in (7) 

is a characteristic property of the exponential distribution. In this spirit, Seshadri, M. 

CsSrg6 and Stephens (1969) and M. CsSrg6 (1974) treated the hypothesis H0 with the 

Kolmogorov-Smirnov and Cramdr-von Mises goodness of fit tests for uniformity based 

on TI , . . . ,  T,~-I. 

There is an intimate connection between their statistics and Ln and Gn (or even 

more pronounced with the statistic Gin introduced below). This connection is revealed 
in Section 2. The limiting null distributions of L n and Gn turn out to be the same 
as the asymptotic null distributions of the Kolmogorov-Smiraov and the Cramdr-von 

Mises statistic, respectively, when testing for uniformity in the unit interval. It will 

also be shown in Section 2 that the corresponding level a tests that reject H0 for large 

values of L,~ and G,, respectively, are consistent against any fixed alternative distribu- 

tion. Thus, there are two new omnibus tests available for the composite hypothesis of 

exponentiality. Some empirical power values of these tests obtained by simulation are 

presented in Section 3. 

Among the multitude of available tests for exponentiality (see, e.g., Ascher (1990) 

or D'Agostino and Stephens (1986)), the procedures under discussion belong to the 

group of tests that use a characterization approach to goodness of fit. Emphasizing 

characterization procedures, O'Reilly and Stephens (1982) discuss a systematic ap- 

proach to goodness of fit tests for composite hypotheses. 
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2 Asymptotic results 

The following result shows that the test statistics Ln and G~, although involving the 

estimator 1 /X which is "hidden" in Ux,.. . ,  Un, have standard limiting null distribu- 

tions. 

T h e o r e m  1. For a standard Brownian bridge {B(t),0 ~ t _< 1), put L = 
1 

max0<t<t IB(t)l and G = f B(t)~dt. I f  the hypothesis of exponentiaIity is true, then 
0 

a) l i m P ( L n < x )  = P(L  < x), x > O, 
n -+ O0 -- -- -- 

b) l im  P(G,  <_ x) = P(G <__ x), x >_ O. 

PROOF. Since the distributions of L,  and G, do not depend on the parameter 

A of the underlying exponential distribution, assume without loss of generality that 

the random variables Xk have the distribution function F(x)  = 1 - e x p ( - x ) ,  x >__ 0 

Let Vl:n-t <_ . . .  <_ Vn-l:,-t be the order statistics of a sample of n - 1 independent 

and identically distributed uniform [0, 1] variables V1,..., Vn-1. Putting V0,.n = 0 and 

V,:n-~ = 1, the proof is easily done by remembering that 

Pv_ (Vs:n-l-  Vs-l:~-t , l < s < n ) ,  

where _v means equality of distributions. Recalling T8 from (7) then gives 

. . .  - , 
1 

s=0,...,r*-- 1 ~ 8=l~...~n-- 1 

V~ max m a x  Ys+l:n_ 1 ~ s=l,...,n-1 \ ~ = 0 , . . . , n -  1 

A comparison of the last expression on the right-hand side with 

= ] 
\ s = O , . . . , n - 1  n - -  1 ' s = l , . . . , n - 1  
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the Kolmogorov-Smirnov statistic based on V1,..., Vn-1, yields the assertion for L,~, 

because lilIh~oo P(D,~_t < x) = P(L  < x) for each x > 0. 

To prove the corresponding assertion for G,,, introduce the related test statistic 

G~ = n [ [~ y~min(Uk,  z ) _ 1 _  l(Uk < z) 1----  I(U~ < z  dz 
~o = n k = l  n k = l  

n-I ~ " "  [ 1 U ... ( n S ) s ] 2 ( s )  
= n ~ n ( 1:,+ + U s : , ) + z  1 -  - 1 -  dz 

s : 0  Us., 

= -~ (UI: ,~+. . .+U,: , )+U,+I:n 1 -  - 

- } 

A comparison with the Cram~r-von Mises statistic 

W,~ = 1 ( 1 .-1 z)  2 dz 
(n-- 1) of \~--i-_ 1 ~ a(V~ -< z) - 

~=o n 1 - V~:~_l- - n - 1  

Er, = s u p ~  1 ~  l(Uk _< z ) - ( 1 - e - Z ) l  
z>0  r/, k=l. I 

is the Kolmogorov-Smirnov statistic for testing the composite hypothesis of exponen- 
tiality. Since L,~ and E~ have limit distributions (for E,,, see Stephens, 1976) and 

and the fact that l im,_~P(Wn_l <_ z) = P(G <_ x), x >_ O, then shows that 
limn~oo P(G~n < x) = P(G < x), x > O. To finish the proof, note that 

