Statistical Papers 36, 111-130 (1995) Statistical Papers
© Springer-Veriag 1995

On the run length of a Shewhart chart
for correlated data
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We consider an extension of the classical Shewhart control chart to correlated
data which was introduced by Vasilopoulos/Stamboulis (1978).

Inequalities for the moments of the run length are given under weak conditions.
It is proved analytically that the average run length (ARL) in the in-control state
of the correlated process is larger than that in the case of independent variables.
The exact ARL is calculated for exchangeable normal variables and autoregressive
processes (AR). Moreover, we compare this chart with residual charts. Especially,
in the case of an AR(1) - process with positive coefficient, it turns out that the
out-of -control ARL of the modified Shewhart chart is smaller than that of the
Shewhart chart for the residuals.

Keywords. statistical process control, Shewhart chart, run length, correlated data. -

1. Introduction

A lot of statistical control charts have been introduced in the literature,
e.g. the Shewhart, EWMA, CUSUM charts (cf. Montgomery (1991)). The most
widely used control chart is without doubt the standard Shewhart chart.

Let {Yt} denote the in-control process and {Xt} the out-of-control pro-
cess. Now a variety of departures from the in-control state are possible. Here we
consider exclusively the case of an abrupt step-like shift; i.e. it is assumed that

Xt=Yt+aI (t), 1.1

{q.q+1,..}
where q ¢N denotes the position and a the size of the change. I, stands for the
indicator function of the set A.

In the classical Shewhart chart for the case of known parameters the process is

out-of-control at time t, if IXt-pol > co, where u :=E(Y), o2 = Var(Y ) and

c>0 is a suitable constant usually taken to be 3.
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A fundamental assumption in most statistical process control methods is
that the observations are independent. However, this condition is not fulfilled for
many data sets ( see e.g. Berthouex et al. (1978), Notohardjono/Ermer (1986), Mac-
Gregor/ Harris (1990) ).

In the last years several authors have discussed the impact of a correlation
structure on the behaviour of the Shewhart, EWMA and CUSUM charts, e.g. Ber-
thouex et al. (1978), Bagshaw/Johnson (1974/5), Yashchin (1989), Harris/Ross (1991).
If it is assumed that the random variables are independent, when in fact they are
correlated, it has been shown via simulations (e.g. Montgomery/Mastrangelo
(1991), Maragah/Woodall (1992} ) that the classical 3¢ control limits in Shewhart
charts are not suitable due to the high frequency of false alarms. This is not

[end
surprising since e.g. in the case of a linear process, i.e. Yt= h S, €., with
v=—00

(-]
> Is |l<mw, , s =1 and {e} a white noise process with E(¢ )=0 and
vE—oo VY 0o t t

Var(st) =62, we have Var(Yt) = ozvgwsvz; but the variance of Yt in the case of
independent variables is only o2, i.e. it is smaller. Consequently a linear process
has a greater variance and thus reaches a given bound earlier, provided that the
same critical values are used, i.e. the in-control average run length (ARL) is
smaller.
However it is not true that the in-control ARL is always shorter in the presence
of autocorrelation, as some authors remarked, even if the variance of the
correlated and independent process is the same. An example of such a process is
given in section 3.

In order to overcome these problems residual charts have been proposed,
i.e. classical control charts are applied on the residuals of the process (e.g. Ber-
thouex et al.(1978), Harris/Ross (1991), Montgomery/Mastrangelo (1991), MacGre-
gor/Harris (1993). If the residuals are independent, then these charts behave the
same as under the standard conditions, i.e. the Shewhart chart applied to the re-
siduals is more suitable to detect large shifts than EWMA and CUSUM residual
charts, while the contrary is valid for small shifts.
Unfortunately, as was illustrated by Harris/Ross (1991) and Ryan(1991), this

strategy may be extremely inefficient. This can be seen immediately. If {Yt} is an



113

AR(p) - process, i.e. Y, = ﬁ a Y, +¢, then the residuals are given by
t v=1 Vv t-Vv t

p P
X - ZaX_ =e+all- 3 a) for t2p+q.

t yoy vitv v

In relation to an independent sample the impact of the shift is suppressed, if
vglav> 0, else it is overweighted. Consequently all residual charts behave worse
for an AR(1) - modell with a1>0 than in the independent case.

However, the residual charts suffer under further disadvantages. For many
processes residuals are not independent, especially if the parameters are unknown
and are replaced by estimators. Moreover, the practical calculation of the
residuals of an ARIMA process may be difficult, especially if the parameters are
unknown and have to be estimated. Furthermore the restriction on the residuals
leads to a loss in information, since, due to the starting problems, no changes
can be detected among the first p observations of an AR(p) - process.

