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The maximum likelihood estimation for the 
critical points of the failure rate and the mean 
residual life function are presented in the case 
of mixture inverse Gaussian model. Several 
important data sets are analyzed from this point 
of view. For each of the data sets, 
Bootstrapping is used to construct confidence 
intervals of the critical points. 
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i. INTRODUCTION 

The distribution used most frequently in the 
modeling of failure time is the Weibull. 
However, its use is limited by the fact that its 
hazard rate, while it may be increasing or 
decreasing, must be monotonic, whatever the 
values of its parameters. This may be 
inappropriate where the equipment is such that 
its hazard rate reaches a peak after some finite 
period, and then slowly declines. Such a 
situation arises in the case of several life 
distributions; for example, inverse Gaussian, 
log-logistic, Birnbaum Saunders and Burr. The 
time when the hazard rate reaches its peak 
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(critical point) can help the reliability 
analysts determine the duration of the burn-in 
process and thus is an important parameter in 
reliability studies. 

In this paper we consider a random variable 
whose distribution is a mixture of inverse 

Gaussian distribution (IGD) and length biased 
inverse Gaussian distribution (LBIGD) as follows: 

Let fp(x) = (l-p) fx(x) +pf~(x), 0 ~p~l (i.I) 
where 

fx(x) = (l/2~x3) I/2 exp(-~(x-~)2/2~2~, x> 0,~> 0, ~> 

= 0 otherwise 

and f~(x) = x fx(x)/~, where 0 < ~ = E(X) < ~. 

(i.i) represents a rich family of distributions 
for different values of the parameter p. For p = 
0, it gives the distribution of the original 
random variable X and for p = 1 it gives the 
LBIGD. In addition, p = 1/2 yields Birnbaum and 
Saunders' model (1969) which was derived from a 
model of fatigue growth. Thus we believe that 
this model will fit wide variety of data sets. 
Its failure rate and mean residual life functions 
have been studied by Gupta and Akman (1995a). 
For a recent review of length biased distribution 
and its applications, the reader is referred to 
Gupta and Kirmani (1990). Note that a model 
similar to (i.i) was studied by Jorgensen et.al. 
(1990). 

The failure rate of the mixture model (I.i) 
increases initially and then decreases. On the 
other hand, the mean residual life functions 
(MRLF) exhibits a reverse behavior; in otherwords 
it decreases initially and then increases. For a 
general discussion of such a behavior, see Gupta 
and Akman (1995b). In this paper we shall obtain 
the Bootstrap estimates of both the turning 
points and provide their confidence intervals. 
Several important data sets are analyzed from 
this point of view. It may be pointed out that 
some attempt in this direction has been made by 
Hsieh (1990) in the case of IGD and by Chang and 
Tang (1993) in the case of Birnbaum Saunders' 
model. Thus our results are more general and 
incorporate most of the special cases including 
the cases p = 0 and p = i. 
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The organization of the paper is as follows: 
Section 2 contains the equations for obtaining 
the critical points of the failure rate and the 
MRLF. In section 3, we analyze several well 
known data sets to estimate the critical points. 

2. THE CRITICAL POINTS 

The failure rate of the model (i.i) is given 
by 

r~(t) = (~/2~ t 3) i/2 (l-p+pt/~) exp{-~/2~2t) (t-~) z) 
( - a  ( t ) )  - ( 1 - 2 p )  e2~/~ �9 (13 ( t ) )  

( 2 . 1 )  
where a ( t )  = VG[7-t ( t / ~ - l ) ,  ~ ( t )  = -V~ [7 - t ( t / l ~+ l )  and 

is the cumulative distribution function of a 
standard normal. The MRLF of the model is given 
by 
rap(t) =[(~-t+p~2/~) �9 (-a(t)) 

+ (l-2p)(l~+t-p~2/l)e 2~/~ ~(~ (t)) 

+ 2p �9 2V~W -~ (~/t) (1-tl~) 2 

�9 [~ (-~ ( t )  - ( 1 - 2 p )  e 2 ~ / ~  (13 ( t )  ) ]-1 ( 2 . 2 )  
Because of the complexity of the expressions, we 
proceed as follows: 
Define ~p(t) = -fp' (t) /fp(t) 
It can be verified that 

d inrp(t) = - qp(t) + rp(t) 
dt 

So the critical point t~ of the failure rate is 

a solution of the equation 
tlp(t) = rp(t) (2.3) 

or t; is a solution of the equation 

rp(t) - l + 3 _ ~ _ p (2.4) 
2~ 2 2 t 2 t 2 ~ (l-p) +pt 

Equation ( 2.4 ) cannot be solved for t; 

explicitly. So in order to obtain a MLE of t~, 

we substitute the MLE's of the parametersk, 

and p from a particular data set and solve for t~ 

numerical ly. 
The MLE's of ~, ~ and p are obtained by solving 
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p~3 ~-i + ~2(I_2p) - ~(i - p) x = 0 (2.5) 
and 