Vn:n 2 IG. - C'l < - ~  L . E . ,  (9) 

where 
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n-1/2Un:n tends to 0 in probability as n -~ 0% it follows from (9) that G,  - Gin con- 

verges to 0 in probability as well, which concludes the proof. �9 

Seshadri, M. CsSrg6 and Stephens (1969) used transformation techniques for treat- 

ing the hypothesis of exponentiality. The n independent variables X1, . . . ,Xn are 

transformed to the n -  1 variables T1,. . . ,  Tn-1 defined in (7) which under Ho behave 

like the order statistics of n -  1 independent uniform variables. The proof of Theorem 1 

shows that when building the Kolmogorov-Smirnov and Cram~r-von Mises goodness of 

fit statistics for testing the hypothesis of uniformity on the basis of these transformed 

variables, one essentially obtains L~ and G~. 

The following discussion addresses the problem of consistency of the tests based on 

L,~ and G,. For a given level of significance a E (0, 1), the hypothesis of exponentiality 

is rejected if L,~ > g, and Gn > g~, respectively, where g,~ and gn are the (1 - a ) -  

quantiles of the distributions of Ln and Gn under H0, respectively. 

T h e o r e m  2. Let X have any non-exponential distribution on [0, oc) with positive, 

possibly infinite mean #. Then 

lim P ( L n < g n ) = O  and l i m P ( C , < 9 , ) = 0 .  
n--~oo - -  n - ~ o o  - -  

and 

PROOF. If 0 < # = E ( X )  < 0% then 

1 1 z) Ln ~ supz_>o ~ E(min(X,z)) - P ( X  _< (10) 

1 G n  - -~  E min , z  - P < z e-Z dz (11) 
/ t  0 

in probability as n -~ co. Both stochastic limits are zero if and only if the distribution 

of X is exponential. 

To prove (10), note that 

- sup min ~ - , z  - -  1 < z  
z > 0  k = l  n k = l  - -  

= sup 1 An(t) - Bn(t) , 
t > 0  
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where 

An(t) = _1 ~ min(Xk,t), Bn(t) = _1 ~ l(Xk <_t). 
n k=l  n k=l  

Letting I]gll = supt>0 tg(t)t for a function g : [O,(x)) -~ R, and putting Ao(t) = 
E(min(X, t)), Bo(t) = P(X <_ t), it follows that 

oo) 
_< - IIA.II + ; [IA. - Aoll + l iB .  - B011. 

In view of ]]An H -< X', the first term of this upper bound converges to zero almost surely 

by the strong law of large numbers. For the second term, use a Glivenko-Cantelli type 

argument to show that HAn - Aol] -~ 0 a.s. Since liB. - B011 -+ 0 a.s. by Glivenko- 

Cantelli, it follows that 

1 A n - B n  n ~  [ 1 A o - B o  a.s., 

which proves (10). Assertion (11) is an immediate consequence of I]X-1An - Bn - 

(#-lA0 - B0)l] ~ 0 a.s. 

For the case E(X) = 0% fix positive constants e and M, and let t > 0 such that 

E(min(X/t, M)) <_ e/2. Since X ~ oo a.s., we have for sufficiently large n (depending 
on w in a set of probability 1) both X- >_ t and 

1 ~ min - ~ , M  < E min ,M + 5' 
r~ k=l  

whence, for such n, 

1 ~-~ min(Xk ) < 1 n~ X sup - ~ - , z  - m i n ( " ~ k , M ~  < e. 
O<_z<_Mn k=l -- n k=t \ t ] -- 

Consequently, 

sup min ,z - -  1 < z  --+ la.s.  
O<z<M k = l  ~t k = l  

for each M > O. Since Ln/vfn _< 1, it follows that L , / v ~  --+ 1 in probability. Likewise, 

G,/n ~ t in probability. In any case, 

l i m P ( L n < x )  = 0 and l i m P ( G , < x )  = 0 for each x > O ,  

which proves the assertion. �9 
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3 Empirical results 

To give an impression of the speed of convergence to the limiting null distributions, TA- 

BLE I shows some critical values of L~ and Gn obtained by simulation. The sample sizes 

are n = 20 and n = 50, and the significance levels chosen are a = 0.1, 0.05, 0.025, 0.01. 

The entries in TABLE I are based on 100 000 replications. The row denoted by "c~" 

gives the critical values of the limiting null distributions of the Kolmogorov-Smirnov 

and the Cram~r-von Mises statistic, taken from the Biometrika Tables for Statisticians, 

Volume 2 (Pearson and Hartley (1972)). 