In this paper we choose another procedure. In the following we consider a
direct extension of the standard Shewhart chart to the case of correlated data.
As already remarked above the reason for the different behaviour lies in the fact
that under the assumption of independence the wrong normalizing variance is
used, or in other words, the variance of the process is "estimated” badly. Thus it
seems to be natural to use the standard deviation -/Y_o of the correlated process

{Yr.} for normalization, i.e. one concludes that the process is out-of-control at
time t, if

|Xt-u0|>c Yo (1.2)
This chart was introduced by Vasilopoulos/Stamboulis (1978). It will be called
modified Shewhart chart in the following. The extension to the case that at each
time not only one but several observations are measured is obvious. The authors
calculated the variance of the mean in the in-control state and gave curves for
the modified quality control factors for an AR(2) - process. However, they did not
make any statement about the run length of the chart, which is given by
N:=inf{neN: lxn-pol >cf'};} and inf Q :=c, This is the main aim of the present

paper.
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It has to be emphasized that this chart can be applied, if e.g. the in-control
process is stationary and, in contrary to residual charts, it is not necessary to
confine oneselves to ARMA models.

In section 2 we analyse the behaviour of the ARL for a large family of
stochastic processes, which cover the case of a stationary Gaussian process. An
upper bound for the in-control ARL is given (Theorem 1). Furthermore it is
shown that the in-control ARL under "a variety of dependence structures” is
larger than in the case of independent variables, if the same constant c is chosen
{Theorem 2).

In section 3 we calculate the ARL for exchangeable normal variables and in
section 4 for AR- processes. Via simulations we have compared the ARL of the
modified Shewhart chart with that of the Shewhart resp. EWMA chart for the
residuals. The underlying in-control process was an AR(1) - process. Each chart
was calibrated such that the in-control ARL is always the same. It has shown
that the modified Shewhart chart is better than the Shewhart chart applied to the
residuals, if the coefficient of the AR(l) -process is positive, but it is less
efficient in the case a1<0. The same behaviour was observed with respect to an
EWMA chart with smoothing constant X =0.75.

Now in practice the autocovariance v, will be unknown and we have to estimate
this parameter. A suitable estimator is given by ?0,n= -1.; vél(xv-')'('ﬂ)z , provided

that n is sufficiently large. Here x X denotes a realization of {Xt} and ?n

R
stands for the mean. Box/J}enkins (1976, p.33}) recommend to choose n greater
equal to 50. Thus we have to estimate vy, using observations of the in-control
process. This can be done by making use of values which have been classified to
be in-control (e.g. prerun).

In section 4.3 it is analysed how the ARL of the modified Shewhart chart and
that of some residual charts changes, if the parameter Yo is estimated. It turns

out that all charts react extremely sensible on deviations from the exact

parameters.
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2. Bounds for the ARIL In the case of

correlated data

In this section we derive bounds for the ARL for rather general stochastic
processes, e.g. processes with elliptically contoured marginal distribution func-
tions, positively lower orthant - dependent random variables, etc. A famous the-
orem of Kolmogorov says that such processes exist, provided that the family of
distribution functions is consistent (see e.g. Brockwell/Davis (1991, p.11)). All of
these results are true, if the in-control process is a stationary Gaussian process
whose autocovariances converge to zero, if the lag tends to infinity.

Now

Pa,q(N >k) = Pa ( max IX RN c-/%)

'q 1snsk

= Po(lr‘n:le -uol Sc-/'yo,-cv'yo—aSYn-uos c{yo-a Yqsnsk),

where 1=min{q-1, k}. Consequently P q( N>k)=P__ q(N >k), if the random

vectors (Yq “Hgr e uo) and - (Yq “Hgr e Yk - uo) have the same distribution.

k
Here the symbol Pa'q means that the probability is calculated with respect to the
model (1.1) and P0 means that no change has arisen. By analogy we write Ea'q and
Eo for the expectation.

A k -dimensional random variable Y is said to have an elliptically contoured
distribution, if its density function is of the form

(detC) V2 gl (y-u)TC_l(y-u)), y,ueIRk, (2.1)

where C is positive definite and g:[0,) —> [0,®) is nonincreasing.
The most important member of this family is the multivariate normal distribution

)7%/2 exp(-u/2). Other members are

which can be obtained by choosing g{u)=(2x
e.g. the multivariate t - distribution and the multivariate Cauchy distribution.
Furthermore let Si"), t2v21 denote the Stirling numbers of the second kind, i.e.

the number of partitioning a set of t elements into v non-empty subsets.