= + - (2.6) 
where ~ is the harmonic mean. 
For details, see Gupta and Akman (1995a). It 
should be noted that the derivative of the log- 
likelihood function with respect to p results in 
a polynomial of degree (n+l) whose solution 
requires unnecessary heavy computations when n is 
large. For fixed p, the above equation (2.5) and 
(2.6) yield unique solutions for ~ and ~. We 
then search for the values of ~, ~ and p which 
maximize the likelihood function over i000 values 
of p c [0,i]. In order to obtain the critical 

point k; of the MRLF, we proceed as follows: 
The MRLF of any nonnegative random variable X is 
given by 

where F(t) is the survival function. The failure 
rate and the MRLF are connected by the relation 

r(t) = 1 + m'(t) 
m(t) 

So in our case, the critical point k~ of the MRLF 
is given by the solution of the equation 
rp(t)mp(t) = 1 (2.7) 

Since k; cannot be obtained explicitly, we solve 
(2.7) numerically using the MLE's of the 
parameters obtained from a particular data set. 
Note that it has been shown by Gupta and Akman 

(1995b) that k~ < t;. This helps us in defining 

the range of k~. 

3 .  S o m e  E x a m p l e s  

In order to illustrate our methods, four data 
sets were analyzed. Data Set I has been fitted 
to the IGD (p = 0) by Chhikara and Folks (1989). 
It consists of the number of million revolutions 
before failure for each of the 23 ball bearings 
used in the life test. 
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DATA SET I 

17.88 28.92 33.00 41.52 42.12 45.60 48.48 
51.84 51.96 54.12 55.56 67.80 68.64 68.64 
68.88 84.12 93.12 98.64 105.12 105.84 127.92 

128.04 173.40 

Data Set II contains i01 observations and has 
been fitted to the Birnbaum Saunders' (p = 1/2) 
model by Engelhardt and Bain (1981). It pertains 
to the fatigue life of 6061-T6 aluminum coupons 
cut parallel to the direction of rolling and 
oscillated at 18 cycles per second. 

DATA SET II 

70 90 
107 108 
114 114 
124 124 
130 130 
133 134 
138 138 
142 142 
151 152 
162 163 
212 

96 97 99 i00 103 
108 108 109 109 112 
116 119 120 120 120 
124 124 124 128 128 
131 131 131 131 131 
134 134 134 134 136 
139 139 141 141 142 
144 144 145 146 148 
155 156 157 157 157 
163 164 166 166 168 

104 104 105 
112 113 114 
121 121 123 
129 129 130 
132 132 132 
136 137 138 
142 142 142 
148 149 151 
157 158 159 
170 174 196 

Data Set III has been fitted to the LBIGD (p=l), 
see Jorgensen, et.al. (1990). It represents 
successive failure intervals for the air- 
conditioning system of aircraft #7913 in Proschan 
(1963). 

DATA SET III 

97, 51, ii, 4, 141, 18, 142, 68, 77, 80, i, 16, 
106, 206, 82, 54, 31, 216, 46, iii, 39, 63, 18, 
191, 18, 163, 24. 

Data Set IV pertains to the failure intervals of 
aircraft 8044 of the Proschan's (1963) data. 
This data set was fitted by Gupta and Akman 
(1995a) to the model (i.i), assuming p is 
unknown. 
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DATA SET IV 

487, 18, i00, 7, 98, 5, 85, 91, 43, 230, 3, 130. 

The estimates of t~ and k; and the corresponding 
variances were obtained by Bootstrapping for the 
four data sets and are presented in Table 1. 

Bootstrap Estimates 

DATA SET t; vat t; 

131.970 1.223 

II 53.970 1.446 

III 60.400 0.401 

IV 2.987 0.776 

k; vat 

105.862 1.418 

14.019 1.099 

44.863 1.121 

1.094 0.306 

TABLE I 

The above values were obtained as follows: 
For each data set, MLE's are obtained for the 
parameters. These estimates are used in the 
expressions of ~p(t) and rp(t) and equation (2.3) 

is solved for t;. The MLE's of the parameters 
are then substituted in the model. This is now 
considered as a true model and i000 samples of 
the same size are generated from this model. 
From each generated sample, estimates of the 
parameters are obtained which in turn yield an 

estimate of t; by solving equation (2.3) as 

before. The mean of such i000 t~'s is given as t~ 

and variance of these t~s is given in the next 

column of Table I. Similar procedure was used to 

obtain k~ by solving equation (2.7). 
The results in Table 1 are used to obtain 

95% percentile confidence intervals, see Hall 
(1992) and Efron and Tibshirani (1993) for 
details. The results are as follows: 



Bootstrap Confidence Intervals 
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DATA SET C.I. for t; C.I. for k; 

I (125.101, 137.820) (81.700, 112.657) 

II (47.000, 56.811) (9.993, 15.148) 

III (51.021, 64.995) (35.130, 47.614) 

IV (2.551, 4.000) (0.976, 1.339) 

TABLE 2 

The above intervals are obtained as follows: 

As explained above, once i000 t2's are 
obtained, they are ordered. Then 25 ~ and 975 ~ 
observations are taken as the lower and upper 
limits of the intervals. 
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