Empirical power values (rounded to the nearest integer) for some alternative dis- 

tributions (Gamma (g), Weibull ()~Y) and Lognormal distributions (s with scale 

parameter 1 and shape parameter 0, uniform U[0, 1], Half-Normal (7-Lkf), Half-Cauchy 

(7-/C), X~, Power distributions (~4~) with density 0-1xl/~ < x < 1, LIFR (linear 

increasing failure rate) distributions with density (1 + ~x) exp(-(x + (~/2)x2)), x > 0, 

and JSHAPE (JS) distributions with density (1 + Ox) -1/~ x > 0, are shown in TA- 

BLE II. An asterisk denotes power 100%. The significance level is o~ = 0.05, and the 

sample sizes are n = 20 and n = 50. 

The alternative distributions chosen were also considered by Baringhans and Henze 

(1991), who derived estimated powers for various other competitive procedures for test- 

ing the hypothesis of exponentiality. Each entry in TABLE II represents the percentage 

of 10 000 Monte Carlo samples declared significant by the new tests based on L, and 

Gn and the classical Cram~r-von Mises test, based on 

Wn ~ (1 - exp(-Uk:,) k nl/2.)2 1 
= + 12n k = l  

Some information regarding the limiting null distribution of Wn (mean, variance, per- 

centage points) can be found in Stephens (1976). Roughly, one can say that the tests 

based on Ln,Gn and W, behave nearly in the same way. They can clearly be recom- 

mended as omnibus procedures for the testing problem under consideration. The two 
new tests offer the advantage that the test statistics Ln and Gn have standard limiting 

null distributions. 

Acknowledgement:  The authors are indebted to Nora Giirtler for performing the 

simulations. 
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TABLE I 
Critical values of Ln and Gn 

Ln Gn 
o~ 0.1 0.05 0.025 0.01 

n = 2 0  1.202 1.334 1.453 1.600 

n = 5 0  1.206 1.338 1.458 1.609 

oo 1.224 1.358 1.480 1.628 

0.1 0.05 0.025 0.01 

0.340 0.446 0.554 0.703 

0.342 0.454 0.566 0.731 

0.347 0.461 0.581 0.743 

TABLE II 
Percentage of 10000 Monte Carlo samples declared significant; test size a = 0.05; 

sample sizes n = 20, 50 

Distrib- 

ution 

w(o.6) 
w(o.8) 
w(1.2) 
W(1.4) 

W(1.6) 

xx 

~w(o.8) 
PYV(1.2) 
7:,w(1.4) 
~,w(2.o) 
pw(3.o) 
LIFR(1) 
LIFR(2) 

LIFR(4) 

LIFR(6) 

LIFR(10) 

n x  

n = 20 

L,  G,  W, 

58 71 70 

14 22 20 

16 14 14 

35 35 35 

59 63 61 

37 52 53 

92 93 91 

49 44 41 

32 24 24 

11 11 19 

44 54 64 

21 19 18 

31 30 28 

44 44 42 

51 51 49 

60 61 59 

24 22 21 

n=50  
L, G,  IV, 

95 98 98 

35 46 43 

29 29 28 

72 77 74 

95 98 97 

82 89 90 
$ * $ 

92 90 86 

73 65 62 

29 28 48 

88 91 96 

43 45 40 

66 69 63 

83 87 83 

90 93 90 

95 97 95 

52 54 49 

Distrib- 

ution 

f~(o.7) 
f_2r 
f-.,,N'( 1.0) 
P.:,JV'( 1.5) 
7/C 

JS(0.5) 

JS(1.O) 

u[o,1] 
~(o.4) 
~(o.6) 
9(0.8) 
9(1.4) 

g(1.6) 
9(1.8) 
g(2.o) 
9(2.4) 

g(3.0) 

n = 20 n = 50 

Ln Gn Wn Ln Gn Wn" 
54 54 62 

29 28 34 

13 16 16 

56 66 62 

60 67 63 

35 46 41 

76 83 80 

73 72 67 

62 75 76 

22 33 32 

6 10 9 

16 15 15 

25 24 25 

36 36 37 

46 48 49 

64 68 68 

85 89 89 

95 93 98 

64 61 76 

22 26 30 

92 95 93 

93 95 93 

73 80 76 

98 99 99 

99 99 98 

97 99 99 

55 67 67 

13 18 18 

31 32 32 

53 57 57 

72 77 77 

86 90 90 

98 99 99 
* $ $ 
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