Theorem 2.1. Let Y ,t¢N, be a Gaussian process. The random variables Y, teN,
are assumed to be identically distributed with E(Yt)=u0 and Var(Yt)=Yo. Fur-

thermore let Ck :=(Cov(Yi,Y]))]J=1 K be regular for all keN and
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8:=inf{8k:kelN} > 0, where 8;‘: = detCk/(’r0 detCk_l) and C0 :=]. It follows for
x¢N and with z:= ®{c/8) - O(-c/9)

tMx

E (N*) s s)‘("’ vtz l/-2)Y < /2 (1-2)%) < o,

1

v

Particularly

Ej(N) s 1/(1-2)  and E,(N?) < (1+2)/(1-2)%
Proof . Using Das Gupta et al. (1972, Theorem 3.2) we obtain that

k N
PUY ~uglsc vy, 1Y, ~ugl scifyy) < i1;[1 P (1Y, -u lsciv,/8)

k
- .k
< lI;[ll’c.(IYl—uo[sc-Mo/S) =z .

Consequently

E (N®)= 3 ((i+D*-i*)P (N>i) s (1-z) X i*z"L (2.2)
° 1=0 o i=1

Since for |z| <1 (see Hansen (1975, p.142} )

& i S ey v +1

Yi*z! = TSV su-2)V", (2.3)
I=1 v=l *

the first inequality follows. By making use of the recurrence relation
sV = vS:V) +Siv_” for t2vz21 (e.g. Abramowitz/Stegun (1984, p.368)), the second

t+1

inequality can be proved by induction.

Note that in the case of independent and identically distributed random
variables Eo(Nx) is equal to the first upper bound given in Theorem 2., since

2_o2_ =
3“= Sk = Var(Yl)/Yo =1,
Corollary. Let Y., teZ, be a (weakly) stationary process with E(Yt) =Ho and
autocovariance function {Yc}' Suppose that

>0 Y,~>0 as t—> (2.4}
Then {3 } is nonincreasing and for k¢N

lim v, 32 = lim E(Y -¥)% = o% = E(Y, -2,

v->co v->oo 3 k
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where ?k denotes the best linear one-step predictor of 1, Yl, ...,Yk_1 for Yk and
?: the best linear predictor of 1, Y , t<k for Y, .

Thus we may choose 8=o//§ in Theorem 2.1.

Proof. This result follows immediately with Brockwell/Davis (1991, Corollary 5.1.1,
Ex. 2.18) and the definition of the best linear predictor. Note that 62 does not

depend on k.

In the case of independent and identically distributed random variables we
have ¢%= Var(Yk) =Yg
It must be emphasized that the assumption {2.4) is rather weak and is satisfied
for all causal ARMA processes. This condition ensures that C, is regular for all
kelN.
Theorem 2.1 can be extended to other stochastic processes having elliptically

contoured marginal distributions.

Remark. Let Yt,teIN, be a stochastic process. Assume that for all k<N the
k - dimensional random variable (Yl, s Yk)T has an elliptically contoured
distribution function and that the random variables Yt, t<N, are identically
distributed with E(Y t) =Wy and Var(Yt) =Yg If the corresponding matrix C, (see
(2.1)) is regular for all k, and 8==inf{8k:k21}> 0 , where Si = detCk/
(YO det Ck_i) and Co =], then we get with the same arguments as in the proof

of Theorem 2.1

> Ct) . o + 2
EO(N )sigo((ul) -i )PO,I(IYI-uolSC/S""’lyi-uOISC/a)’ (2.5)

where the symbol Po I indicates that Ck is the identity matrix.
If we consider the multivariate t distribution with v degrees of freedom, P,y on
the right side of (2.5) is equal to (see Tong (1990, p.214))

2v J‘x(Q(cxIS)—tb(-cx/S))i hv(uxz)dx,
o

where hv denotes the density of the central xz-distribution function with v
degrees of freedom (symbol xf) and ® the standard normal distribution
function.

Thus, e.g.,
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E (N) s v f — X h(vxDdx < o, if v>c2/82 .
[ 1- ®(cx/8) v

Next we compare the in-control ARL of a process with dependence
structure with that of independent variables. A lower bound for EO(N) is derived.
We consider classes of distributions which are positively dependent. The random
variables Yl”"'Yn are said to be positively lower orthant-dependent (PLOD), if

(cf Tong (1990,p.93))

I
P(Y1Sy1""'YnSyn) 2 il;[1 P(Y,<y) forally,..,y <R (2.6)

Theorem 2.2. Let Yt,teIN, be a stochastic process. Assume that the random
variables Yt, telN, are identically distributed with E(Yt) =i, and
Var(Yt)=Yos(0, ). If the random variables |Y1_ uol,...,lYn—pol satisfy (2.6) for

all n, then it follows for x <N that

E (N*) 2 5 S:')v!(F(c)—F(-c—O))"'l/(l—(F(c)—F(-c—O)))", 2.7

v=1

particularly EO(N) 2 1/(1-(F(c)-F(-c-0))) ,

where F denotes the distribution of the standardized variable (Yi—uo)/-/?; .
Proof. Let c*:=c 7/_7;. (2.6) implies that

P (N>k) = P (1Y, -ulsc’, ... 1Y, -uglsc™)
*, T k
> iIEPO(IYi--l,Lolsc ) = (F(c)-F(-c-0))" .
Thus we obtain
EJ(N*) 2 3 ((i+1)*-1*) (F(c)-F(-c-0))".
i=0
Using (2.3) the result follows at once.
Note that the quantity on the right side of (2.7) is equal to the x-th
moment of the run length for a sequence of independent random variables. Thus

Theorem 2.2 states that in the case of correlated variables (in the sense

described above) the x-th moment of the run length is larger.
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The condition (2.6) in Theorem 2.2 is e.g. satisfied for the multivariate normal
distribution (see Tong (1990, p.154)} and for the multivariate t distribution (see
Tong (1990,p.208) ). A more detailed investigation of the proof of Theorem 2.2

n
shows that it is sufficient to demand P( max Y, sx) 2 [] P( Yisx) for all xeR.
1<i<n i=1

Usually the quantity c is determined such that EO(N) is equal to a given

value E, i.e. c=c_ is a solution of EO(N) =f. We denote the solution in the case of

3
o N

independent variables by Ce and NE(O) shall denote the corresponding run

|3
lengths.

(o, c., since
€ g’

If the assumptions of Theorem 2.2 are satisfied, it follows that c
. . (0) Oy _ 5 _
E( inf{n<N: an|>cE -/ﬁ}) 2 I-ZO(NE )=E= EO(NE).
Thus, if ¢ is determined via tables for independent variables, the resulting

in-control ARL is larger than £, provided that the variables are correlated.

Up to now we have only discussed the behaviour of the ARL in the
in-control state. Next we give a result for the out-of-control situation. In the
following we shall always assume that out-of-control means that a

change - point is present ( see model (L.1)).

Theorem 2.3. Let {Yt} be a stochastic process. Assume that E(Yt)=u0 and
Var(Yt)='{0e(0, ©) for all teN. Furthermore let all marginal distributions of
{Yt—uo} have a continuous density f which is symmetric about the origin (i.e.
f(x) =f(-x) for all x) and, additionally, let f be unimodal (cf Tong (1980, p.51) ),
j.e. that {x: f(x) 21} is convex for all X >0. Moreover, let x ¢ N. Then it follows
that for all a, q
Ea‘q(Nx) < EO(NX)
and that for q fixed Ea,q(Nx) is a nonincreasing function in |al.

z )"

Proof. Let c*:=c¢'y , Zl :=Yl—u0 and Zk ==(Zl,..., N

It follows with Tong (1980, Theorem 4.1.1) that for laj2|&]

P (N>k)=P (|ZIsc" ..,1Z]sc*1Z +alsc’, ...,|1Z +alsc)
a.q a,q 1 1 q k

* * * * * * * *
= Po(-c slisc yasees =C SZISC ,-C -aqusc -a,..,-C -asstc -a)
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= Po( Zke[—c*,c*]k+agq) < Po( Zke[-c*,c*]klr'ﬁ'gq)

s P(Z

o _kef-c*,c*]") = P (N>k),

where aqeRk denotes a vector whose first (q-1) components are all equal to 0O

and the other ones are all equal to -1. Using (2.2) we obtain the desired result.

3. Exchangeable normal variables

The determination of the exact ARL for correlated processes is usually
rather difficult. In this section we consider exchangeable random variables. It is
possible to give an explicit expression for the ARL of exchangeable normal
variables, i.e. for stationary Gaussian processes with autocovariance function Y,
equal to a constant p for all v#0. Thus these variables are independent, if and
only if ¢ is equal to zero.

We are interested how the present correlation structure influences the run length

of the process.

Theorem 3.1. Let {Yc} be a Gaussian process with E(Y )=gp, and
Var(Yt)=Yo ¢ (0,) for all t and with Corr(Yi,Yj)=pe[0,l) for all i*j. Let n=0".
We get for k21

(=]

P, (N>K) = [ Tzip) T i)™ O nz) g

-0

with T (z;0) = ®((c- foz-asfy, AT )-0((-c-+o z-a/v"y—o)/m ) and
Uz;p) == Co(z;p). Consequently for x¢N

-1
x o L o (z;p)v
E 1(N") = > sMw f ——a—-—-v— n(z) dz and
a v=1 X - (1-T_(z;0))

E (N) = f : - —
a,q 1- Ca(z;p) 1-C(z;p)

) n(z) dz.
oo 1- Tzs0)

n(z) dz + f Uz;0)%7 1 (

Furthermore

<«© T (z;0) @©

Var_ (N)=2 [————n(2)dz+ | ———n(z)dz-( [ ————n(z)dz)®.
& ~o (1-T _(2:0)) S 1= _(zi0) “w 1-T (z:0)
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Proof. It follows with Tong (1990, Theorem 5.3.1) that

P o(N>K)=Py-cs (Yn—go)/J?(;s c Yisnsl,
-c-a/fy, S(Yn-uo)/ﬂs c-a/fY, Yasnsk)

1
=P N {-cs/T-p 2 +¥p Z_scha
n=1 n Y

k
N {-c-asfv, <V/T-0Z +Yo Z 6 sc-a//y_}),
n=q n o (8]
where Zo, vy Zn denote independent and N0 . - distributed random variables,

oo 1 .
= fPO( Ol{-c-/pzs~/1-p2nsc-ﬁz)n

k
N {-c-+p z - a/-/z s/T-¢Z_s c- ﬁ-z—a/JzHZo:z)n(z)dz

n=q

max{0, k-q +1}

= f Uz;p)! (z:0) n{z) dz.

We obtain with the equality in (2.2) and the Theorem of B. Levi
E, (N*) = _i (1-T_(z;0)) n(z) Elixca(z;p)l-l dz .
Applying (2.3) the equality is proved. Furthermore

«x© q—2 b oo
= = )21 o)k
E, N = 2P (N>K)= 5P _(N>K - [ tzie 2 G (z0  n(2) de.

q-2 * C(z;p)q_1
= P _(N>k) + [—————nde
k=0 29 S 1-G (zie)

and thus the theorem is proved.

In the following we choose ¢ as the (1-a/2}-quantile of the standard
normal distribution, i.e. c= ® 1(1-a/2).
Table 1 shows that the in-control ARL as well as the in-control variance of the

run length increase, if the correlation coefficient p increases, while the skewness
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of the run length decreases.

Table 1. Expectation, standard deviation and skewness of the run length under

the null hypothesis "no change-point” for various values of o ('~(0= 1, «=0.01)

(] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Eo( N) 100.0 115.1 155.3 242.6 461.2 1189.9 5230.0 67179.0

VVaro(N) 98.5 122.8 184.9 325.0 702.3 2090.1 10829.0 169538.0
skewness 0.49 0.43 0.38 0.34 0.31 0.27 0.24 0.20

It can be seen from Table 2 what happens, if the process {Yt} is out-of~-control.
It is also discussed how the ARL varies for different positions of the
change-point. At first glance these results are surprising for q large. However,
since the probability of false alarms increases, if q increases, it may occur that

the out-of-control ARL is smaller than q.

Table 2. E_ q(N) for various values of a and q (y,=1, =03, a= 0.01)

q/ a 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1 242.58 184.57 84.86 27.45 8.35 3.25 1.78 1.28 1.10
2 242.58 184.30 84.50 27.65 9.07 4.17 2.75 2.27 2.09
3 242.58 184.05 84.18 27.89 9.81 5.09 3.7 3.24 3.06
5 242.58 183.56 83.64 28.49 11.33 6.91 5.62 5.16 4.99
10 242.58 182.49 82.74 30.46 15.24 11.39 10.24 9.83 9.67
50 242.58 178.57 87.90 53.06 44.86 42.69 41.98 4.7 41.61

4. AR—Processes

In this section we determine the run length of an AR(p)- process. We
confine ourselves to the case q=1. Although our expression for the ARL is not
suitable for a numerical evaluation, it permits more insight into the properties of

the modified Shewhart chart for such type of processes.
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P
Theorem 4.1. Let {Yt} be a causal solution of Y= 2a Y, +¢&. Assume that

v=1

p
P(z):=1- % a z¥ has no zeros inside the unit circle and that the random
v=1

variables £ te¢Z, are independent and identically distributed with g, ~Ng 2 for
all t , where O<g<o. Then it follows with 'é':=c-/'yo, T:=min{p,k},

o = 2 . T
CT~—(Cov(YI,YJ)/o )l,j=1,..,T and ;To—(zl,...,z.r) that

k B
Pa,1(N>k) = f f no’é,T(g.r)ngdn(zv— i:Z.lcz‘zv_i)dzk ~dz
[(-& -a)/o.(&-a) /o)X
E (N)=1 § f f (z.) ﬁ ( 'ZE. )
=iv noo - ) dz, ..dz, .
a1 k=1 ko,c,rz”r vepel B R L

[(-&-a)/c,(T-a)/o]

Here n denotes the density function of N01 and nE the density of the

,C
multivariate normal distribution with expectation g and covariance matrix C.

Proof. Since P_ 1(N>k)=P0(|Y1+als'(‘:', s IYk+a|s?:') and an application of the

transformation rule for densities shows that for k2 p+1 and with o= -1

p
e oz )

p
f )(zl, .,z )=f Ek)(zl,..,zp,-‘Eoctvzpﬂ_v,. RN

Y....Y, kDT Y e e

k p
= n (z) Il nz -2 oz /o),
O,Cp P y=p+t V=g 1ovHi

the result follows.

Note that EO(N) does not depend on o.

Corollary. Let {Yt} be as described in Theorem 4.1 and p=1, then the in-control
average run length does not change, if a is replaced by -a..
Proof. We distinguish between k even resp. odd. If k is even, we make the

substitution tv=—zv for v odd; else, if k is odd, we substitute t =-z for v even.

Now we confine ourselves to the case of an AR(1) - process.

Theorem 4.2. Let {Yt} be a causal solution of Y = Yt_1+et. Assume that

als[O,l) and that the random variables € t¢Z, are independent and identically

distributed with st~N0°2 for all t, where O<oc<cw. Then PO(N>k) is a
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nondecreasing function in a for all k<N fixed. Consequently EO(N) is also a

nondecreasing function in .
. T lv~il

Proof. First we observe that (Yllmf'yo,.«,Yk/v‘yo) 9?(0,(011 )i.v=1....k)‘ An

explicit formula for the inverse of the covariance matrix can be found in

Box/Jenkins (1976, ch.7). Since the inverse matrix is an M -matrix (see

Tong (1990,p.78) ), the result follows with Theorem 5.1.6 from Tong (1990, p.103).

This result says that the in-control ARL increases, if a, i.e. the dependence

"
structure, increases.

Let us consider further properties of the modified Shewhart chart for an
AR(1) - process. Setting Z = (1- al) X, for tz1, it follows that

Z =aIZ

. +-a)(e va(l-a)) for t22, ie. {Xt} behaves like an exponentially

t-1
weighted moving average (EWMA) with smoothing constant )\=1-a1 and head .
start.
Since {Xt} is a Markov process, an approximation of the moments of the run
length N can be obtained via the Markov - chain approach (e.g. Lucas/Saccucci
(1990) for EWMA control schemes ).

The residuals X -o X _  of {Xt} are equal to ¢ +a(i-a) for t22 resp.
g, +a for t=1. Consequently the modified Shewhart chart shows a similar
behaviour as the EWMA chart with X =1-a, applied to the residuals.

We calculated the expectation, the standard deviation and the skewness of
the run length by means of simulations. For this we generated independently

M =10 000 realizations of an AR(1) - process. Each one was contaminated according

to (1.1). The results are given in Table 3.

Table 3. Expectation, standard deviation and skewness of the run length N for an
AR(1) - process (m1=0.5, q=p=1, «a=0.04, €, "~ ®, M=10000)

a 0 0.5 1.0 1.5 2.0 2.5 3.0
E, (N) 110.67  68.82  29.93 1367  7.07 3.98 2.54
YVar_ (N) 10942 69.30 29.83 13.76 7.07 3.98 2.41
skewness 197 219 1.90 2.12 1.99 2.22 2.50

The in-control ARL of the process is larger than in the case of independent ran-
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dom variables. The results for E_ 1(N) and  Var 1(N’) are nearly the same. The

skewness of the run length increases, if the size of the change-point increases.

Now the problem arises how various control charts can be compared. For
this we calibrated each chart, i.e. we choose the value ¢ such that the ARL in the
in-control state is equal to a given constant. Consequently c depends on the
parameter o . Theorem 4.2 implies that c decreases, if <z120 increases. The values
c in Table 4 were calculated via simulations. They nearly coincide with those

given by Lucas/Saccucci (1990} for EWMA charts.

Table 4. c=c_  ( a,) calculated such that E (N)=500 (q=p=1, e, ~® M=50000)

o 4] +0.1 +02 +0.3 +0.4 +05 +0.6 +0.7 +0.8 +09

CSOO(al) 3.089 3.088 3.087 3.085 3.080 3.071 3.054 3.023 2.964 2.822

We compared the modified Shewhart chart (m.Shew.) with the Shewhart chart
resp. EWMA chart applied to the residuals (Shewres resp. EWMAres, see Table

§-8). In the case of an AR(1) -process the ARL of the Shewhart chart for the re-

. . 1
+
siduals is equal to 1 T (S(e-ali-u;1/9) - S-c-atizap/a) ° Note that the

ARL of the modified Shewhart chart is smaller, if o, = 0 and c is fixed.

Table 5. A comparison of several control charts (q=p=1, g, ~®, 1=075 a1=—0.5,
M=50000, in - control ARL=500)

a )] 0.5 1.0 1.5 2.0 2.5 3.0
m.Shew. 500.22  235.00 74.21 26.70 10.94 5.09 2.79
Shewres 500.00 103.96 18.87 5.99 3.15 2.34 2.09
EWMAres 498.42 63.04 10.86 4.41 2.87 2.33 2.10

Table 6. A comparison of several control charts (q=p=1, ¢ ~®, X=0.75, «, = 0.3,
M=50000, in - control ARL=500)

a 0 0.5 1.0 1.5 2.0 2.5 3.0
m.Shew. 499.16 218.28 64.80 22.82 9.74 4.82 2.80
Shewres 500.00 298.04 118.54 49.28 22.95 12.09 7.20

EWMAres 499.87 234.44 74.53 27.78 13.03 7.48 5.03
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Table 7. A comparison of several control charts (q=p=1, ¢ ~®, X=0.75, a = 0.6,
M=50000, in -control ARL=500)

a 0 0.5 1.0 1.5 2.0 2.5 3.0
m.Shew. 500.50 282.09 107.74 44.98 21.29 11.05 6.20
Shewres 500.00 412.52 262.90 154.71 91.32 55.51 35.00

EWMAres 498.36  367.85 196.24 101.10 54.83 31.53 19.59

Table 8. A comparison of several control charts (q=p=1, ¢ ~®, X=0.75, « =0.9,
M= 50000, in - control ARL=500)

a 0 0.5 1.0 1.5 2.0 2.5 3.0
m.Shew. 499.25 441.10 314.66 208.97 138.77 92.77 63.91
Shewres 500.00  493.59 475.20 447.15 412.52 374.46 335.64

EWMAres 500.89  489.55 460.60 418.24 368.63 318.43 272.28

Table 5- 8 show that the modified Shewhart chart provides the best results, if a
is not negative. The Shewhart and the EWMA chart for the residuals behave
extremely bad for a large coefficient, e.g. for a120.6. However, it can also be
seen that the out-of-control ARL of the modified Shewhart chart is large, if o,
is near 1. For a negative coefficient the residual charts turn out to be better (cf
Table 5). This result is not surprising as indicated in the introduction.

While the out-of-control ARL of the modified Shewhart chart increases, if Iall

increases, that of the residual charts increases, if a, increases. They provide

1
better results as in the case of independent variables for a negative coefficient
and worse for a > 0. The smallest out-of-control ARL for the modified Shewhart
chart is obtained for an independent sample.

Up to now we assumed that all parameters of the process {Yt} are known.
However, in most cases this will not be satisfied.
In the following we demand that a realization of another AR(p) - process {Y;} is
known, where {Yt} and {Y;} have the same distribution and {Yt} and {Y;} are
independent. Using the realization of {Yt'} we calculate estimators for the

parameters of {Yt}' This assumption is frequently made in statistical process
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control. In many applications such data sets are available (e.g. prerun).

Let B, Qﬁ and & denote suitable estimators of p, ¢, ==(a1,..,aP)T and o (see e.g.
Brockwell/Davis (1991) ). An estimator of Yo can be obtained e.g. by solving the
Yule - Walker - equations.

Now we calculate the estimates pa'P :*, ¢ and Y for a given realization of {Y }.
Using these estimates we determine c=c (p p*,o *) such that
E:( inf{neN: Ian >c 1/?0; }) = €, where £ denotes a given constant. Here E;
denotes the expectation taken with respect to an AR(p*) - process with
coefficients g:* and o*.

Thus the process stopped at time n, if

*
IX l>c(p _*,o) Yo

where 7;=Yo(p*, g**,o*). Consequently the run length is equal to
P
8. * ¥ %
N :=inf {neN: IXnI > cE(p ,gp*,o )V'Yz )

Theorem 4.3. Suppose that the assumptions of Theorem 4.1 are satisfied. Let P,
%. and 3 denote estimators of p, %, and o which are calculated via {Y;}. Then it

PN

. * * * % ¥
follows with Cg = cE(p ,gp*,o )y Yo that

O A_ ¥ A _ % . *
P, (N-k|p=p 8o, 8=0")
) T nz-3% )dz, .. d
= n . ( n(z - 2, az z ..dz, ,
f f O’CT £y vep+1 vy vl k 1
{(-c”.-a)/o,(cl-a)/a]
DlAa_ %A _ * A_ %
5 f i )3 )d
=1+ n . (z.) n(z - 2 oz z ..dz
k§ f x 0.C. T y=p+1 j=1 } v-i k 1
[(—cz-a)/a,(cz—a)/c] i

Proof. Follows with the same arguments as Theorem 4.1.

A comparison of Theorem 4.1 and 4.3 shows that in the case ¢ zc the true ARL
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is underestimated, otherwise overestimated, provided that c is chosen such that

EO(N) =E.

In Table 9- 11 we show what happens, if the parameters are estimated.

Table 9. E_ 1(I’*\Hﬁ:l, &1=a* 8=1) for various values of a and « and c as in

1’ 1
Table 4 {m.Shew., gq=p=1, a1=0.5, et~d>, M=50000)

of / a 0 0.5 1.0 15 2.0 2.5 3.0
0.4 298.59  161.82 60.18 24.82 11.72 6.17 3.60
0.45 37902 19772 7119 2848  13.19 6.83 3.92
0.5 499.90 25278 8745 33.70 15.24 7.72 4.35
0.55 709.84 34593  113.43 42.06 18.39 9.03 4.98
0.6 1213.32 560.48  168.95 59.23 24.43 11.54 6.08

Table 10. E_ 1(§lﬁ=1, &l=a*,3=1) for various values of a and a: and c as in

Table 4 (Shewres, q=p=1{, a1=0.5, st~(]>, M=50000)

o / a 4] 0.5 1.0 1.5 2.0 2.5 3.0

0.4 469.98 319.17 150.33 70.31 35.35 19.48 11.63

0.45 494.97 351.84 175.87 86.24 44.23 24.67 14.64
0.5 500.00 374.46 202.23 103.98 55.51 31.38 18.87
0.55 494.88 390.09 227.33 124.58 70.11 40.68 24.99
0.6 470.86 390.40 247.69 146.52 86.85 54.83 33.34
Table fi. EaA(ﬁIﬁ:l, 31=ar,3=1) for various values of a and a: and c as in

Table 4 (EWMAres, A =0.75, q=p=1, a1=0.5, st'vd), M=50000)

o / a 0 0.5 1.0 1.5 2.0 2.5 3.0
0.4 354.01  211.38 86.17 38.25 19.22 11.13 7.26
0.45 42565  262.04  109.91 48.71 24.32 13.74 8.69
0.5 498.87 32014 14090  63.50 31.62 17.52 10.92
0.55 565.51  38L.41 17978  83.94 42.41 23.31 14.17
0.6 613.70 44276 22522  111.07 57.71 32.26 19.42

The results of Table 9-11 are a bit surprising. It can be seen that the estimation
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of parameters may have a strong influence on the ARL.
The ARL of the modified Shewhart chart increases, if the true parameter value a
is overestimated, otherwise it decreases. A similar behaviour can be observed for
an EWMA chart for the residuals (Table 11) and for the Shewhart chart for the
residuals ( Table 10, except the case a=0).
It is remarkable that the in-control ARL of m.Shew. changes dramatically, even if
the coefficient o is estimated quite precisely. This effect also occurs for EWMA-~
res, but it is considerably smaller. In comparison, Shewres reacts nearly robust
to deviations in the in-control state.
In spite of this behaviour, it must be emphasized that the out-of-control ARL of
m.Shew. is the smallest of all three charts, if az1. This shows that in relation to
the other charts, the ARL of m.Shew. decreases more rapidly. As in the case of
known parameters EWMAres is better than Shewres, provided that a2 1.

We think that these simulations show that the influence of parameter esti-
mation on the ARL has to be studied in more detail in future. This is a crucial
point, especially in connection with correlated data, which was not treated up to

now in literature.
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